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Abstract
Artificial intelligence (AI) is about to make itself indispensable in the health care sector. Examples of successful applications
or promising approaches range from the application of pattern recognition software to pre-process and analyze digital
medical images, to deep learning algorithms for subtype or disease classification, and digital twin technology and in silico
clinical trials. Moreover, machine-learning techniques are used to identify patterns and anomalies in electronic health records
and to perform ad-hoc evaluations of gathered data from wearable health tracking devices for deep longitudinal phenotyping.
In the last years, substantial progress has been made in automated image classification, reaching even superhuman level in
some instances. Despite the increasing awareness of the importance of the genetic context, the diagnosis in hematology is
still mainly based on the evaluation of the phenotype. Either by the analysis of microscopic images of cells in
cytomorphology or by the analysis of cell populations in bidimensional plots obtained by flow cytometry. Here, AI
algorithms not only spot details that might escape the human eye, but might also identify entirely new ways of interpreting
these images. With the introduction of high-throughput next-generation sequencing in molecular genetics, the amount of
available information is increasing exponentially, priming the field for the application of machine learning approaches. The
goal of all the approaches is to allow personalized and informed interventions, to enhance treatment success, to improve the
timeliness and accuracy of diagnoses, and to minimize technically induced misclassifications. The potential of AI-based
applications is virtually endless but where do we stand in hematology and how far can we go?

Introduction

Over the last 15 years, comprehensive diagnostics in leu-
kemia and lymphoma has become increasingly challenging.
In order to follow the guidelines of the World Health
Organization (WHO) classification, the results from differ-
ent fields, including cytomorphology, cytogenetics, immu-
nophenotyping, and molecular genetics, have to be
combined to establish a diagnosis. Gains in throughput from
the introduction of next-generation sequencing (NGS)
technologies and the accompanied broadening of the ana-
lytical spectrum in molecular genetics have boosted the
value of molecular genetic results for diagnostics, as

indicated by the revision of the WHO classification of
leukemias and lymphomas in 2017 (Ref. [1]).

The plethora of available molecular information has
broadened the landscape in leukemia and lymphoma
diagnostics and has led to new insights in the underlying
biology of the respective diseases, provoking a shift in
diagnostics from phenotype to genotype. Moreover, the
identification of an increasing list of diagnostic and
prognostic markers, the refined estimate of inter-
individual variability, and the ongoing effort to establish
correlations between different layers of information that
might eventually lead to improved targeted therapy
options, are paving the way for personalized medicine. In
parallel, it is indisputable that the data collection process
goes digital, allowing the automated integration of dif-
ferent test results and easy access for all involved stake-
holders. This journey also offers the opportunity to
share information between clinical and genomic experts
from multiple institutions, facilitating the assignment of
patients to specific clinical trials or targeted treatment
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options [2]. Hence, the journey goes from analogous to
digital and from phenotype to genotype.

Digital data is also a basic prerequisite for the application
of emerging artificial intelligence (AI) techniques. Together
with deep learning (DL) and machine learning (ML), AI is
currently a buzzword across almost all scientific disciplines
and has the potential to revolutionize diagnostic approaches
in hematology. With the dramatic performance improve-
ments in the last years, AI is at the brink to be introduced into
routine diagnostics to enhance diagnostic methods but even
more to facilitate disease classification and guidance of
treatment. One exciting prospect is the development of digital
twins to forecast cancer trajectories and to predict the
potential impact of different therapeutic strategies in silico.
The evaluation of these simulations might help to select the
most promising interventions for each individual patient,
minimizing side effects and the risk of complications [2, 3].

Here, we try to speculate what will happen in the next five
years, how the landscape of leukemia diagnostics will be
influenced by ML technologies, and how the future integra-
tion of AI-based methods will shape routine diagnostics in
hematology. It is not our intention, to comprehensively
review recent advances of the last five years but we like to
highlight ML applications that are already being used, at least
in research. Five years from now, it might be interesting to
see where we were too optimistic and whether what we
currently anticipate becomes a reality. We might even have
AI-based methods so advanced, the complexity and cap-
ability of which, we are currently incapable of contemplating.

Quick introduction to the principles of
machine learning

Due to the widespread interest and success of AI-based
applications, the terms: artificial intelligence and machine
learning, resound throughout the varying scientific dis-
ciplines, while often being used interchangeably in medi-
cine. However, whereas AI strives to simulate human
behavior and intelligence, ML, as a subdomain of AI, refers
to the automatic detection of patterns and associations
within the data (Fig. 1). DL, as a subfield of ML, allows
layered neural networks to learn an abstract representation
of often very complex data sets. AI and ML are not new and
already in the early years the potential, risks and limits of AI
have been hotly debated [4].

The remarkable improvement in technology in the bio-
logical field, especially for high-throughput methods, such
as next-generation sequencing (NGS), has led to the faster
generation of high quality data for a fraction of the original
costs, resulting in the increased availability of digital data
(=big data). Nonetheless, medical image classification, as
an example for supervised learning, has benefitted the most
from the introduction of ML methods to medicine so far
[5, 6]. The advantage is the model’s adaptability and the
fact that ML performs a task automatically on experience
without getting explicit instructions, on a scale exceeding
the capacity of the human brain. The algorithm is trained
with a massive amount of data, requiring little human
intervention, except for providing the correct class label to

Fig. 1 Overview of the different domains and the process of
supervised learning. The left side represents the different domains of
supervised learning going from artificial intelligence to machine
learning and finally deep learning. The right side depicts the process of
supervised learning. At the top right corner, the requirements for a
good training data set are listed. The data is used for automated feature

extraction, leading to the generation of a model, the performance of
which is evaluated by its capability to correctly predict the labels of
unseen instances (= test data). Based on the evaluation outcome, the
model is retrained to refine the selected features and to optimize the
model. After several rounds of retraining the final model emerges. AI
artificial intelligence, DL deep learning, ML machine learning.
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each image, and then left to extract relevant features and to
draw its own connections, ultimately developing a set of
rules and associations. The performance of the method is
evaluated by its capability to predict the correct labels for a
set of images not used in the training process (Fig. 1). The
different types and techniques of ML in hematology have
recently been reviewed [7].

