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Abstract

Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) is the
state-of-the-art technology for analyzing genome-wide regulatory landscapes in single
cells. Single-cell ATAC-seq data are sparse and noisy, and analyzing such data is
challenging. Existing computational methods cannot accurately reconstruct activities
of individual cis-regulatory elements (CREs) in individual cells or rare cell
subpopulations. We present a new statistical framework, SCATE, that adaptively
integrates information from co-activated CREs, similar cells, and publicly available
regulome data to substantially increase the accuracy for estimating activities of
individual CREs. We demonstrate that SCATE can be used to better reconstruct the
regulatory landscape of a heterogeneous sample.
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Background
A cell's regulome, defined as the activities of all cis-regulatory elements (CREs) in
its genome, contains crucial information for understanding how genes’ transcrip-
tional activities are regulated in normal and pathological conditions. Convention-
ally, regulome is measured using bulk technologies such as chromatin immuno-
precipitation coupled with sequencing (ChIP-seq [1]), DNase I hypersensitive site
sequencing (DNase-seq [2]), and assay for transposase-accessible chromatin fol-
lowed by sequencing (ATAC-seq [3]). These technologies measure cells’ average
behavior in a biological sample consisting of thousands to millions of cells. They
cannot analyze each individual cell. When a heterogeneous sample (e.g., a tis-
sue sample) consisting of multiple cell types or cell states is analyzed, these
bulk technologies may miss important biological signals carried by only a subset
of cells.

Recent innovations in single-cell genomic technologies make it possible to map reg-
ulomes in individual cells. For example, single-cell ATAC-seq (scATAC-seq [4, 5]) and
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single-cell DNase-seq (scDNase-seq [6]) are two technologies for analyzing open chro-
matin, a hallmark for active cis-regulatory elements, in single cells. Single-cell ChIP-seq
(scChIP-seq [7]), on the other hand, allows single-cell analysis of histone modifica-
tion. Technologies for simultaneously mapping open chromatin along with other -omics
modalities are also under active development (e.g., scNMT-seq [8], Pi-ATAC [9], sci-CAR
[10]). These single-cell technologies enable scientists to examine a heterogeneous sample
with an unprecedented cellular resolution, allowing them to systematically discover and
characterize unknown cell subpopulations.

Among the existing single-cell regulome mapping technologies, scATAC-seq is the
most widely used one due to its relatively simple and robust protocol and its unparalleled
throughput for analyzing a large number of cells. It is adopted by the Human Cell Atlas
(HCA) Consortium as a major tool for characterizing regulatory landscape of human cells
([11)).

Data produced by scATAC-seq are highly sparse. For instance, a typical human
scATAC-seq dataset contains 10°~10% cells and 103-10° sequence reads per cell. How-
ever, the number of CREs in the genome far exceeds 10°. Thus, in a typical cell, most
CREs do not have any mapped read. For CREs with reads, the number of mapped
reads seldom exceeds two (Fig. 1a,b) because each locus has no more than two copies
of assayable chromatin per cell in a diploid genome. Also, existing single-cell regulome
mapping technologies including scATAC-seq destroy cells during the assay. Thus, they
only get a snapshot of a cell at one time point. However, molecular events such as
transcription factor (TF)-DNA binding and their dissociation are temporal stochastic
processes. The steady-state activity of a CRE in a cell is determined by the probability
that such stochastic events occur over time. Since probability is a continuous measure,
the overall activity of a CRE in a cell should be a continuous signal in principle. The
sparse and nearly binary scATAC-seq data collected for each CRE at one single time
point therefore cannot accurately describe the CRE’s continuous steady-state activity
in a cell.

The discrete, sparse, and noisy data pose significant data analysis challenges. Conven-
tional methods developed for bulk data cannot effectively analyze single-cell regulome
data [12, 13]. As a result, there is a pressing need for new computational tools for single-
cell regulome analysis. Recently, several single-cell regulome analysis methods have been
developed. They can be grouped into three categories based on how they deal with the
sparsity (Additional file 1: Table S1).