The selection of an adequate training and test data set, in
terms of quantity and quality, is crucial to obtain reliable
results that are reproducible in real world scenarios and
agnostic to the location and patient population (Fig. 1). In
medicine, the training data sets are inevitably unbalanced
because of the different prevalence of certain phenotypes and
diseases in general but also in different subpopulations. The
data sets on which the algorithms are trained, can be biased by
a multitude of confounding factors that are not always obvious
to the developers. Hence, it is essential to capture as much
variability as possible by collecting a very diverse training set,
reducing the risk of overfitting and increasing the likelihood of
strong performances even for unseen instances. Ideally, the
developed ML method should be transferable between hos-
pitals and/or laboratories without loss of quality. However,
due to the current lack in standardization for the operating
procedures, minor adjustments are most likely unavoidable.

Current applications and advances

Cytomorphology

For more than 150 years, cytomorphology has been the
backbone of hematological diagnostics, which is still true
today. If an aberrant blood count is detected, cytomorpho-
logic examinations are performed first, providing an initial
diagnosis and guiding other diagnostic methods such as
cytogenetics, immunophenotyping or molecular genetics to
substantiate the result. However, the obtained preliminary
diagnosis is solely based on the phenotype, and its correct-
ness depends on pre-analytic procedures, as well as on the
experience and capabilities of the personnel to accurately
detect the aberrant cells, even very rare types. Hence, an
automated pre-processing and evaluation of the digital
microscopic images could benefit the reproducibility of
results and would allow the hematologists and pathologists to
focus on edge cases that do not fit the standard pattern,
reducing the overall workload.

In the era of digital microscopic imaging and ML
technologies, automated image processing, data analysis,
and classification have become feasible. Initial attempts
started with the segmentation of pre-processed images,
followed by object identification, feature extraction, and
lastly the classification of the different cell types. For the
classification, different techniques have been applied

ranging from support vector machines, to random forests,
and artificial neural networks (ANN). With the increasing
availability of digital images and the introduction of DL,
the steps are less strictly separated, relying on the algo-
rithm to differentiate between artefacts and informative
material, as well as to extract relevant and meaningful
features with limited human interference.

With respect to peripheral blood cells, the spectrum of
successfully applied approaches ranges from the automated
counting of white and red blood cells [8], to the differ-
entiation between myeloblasts and lymphoblasts [9], and
the simultaneous classification of different lymphoid cell
types [10–12], as well as 17 (ref. [13]) and 21 (ref. [14]) cell
types of different lineages and maturation states, including
rare and malignant leukemia cells, to name a few. The
automated identification and annotation of individual cells
also forms the basis for the classification of different types
of AML [15], the discrimination of reactive and MPN
samples [16], and the differentiation of malignant and
healthy cells for ALL diagnosis [17, 18] and ALL subtype
classification [19, 20]. The quality of the results of each
approach depends heavily on standardized pre-analytic,
analytic and post-analytic parameters.

However, while in peripheral blood smears the cell
density is sufficiently low to readily identify individual
cells, the interpretation of bone marrow smears is much
more difficult. Therefore, a pre-screening of the microscopic
image is necessary to identify areas of high quality and
single cell resolution. Here it is important that the areas are
selected from different parts of the image to ensure the
detection of all malignant cells, even if this means com-
promising on quality. Due to the increased complexity of
the task, it is not surprising that even DL models for assisted
interpretation of bone marrow smears [21, 22] could only
yield moderate results so far (Table 1). Recently, digital
pathology, which encompasses the digitization of histology
glass slides, has emerged as a powerful tool for cancer
diagnostics in general but also for diagnostics in hematol-
ogy [23], largely benefitting from the introduction of DL for
whole slide image analysis [24].

Cytogenetics

Another diagnostic method in hematology that relies on the
analysis and interpretation of morphological features is
cytogenetics. Chromosome banding analysis has long been
used in hematology and is the gold standard to identify
cytogenetic abnormalities that allow the stratification of
patients into disease subtypes with distinct prognosis. The
patient-specific information is retrieved from the classifi-
cation of chromosomes by size and banding as displayed in
a karyogram. However, the generation of an accurate kar-
yogram strongly depends on the quality of the captured
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metaphases and chromosomes, for which viable cells have
to be grown and arrested in the metaphase stage of cell
division. Subsequent banding and staining of the chromo-
somes is essential to highlight the details of diagnostic
importance and to identify normal and abnormal chromo-
somes. However, karyotyping is a very time-consuming and
complex task and a high degree of automation is desirable.
For more than 30 years, various analysis systems for
automated metaphase capturing and semi-automatic and/or
interactive karyotyping have been available. These systems
have been increasingly useful in classical human genetics,
especially in prenatal diagnostics.

The challenges for automated karyotyping are multi-
farious and not yet fully resolved. First, individual chro-
mosomes have to be identified and selected, excluding
artefacts and overlapping or touching chromosomes from
the downstream analysis. Already in 2007, an automated
workflow was proposed [25] but most of the procedures still
require some manual curation to avoid extensive discard
and the artificial creation of abnormal chromosomes due to
unfortunate cutting of overlapping chromosomes [26]
(Table 1). It follows the labeling of the separated chromo-
somes and their assignment to the respective position in the
karyogram. For an automated procedure, the identification
of an optimal and small chromosome feature set is key for
accurate performance and robustness. Common features
considered for labeling include shape and size of the
chromosome, the centromere location, and the unique
banding pattern profile. Especially the banding pattern has
been researched intensively to efficiently compute the pro-
files as a prerequisite for chromosome classification.

Over the last 20 years, various chromosome classifiers
have been developed, ranging from ANN [27, 28], to com-
petitive neural network teams [26], wavelet transform based
linear discriminant analysis [29], and different versions of
(deep) convoluted neural networks [30–34], achieving an
accuracy from 85.2% to 98.6%. The classification often
improved by correct alignment and orientation of the chro-
mosomes along the vertical axis as a pre-processing step.
Misclassification usually involved chromosomes, very simi-
lar in size, shape, and appearance and, hence, are challenging
to differentiate, even for human professionals.

In tumor cytogenetics, chromosome anomalies, including
numerical and structural abnormalities, are quite common
and pose a further challenge for automated approaches.
Numerical abnormalities usually involve normal chromo-
somes and, hence, most methods can be extended quite
easily for this task. Structural abnormalities on the other
hand are more challenging, due to the huge variety of
possibilities and the sometimes limited available training
material. However, promising early results show that also
structurally abnormal karyograms might be detectable in an
automated fashion in the future [34].

Immunophenotyping

Besides cytomorphology, multiparameter flow cytometry
(MFC, immunophenotyping) is the central method for the
diagnosis of leukemias and lymphomas. MFC uses fluores-
cence dye-conjugated monoclonal antibodies, targeting
diagnostically relevant antigens, to analyze cell populations
based on their light-scattering properties and antigen
expression patterns. Specific software automatically mea-
sures and captures the expression of the respective fluor-
escent dyes. Subsequently, human experts apply a sequential
gating procedure to large sets of bidimensional plots to
identify and label cell populations of interest. Although this
method seems much less subjective than cytomorphology or
histology, all the steps are error prone, influencing or even
biasing the later interpretation. While standardized proce-
dures are in place to control quality of sample preparation
and measurement, the interpretation still relies on expert
knowledge with inherited inter-observer variability. Thus, to
reduce the dependency on expert knowledge and to increase
reproducibility of data interpretation the implementation of
automated procedures is desirable (Table 1).

An attempt in this field was conducted by Zhao et al. [35],
who used self-organizing maps of light emission profiles as
an input for a deep convolutional neural network to differ-
entiate between healthy and neoplastic samples, as well as
classification of mature B-neoplasm subtypes. Different
clustering and ML techniques have been applied for joint cell
clustering and identification of anomalous sample phenotypes
for various hematologic malignancies [36], including AML
samples [37, 38] and lymphomas [39–41]. Angeletti [42]
applied a genetic algorithm to differentiate between AML and
control samples and Bigorra et al. [43] could show that neural
network approaches yield the highest accuracy for the dif-
ferentiation between healthy controls, virus-infected samples
and CLL patients. Only few approaches [44, 45] have
attempted to use flow cytometry data for the classification
without preceding image transformation. While Biehl et al.
[44] used generalized matrix relevance learning vector
quantification to separate AML patients from healthy con-
trols, Müller et al. [45] applied a XGBoost model to assign
lymphoma samples to their respective subtype.

Moreover, AI-based methods have been applied to
accelerate, harmonize, and standardize interpretation of
minimal residual disease (MRD) measurements obtained by
flow cytometry, predicting the outcome of AML and MDS
patients with high accuracy [46, 47].

Molecular genetics

While the other fields integrate AI technologies to mimic
human intelligence and to reproduce the knowledge of
experienced diagnosticians, clinical molecular genetics aims

How artificial intelligence might disrupt diagnostics in hematology in the near future 4275



to implement ML-based methods to perform tasks that are
impractical for humans to do. With the introduction of high-
throughput sequencing techniques and the accompanied
analysis of large gene panels or even whole genomes and
transcriptomes, molecular genetics has entered the realm of
big data (Table 1). A single human genome contains 2x
~3.2 billion nucleotides worth of information and mining
the data to obtain clinically relevant insights soon becomes
cumbersome.

Basically every step in clinical genomic analysis could
benefit from the integration of ML and DL methods
[48, 49], including, but not limited to, the recognition of
DNA sequence patterns [50, 51], variant calling [52], and
variant effect prediction [53, 54] and classification [55].
Especially variant interpretation becomes more and more
important with the increase in analyzed genes. Prioritization
of causal and clinically actionable genetic variants is
required for clinical decision-making and forms the basis
for automated disease classification.

For some entities, the current WHO classification only
mentions molecular genetic markers as a footnote so far but
there is increasing recognition of the diagnostic relevance of
the broader genetic context. Sequencing of a predefined set of
gene regions associated with the suspected disease is cur-
rently favored, as opposed to whole exome sequencing,
owing to decreased costs, to reduce turn-around times, and to
limit an overburden of information that is not clinically
actionable. The obtained mutational profile can be enriched
by integration with phenotypic changes and clinical data as
recently done by Nagata et al. who applied Bayesian ML
techniques to identify diagnostically and prognostically
relevant associations between genetic variants and cytomor-
phological changes in myelodysplastic syndromes (MDS).
ML algorithms have also been applied to integrate mutational
data, peripheral blood values, and clinical data into a geno-
clinical model to differentiate various bone marrow disorders
[56, 57]. However, the long-term goal might be to solely rely
on molecular genetic data for disease and subgroup classifi-
cation as previously done by different groups [58, 59].

Applying ML-based methods to molecular genetic data is
not only relevant for clinical diagnosis but also for prog-
nostication and the prediction of drug-responses. Wagner
et al. [61] combined the molecular results of different
databases in an ANN to identify a prognostic 3-gene sig-
nature that separated AML patients of European Leuke-
miaNet (ELN) strata in subgroups with different survival
probabilities. A supervised ML approach applied to an
NPM1mut AML cohort identified clinically important
mutations which were combined to a genetic score to pin-
point patients who are at high risk of relapse [62]. Super-
vised machine learning identified features that reliably
assigned AML patients with RUNX1-RUNX1T1 to favor-
able and poor risk classes [63]. In an MDS cohort an a priori

market basket analysis algorithm was used to identify
molecular signatures strongly associated with response to
hypomethylating agents [64].

Although, the clinical application of transcriptome analysis
is usually limited to the quantification of expression of a
handful of genes by qPCR, different studies have also
demonstrated the combined strength of larger gene panels and
DL-based approaches for patient classification [60], bio-
marker detection [65], and predicting clinical response to anti-
cancer drugs [66]. To overcome the difficulties presented by
bulk gene expression data, DL has been applied to estimate
cell type compositions from tissue expression profiles [67].

Current challenges for the clinical
implementation of AI-based methods

As outlined in the previous chapters, hematology could
benefit substantially from the application of AI-based
approaches to reduce the workload, to merge the knowl-
edge of different experts, to decrease turn-around times,
and to minimize technically induced misclassifications.
The accurate interpretation of results depends a lot on a
person’s level of experience and reliable AI-based clinical
decision-support systems could install confidence in
unexperienced clinicians, especially for morphology-based
diagnostics. Different ML-based applications address these
points, with the automated classification of cells and
chromosomes from digital microscopic images nearly
reaching expert clinical accuracy.

However, the performance of the algorithms largely
depends on the availability of extensive standardized digital
data to train the algorithms. The degree of workflow auto-
mation and hence, the homogeneity and reproducibility of
the obtained data, varies between the different fields,
potentially biasing the results (Table 1). Moreover, various
parameters, such as the selected staining technique, the used
antibodies or the selected genes and hotspots of a testing
panel, often differ between different institutions, labora-
tories, and hospitals, impeding a generalization of the
developed methods (Table 1). Hence, interlaboratory vali-
dation studies are necessary for a successful application and
transferability of ML models and comprehensive guidelines
have to be established to ensure standardized method out-
puts that can subsequently be fed into the ML models.

For some instances, the available training data is also
limited in its complexity, capturing only part of the biological
variability (Table 1). In cytomorphology, for example, it is
challenging to obtain sufficient training material of rare cells,
restricting the algorithm’s capability to extract meaningful
features and to reliably identify the phenotype. The same
applies to immunophenotyping and to rare chromosomal
abnormalities in tumor cytogenetics. In molecular genetics,
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analyzed gene panels are often inconsistent among patients,
depending on the suspected diagnosis and associated genes.
Due to the sometimes-limited training material, there is a high
risk of overfitting and the accidental fitting of confounders,
resulting in significantly worse performances for unseen data.
In addition, it is necessary to pay attention to avoid unin-
tended discriminatory bias and failed generalization to new
populations.

The benefit of AI technologies is the potential to improve
the performance by constant learning, raising at the same time
the unprecedented question about how to regulate such a
machine. Initial guidelines have already been created around
the globe [68]. However, one as yet unanswered question is the
question of responsibility if an algorithms gets a diagnosis
wrong. Most likely, there will not be an all-encompassing
answer but each occurrence will have to be evaluated inde-
pendently, taking into account the exact circumstances. Due to
the initial poor results of AI-based approaches, many potential
users are sceptical and successful, robust implementations,
validated by clinical studies, will be necessary to eliminate the
doubts. Furthermore, there is the ‘black box’ or ‘explainability’
problem of DL methods, allowing humans to comprehend the
decisions of the algorithms only to a limited extent, under-
mining the scientific value of the method. The shortcomings of
current ML-based methods in healthcare and potential solutions
have been widely discussed [69–71]. Due to recent efforts,
various methods exist to improve the transparency of an
applied DL model [72], creating the neologism of ‘explainable
artificial intelligence’ and paving the way for the clinical use.

Opportunities and outlook

As indicted before, the best opportunities for a fast imple-
mentation of ML-based technologies into routine diagnostic
workflows offer cytomorphology and cytogenetics (Fig. 2).
With the recent integration of DL methods, the accuracies
of the different methods are close to expert level, offering
the possibility of faster and more accurate sample proces-
sing, bringing expertise to the fingertips of less experienced
hematologists. Although the current AI-based applications
in flow cytometry are less extensive and have not reached
clinically acceptable accuracies in all domains, an auto-
mated workflow could potentially lead to more standardized
and reproducible results (Fig. 2).

In contrast to the other fields, the opportunities and
possibilities in molecular genetics do not solely rely on the
optimization of AI-based methods or an increase in stan-
dardized training data sets but also depend on the creation
of comprehensive data collections and large-scale data
mining efforts to improve the understanding of individual
sequence variants and complex molecular constellations
(Fig. 2). Comprehensive assays such as whole genome
sequencing (WGS) and whole transcriptome sequencing
(WTS) have great and so far mostly unexplored potential to
revolutionize diagnostics of hematologic malignancies. Due
to the high dimensionality and multi-modality, genomic
data sets are the perfect candidate for DL explorations and
can be used to refine diagnosis, further develop classifica-
tion systems, identify prognostic factors, and to provide

Fig. 2 Overview of implemented and potential ML applications in
hematology. The central part of the figure displays current and future
diagnostic tests and methods, while the outer part illustrates the

various data types and the potential clinical impact of ML-based
applications and analyses. DL deep learning, ML machine learning.
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targets for individualized therapy (Fig. 2). Especially the
identification of significant interactions and regulatory
mechanisms are of tremendous interest. Dynamic mechan-
istic models can be used to analyze signaling regulations
and even predict the effects of targeted therapies for per-
sonalized treatments [73]. Here, AI-based methods can also
help to filter the clinically most relevant pathways [74].
Moreover, integrating molecular profiles and networks with
deep, longitudinal physiological data and AI methods opens
up the possibility for early detection of disease transition,
prediction of clinical outcome, and the design of persona-
lized treatment strategies [75, 76]. Another proposed solu-
tion to the challenge of efficiently linking an individual’s
molecular profile to a compatible drug treatment is based on
constructing Digital Twins [3]. The idea behind a digital
twin in medicine is to build a computational model of a
patient, which can be modified in silico, testing different
treatments more quickly, economically, and safely than is
possible in real life. The concept could be extended to in
silico clinical trials, testing new drugs for a fraction of the
current cost without putting patients at risk. The accuracy of
such models could further be improved by adding multi-
omics data (Fig. 2). Different ML-based methods have been
developed for multi-omics analysis to conquer challenges
such as data integration, biomarker discovery, and the
identification of therapeutic compounds [77, 78]. The inte-
gration of multi-omics data opens up the opportunity for a
more comprehensive diagnosis with a tailored treatment
based on an individual’s genetic make-up.

Conclusions

AI-based technologies continue to transform our everyday
life and increasingly also different sectors of health care,
including hematology. On one hand, the implementation of
ML methods will aid clinicians in their analysis and inter-
pretation of the data, increase objectivity and accuracy in the
work-up, while on the other, the collected and the integrated
knowledge will aid less experienced doctors in guiding their
decision-making process. Here, regulated integration of new
applications is important to ensure that patients are neither
exposed to flawed interventions with potentially harmful
effects nor denied access to beneficial innovations. Fur-
thermore, in the future, molecular data, in combination with
AI-based methods, might be superior to the phenotype-based
standard methods in hematology, potentially defining new
therapeutic approaches, yielding informed treatment deci-
sions. Over the next five years, we will see an increasing
need for AI approaches to integrate multi-modal patient data
and treatment options as it becomes impossible for human
intelligence to capture all this. However, in any field the
prerequisite for the integration of ML-based methods is a

reproducible and accredited data generation workflow. Only
standardized outputs can be used for automated processing
and provide results that, in combination with clinical judg-
ment, can be used for diagnostics, for prognosis, and for
therapy management in the context of precision medicine.

Despite the recent success of AI-based technologies in
medicine, no system is infallible and results always have to be
examined critically. It is not the intention to replace doctors
with AI technologies but it would be negligent to ignore their
potential. We need the support of AI to fulfill our primary
goal: to provide patients with the best possible care. It is our
duty to use all the means at our disposal to achieve this.

Compliance with ethical standards

Conflict of interest TH, CH and WK declare part ownership of
Munich Leukemia Laboratory (MLL). WW, NN, IS and CK are
employed by the MLL.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H
et al. editors. WHO classification of tumours of haematopoietic
and lymphoid tissues. Revised 4th edn. Lyon: International
Agency for Research on Cancer; 2017.

2. Madhavan S, Beckman RA, McCoy MD, Pishvaian MJ, Brody
JR, Macklin P. Envisioning the future of precision oncology trials.
Nat Cancer. 2021;2:9–11.

3. Björnsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR,
Gustafsson M, et al. Digital twins to personalize medicine. Gen-
ome Med. 2019;12:4.

4. Fjelland R. Why general artificial intelligence will not be realized.
Humanit Soc Sci Commun. 2020;7:10.

5. Wu JT, Wong KCL, Gur Y, Ansari N, Karargyris A, Sharma A,
et al. Comparison of chest radiograph interpretations by artificial
intelligence algorithm vs radiology residents. JAMA Netw Open.
2020;3:e2022779.

6. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM,
et al. Dermatologist-level classification of skin cancer with deep
neural networks. Nature. 2017;542:115–8.

7. Shouval R, Fein JA, Savani B, Mohty M, Nagler A. Machine
learning and artificial intelligence in haematology. Br J Haematol.
2021;192:239–50.

4278 W. Walter et al.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


8. Alomari YM, Sheikh Abdullah SNH, Zaharatul Azma R, Omar K.
Automatic detection and quantification of WBCs and RBCs using
iterative structured circle detection algorithm. Comput Math
Methods Med. 2014;2014:979302.

9. Bigorra L, Merino A, Alférez S, Rodellar J. Feature analysis and
automatic identification of leukemic lineage blast cells and reac-
tive lymphoid cells from peripheral blood cell images. J Clin Lab
Anal. 2017;31:e22024.

10. Alférez S, Merino A, Mujica LE, Ruiz M, Bigorra L, Rodellar J.
Automatic classification of atypical lymphoid B cells using digital
blood image processing. Int J Lab Hematol. 2014;36:472–80.

11. Alférez S, Merino A, Bigorra L, Mujica L, Ruiz M, Rodellar J.
Automatic recognition of atypical lymphoid cells from peripheral
blood by digital image analysis. Am J Clin Pathol. 2015;143:
168–76. quiz 305

12. Alférez S, Merino A, Bigorra L, Rodellar J. Characterization and
automatic screening of reactive and abnormal neoplastic B lymphoid
cells from peripheral blood. Int J Lab Hematol. 2016;38:209–19.

13. Kimura K, Tabe Y, Ai T, Takehara I, Fukuda H, Takahashi H,
et al. A novel automated image analysis system using deep con-
volutional neural networks can assist to differentiate MDS and
AA. Sci Rep. 2019;9:13385.

14. Pohlkamp C, Jhalani K, Nadarajah N, Heo I, Wetton W, Drescher
R, et al. Machine learning (ML) can successfully support micro-
scopic differential counts of peripheral blood smears in a high
throughput hematology laboratory. Blood. 2020;136:45–6.

15. Boldú L, Merino A, Alférez S, Molina A, Acevedo A, Rodellar J.
Automatic recognition of different types of acute leukaemia in
peripheral blood by image analysis. J Clin Pathol. 2019;72:755–61.

16. Sirinukunwattana K, Aberdeen A, Theissen H, Sousos N, Psaila
B, Mead AJ, et al. Artificial intelligence-based morphological
fingerprinting of megakaryocytes: a new tool for assessing disease
in MPN patients. Blood Adv. 2020;4:3284–94.

17. Moshavash Z, Danyali H, Helfroush MS. An automatic and robust
decision support system for accurate acute leukemia diagnosis from
blood microscopic images. J Digit Imaging. 2018;31:702–17.

18. Chin Neoh S, Srisukkham W, Zhang L, Todryk S, Greystoke B,
Peng Lim C, et al. An intelligent decision support system for
leukaemia diagnosis using microscopic blood images. Sci Rep.
2015;5:14938.

19. Pansombut T, Wikaisuksakul S, Khongkraphan K, Phon-On A.
Convolutional neural networks for recognition of lymphoblast cell
images. Comput Intell Neurosci. 2019;2019:7519603.

20. Shafique S, Tehsin S. Acute lymphoblastic leukemia detection
and classification of its subtypes using pretrained deep con-
volutional neural networks. Technol Cancer Res Treat.
2018;17:1533033818802789.

21. Wu Y-Y, Huang T-C, Ye R-H, Fang W-H, Lai S-W, Chang P-Y,
et al. A hematologist-level deep learning algorithm (BMSNet) for
assessing the morphologies of single nuclear balls in bone marrow
smears: algorithm development. JMIR Med Inform. 2020;8:e15963.

22. Fu X, Fu M, Li Q, Peng X, Lu J, Fang F, et al. Morphogo: an
automatic bone marrow cell classification system on digital ima-
ges analyzed by artificial intelligence. Acta Cytol.
2020;64:588–96.

23. El Achi H, Khoury JD. Artificial intelligence and digital microscopy
applications in diagnostic hematopathology. Cancers. 2020;12:797.

24. Dimitriou N, Arandjelović O, Caie PD. Deep learning for whole
slide image analysis: an overview. Front Med. 2019;6:264.

25. Grisan E, Poletti E, Tomelleri C, Ruggeri A. Automatic seg-
mentation of chromosomes in Q-band images. Annu Int Conf
IEEE Eng Med Biol Soc. 2007;2007:5513–6.

26. Gagula-Palalic S, Can M. Human chromosome classification
using Competitive Neural Network Teams (CNNT) and Nearest
Neighbor. In: IEEE-EMBS International Conference on Biome-
dical and Health Informatics (BHI). IEEE. 2014; 626–9.

27. Delshadpour S. Reduced size multi layer perceptron neural net-
work for human chromosome classification. In: Proceedings of the
25th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (IEEE Cat. No.03CH37439).
IEEE. 2004; 3: 2249–52.

28. Oskouei BC, Shanbehzadeh J. Chromosome classification based
on wavelet neural network. In: 2010 International Conference on
Digital Image Computing: Techniques and Applications. IEEE.
2010; 605–10.

29. Roshtkhari MJ, Setarehdan SK. Linear Discriminant Analysis of
the wavelet domain features for automatic classification of human
chromosomes. In: 2008 9th International Conference on Signal
Processing. IEEE. 2008; 849–52.

30. Qiu Y, Lu X, Yan S, Tan M, Cheng S, Li S et al. Applying deep
learning technology to automatically identify metaphase chro-
mosomes using scanning microscopic images: an initial investi-
gation. In: Chen WR (ed). Biophotonics and Immune Responses
XI. SPIE, 2016.

31. Sharma M, Saha O, Sriraman A, Hebbalaguppe R, Vig L, Karande
S. Crowdsourcing for chromosome segmentation and deep clas-
sification. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW). IEEE. 2017; 786–93.

32. Swati, Gupta G, Yadav M, Sharma M, Vig L. Siamese networks for
chromosome classification. In: 2017 IEEE International Conference
on Computer Vision Workshops (ICCVW). IEEE. 2017; 72–81.

33. Qin Y, Wen J, Zheng H, Huang X, Yang J, Song N, et al. Var-
ifocal-net: a chromosome classification approach using deep con-
volutional networks. IEEE Trans Med Imaging. 2019;38:2569–81.

34. Haferlach C, Hänselmann S, Walter W, Volkert S, Zenger M,
Kern W, et al. Artificial intelligence substantially supports chro-
mosome banding analysis maintaining its strengths in hematologic
diagnostics even in the era of newer technologies. Blood.
2020;136:47–8.

35. Zhao M, Mallesh N, Höllein A, Schabath R, Haferlach C,
Haferlach T, et al. Hematologist-level classification of mature B-
cell neoplasm using deep learning on multiparameter flow cyto-
metry data. Cytom A. 2020;97:1073–80.

36. Duetz C, Bachas C, Westers TM, van de Loosdrecht AA. Com-
putational analysis of flow cytometry data in hematological
malignancies: future clinical practice? Curr Opin Oncol.
2020;32:162–9.

37. Dundar M, Akova F, Yerebakan HZ, Rajwa B. A non-parametric
Bayesian model for joint cell clustering and cluster matching:
identification of anomalous sample phenotypes with random
effects. BMC Bioinforma. 2014;15:314.

38. Manninen T, Huttunen H, Ruusuvuori P, Nykter M. Leukemia
prediction using sparse logistic regression. PLoS ONE. 2013;8:
e72932

39. Lakoumentas J, Drakos J, Karakantza M, Nikiforidis GC, Sakel-
laropoulos GC. Bayesian clustering of flow cytometry data for the
diagnosis of B-chronic lymphocytic leukemia. J Biomed Inform.
2009;42:251–61.

40. Zare H, Bashashati A, Kridel R, Aghaeepour N, Haffari G,
Connors JM, et al. Automated analysis of multidimensional flow
cytometry data improves diagnostic accuracy between mantle cell
lymphoma and small lymphocytic lymphoma. Am J Clin Pathol.
2012;137:75–85.

41. Pouyan MB, Jindal V, Birjandtalab J, Nourani M. Single and
multi-subject clustering of flow cytometry data for cell-type
identification and anomaly detection. BMC Med Genomics.
2016;9:41.

42. Angeletti C. A method for the interpretation of flow cytometry
data using genetic algorithms. J Pathol Inf. 2018;9:16.

43. Bigorra L, Larriba I, Gutiérrez-Gallego R. Machine learning
algorithms for accurate differential diagnosis of lymphocytosis
based on cell population data. Br J Haematol. 2019;184:1035–7.

How artificial intelligence might disrupt diagnostics in hematology in the near future 4279



44. Biehl M, Bunte K, Schneider P. Analysis of flow cytometry data
by matrix relevance learning vector quantization. PLoS ONE.
2013;8:e59401

45. Müller M-L, Nadarajah N, Jhalani K, Heo I, Wetton W, Haferlach
C, et al. Employment of machine learning models yields highly
accurate hematological disease prediction from raw flow cyto-
metry matrix data without the need for visualization or human
intervention. Blood. 2020;136:11.

46. Ko B-S, Wang Y-F, Li J-L, Li C-C, Weng P-F, Hsu S-C, et al.
Clinically validated machine learning algorithm for detecting
residual diseases with multicolor flow cytometry analysis in acute
myeloid leukemia and myelodysplastic syndrome. EBioMedicine.
2018;37:91–100.

47. Licandro R, Reiter M, Diem M, Dworzak M, Schumich A, Kampel
M. Application of machine learning for automatic MRD assessment in
paediatric acute myeloid leukaemia. In: Proceedings of the 7th Inter-
national Conference on Pattern Recognition Applications and Meth-
ods. SCITEPRESS - Science and Technology Publications. 2018.

48. Dias R, Torkamani A. Artificial intelligence in clinical and
genomic diagnostics. Genome Med. 2019;11:70.

49. Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A.
A primer on deep learning in genomics. Nat Genet. 2019;51:12–8.

50. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF,
Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from
primary sequence with deep learning. Cell. 2019;176:535–48. e24

51. Albaradei S, Magana-Mora A, Thafar M, Uludag M, Bajic VB,
Gojobori T, et al. Splice2Deep: an ensemble of deep convolu-
tional neural networks for improved splice site prediction in
genomic DNA. Gene X. 2020;5:100035.

52. Poplin R, Chang P-C, Alexander D, Schwartz S, Colthurst T, Ku
A, et al. A universal SNP and small-indel variant caller using deep
neural networks. Nat Biotechnol. 2018;36:983–7.

53. Hoffman GE, Bendl J, Girdhar K, Schadt EE, Roussos P. Func-
tional interpretation of genetic variants using deep learning pre-
dicts impact on chromatin accessibility and histone modification.
Nucleic Acids Res. 2019;47:10597–611.

54. Lai C, Zimmer AD, O’Connor R, Kim S, Chan R, van den Akker
J, et al. LEAP: Using machine learning to support variant classi-
fication in a clinical setting. Hum Mutat. 2020;41:1079–90.

55. Quang D, Chen Y, Xie X. DANN: a deep learning approach for
annotating the pathogenicity of genetic variants. Bioinformatics.
2015;31:761–3.

56. Hilton CB, Meggendorfer M, Sekeres MA, Shreve J, Radakovich
N, Rouphail Y, et al. Geno-clinical model for the diagnosis of
bone marrow myeloid neoplasms. Blood. 2019;134:4238.

57. Radakovich N, Meggendorfer M, Malcovati L, Sekeres MA,
Shreve J, Hilton CB, et al. A personalized clinical-decision tool to
improve the diagnostic accuracy of myelodysplastic syndromes.
Blood. 2020;136:33–5.

58. Parida L, Haferlach C, Rhrissorrakrai K, Utro F, Levovitz C,
Kern W, et al. Dark-matter matters: discriminating subtle blood
cancers using the darkest DNA. PLoS Comput Biol. 2019;15:
e1007332.

59. Meggendorfer M, Walter W, Haferlach C, Kern W, Haferlach T.
Challenging blast counts by machine learning techniques and
genome sequencing for discriminating AML and MDS. Blood.
2019;134:4663.

60. Mallick PK, Mohapatra SK, Chae G-S, Mohanty MN. Convergent
learning-based model for leukemia classification from gene
expression. Pers Ubiquitous Comput. 2020. https://doi.org/10.1007/
s00779-020-01467-3. (e-pub ahead of print 16 October 2020).

61. Wagner S, Vadakekolathu J, Tasian SK, Altmann H, Bornhäuser
M, Pockley AG, et al. A parsimonious 3-gene signature predicts
clinical outcomes in an acute myeloid leukemia multicohort study.
Blood Adv. 2019;3:1330–46.

62. Patkar N, Shaikh AF, Kakirde C, Nathany S, Ramesh H, Bhanshe
P, et al. A novel machine-learning-derived genetic score correlates
with measurable residual disease and is highly predictive of out-
come in acute myeloid leukemia with mutated NPM1. Blood
Cancer J. 2019;9:79.

63. Shaikh AF, Kakirde C, Dhamne C, Bhanshe P, Joshi S,
Chaudhary S, et al. Machine learning derived genomics driven
prognostication for acute myeloid leukemia with RUNX1-
RUNX1T1. Leuk Lymphoma. 2020;61:3154–60.

64. Nazha A, Sekeres MA, Bejar R, Rauh MJ, Othus M, Komrokji
RS, et al. Genomic biomarkers to predict resistance to hypo-
methylating agents in patients with myelodysplastic syndromes
using artificial intelligence. JCO Precis Oncol. 2019;3:1–11.

65. Castillo D, Galvez JM, Herrera LJ, Rojas F, Valenzuela O, Caba
O. et al. Leukemia multiclass assessment and classification from
Microarray and RNA-seq technologies integration at gene
expression level. PLoS ONE. 2019;14:e0212127

66. Sakellaropoulos T, Vougas K, Narang S, Koinis F, Kotsinas A,
Polyzos A, et al. A deep learning framework for predicting
response to therapy in cancer. Cell Rep. 2019;29:3367–3373. e4

67. Menden K, Marouf M, Oller S, Dalmia A, Magruder DS, Kloiber
K, et al. Deep learning-based cell composition analysis from tissue
expression profiles. Sci Adv. 2020;6:eaba2619.

68. Jobin A, Ienca M, Vayena E. The global landscape of AI ethics
guidelines. Nat Mach Intell. 2019;1:389–99.

69. Holzinger A, Langs G, Denk H, Zatloukal K, Müller H. Causa-
bility and explainability of artificial intelligence in medicine.
Wiley Interdiscip Rev Data Min Knowl Disco. 2019;9:e1312.

70. Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Precise4Q
consortium. Explainability for artificial intelligence in healthcare:
a multidisciplinary perspective. BMC Med Inf Decis Mak.
2020;20:310.

71. Cutillo CM, Sharma KR, Foschini L, Kundu S, Mackintosh M,
Mandl KD, et al. Machine intelligence in healthcare-perspectives
on trustworthiness, explainability, usability, and transparency.
NPJ Digit Med. 2020;3:47.

72. Samek W, Wiegand T, Müller K-R. Explainable artificial intelli-
gence: understanding, visualizing and interpreting deep learning
models. arXiv. 2017. http://arxiv.org/abs/1708.08296.

73. Saez-Rodriguez J, Blüthgen N. Personalized signaling models for
personalized treatments. Mol Syst Biol. 2020;16:e9042.

74. Ai C, Kong L. CGPS: a machine learning-based approach
integrating multiple gene set analysis tools for better prior-
itization of biologically relevant pathways. J Genet Genom.
2018;45:489–504.

75. Yurkovich JT, Tian Q, Price ND, Hood L. A systems approach to
clinical oncology uses deep phenotyping to deliver personalized
care. Nat Rev Clin Oncol. 2020;17:183–94.

76. Topol EJ. High-performance medicine: the convergence of human
and artificial intelligence. Nat Med. 2019;25:44–56.

77. Nicora G, Vitali F, Dagliati A, Geifman N, Bellazzi R. Integrated
multi-omics analyses in oncology: a review of machine learning
methods and tools. Front Oncol. 2020;10:1030.

78. Patel-Murray NL, Adam M, Huynh N, Wassie BT, Milani P,
Fraenkel E. A multi-omics interpretable machine learning model
reveals modes of action of small molecules. Sci Rep.
2020;10:954.

4280 W. Walter et al.

https://doi.org/10.1007/s00779-020-01467-3
https://doi.org/10.1007/s00779-020-01467-3
http://arxiv.org/abs/1708.08296

	How artificial intelligence might disrupt diagnostics in hematology in the near future
	Abstract
	Introduction
	Quick introduction to the principles of machine learning
	Current applications and advances
	Cytomorphology
	Cytogenetics
	Immunophenotyping
	Molecular genetics

	Current challenges for the clinical implementation of AI-based methods
	Opportunities and outlook
	Conclusions
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