Methods in category 1, including chromVAR [12], SCRAT [13], and BROCKMAN
[14], tackle sparsity by aggregating reads from multiple CREs. Instead of analyzing each
CRE, they combine reads from CREs that share either a TF binding motif, a k-mer,
or a co-activation pattern in DNase-seq data from the Encyclopedia of DNA Elements
(ENCODE) [15, 16]. The aggregated data on motifs, k-mers, or co-activated CRE path-
ways are then used as features to cluster cells or characterize cell heterogeneity. To
demonstrate the effect of combining CREs, Fig.1f shows chromatin accessibility in cell
line GM12878 computed using non-aggregated data at each individual CRE, and Fig. 1g
shows accessibility computed using SCRAT aggregated data (i.e., average normalized read
count across CREs) for each co-activated CRE pathway. After aggregation, the signal
in scATAC-seq became more continuous and showed higher correlation with the bulk
DNase-seq-measured accessibility. One major drawback of aggregating multiple CREs
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Fig. 1 Background and motivation. a—d An example genomic region showing chromatin accessibility in
GM12878 and K562 measured by different methods including a bulk DNase-seq, b scATAC-seq from one
single cell, € scATAC-seq by pooling 100 cells, d SCATE-reconstructed scATAC-seq signal from one single cell.
e lllustration of CRE-specific baseline activities using the same genomic region. Bulk DNase-seq data from
multiple different cell types show that some loci tend to have higher activity than others regardless of cell
type (e.g., compare the two loci in blue boxes). f At the individual CRE level, the correlation between the
log-normalized scATAC-seq read count in one GM12878 cell and the log-normalized bulk GM12878
DNase-seq signal is low (Pearson correlation = 0.394). Each dot is a CRE. g After aggregating multiple CREs
based on co-activated CRE pathways by SCRAT, the correlation between the CRE pathway activities in one
GM12878 cell and the bulk GM12878 DNase-seq signal (both at log-scale) is substantially higher (Pearson
correlation = 0.696). Each dot is a CRE pathway

is the loss of CRE-specific information. Thus, existing methods in this category do not
analyze the activity of each individual CRE.

Methods in category 2, including Dr.seq2 [17] and Cicero [18], tackle sparsity by pooling
multiple cells. Dr.seq2 [17] pools cells and applies MACS [19] to the pooled pseudobulk
sample to call peaks. Cicero [18] first pools the binary chromatin accessibility profiles
from similar cells to create pseudobulk samples. It then uses the pseudobulk samples to
study the pairwise correlation among different CREs. Typically, scATAC-seq data pooled
from multiple cells are more continuous than data from a single cell, and the pooled data
also correlate better with bulk data (Fig. 1a—c). Despite this, pooling cells does not fully
eliminate sparsity, particularly in a rare cell type with only a few cells. Also, pooling cells
may result in loss of cell-specific information. Thus, one may want to only pool cells that
are highly similar in order to better characterize a heterogeneous cell population. This
could result in grouping cells into many small cell clusters, each with only a few highly
similar cells. In that situation, pooling cells alone may not be enough for removing sparsity
and accurately estimating activities of individual CREs.

Methods in category 3 directly work with the peak-by-cell read count matrix or its bina-
rized version. For example, Scasat [20] converts the peak-by-cell read count matrix into a
binary accessibility matrix and uses this binary matrix to cluster cells. Destin [21] applies
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weighted principal components and K-means clustering to the binary accessibility matrix
to cluster cells. scABC [22] uses the read count matrix to cluster cells via a weighted K-
medoids clustering algorithm. PRISM [23] uses the binary accessibility matrix to compute
cosine distance between cells and then uses this distance to evaluate the degree of het-
erogeneity of a cell population. CisTopic [24] models the binary accessibility matrix using
Latent Dirichlet Allocation (LDA). This approach views each cell as a mixture of mul-
tiple topics, and each topic is a collection of peak regions and their usage preferences.
The topic-cell and region-topic vectors provide a low-dimensional representation of the
data. Cells and peaks are then clustered in this low-dimensional space. Category 3 meth-
ods typically are designed for specific tasks such as clustering and assessment of sample
variability rather than estimating activities of individual CREs.

In summary, while existing methods provide tools for clustering cells, identifying
co-accessible CREs, and analyzing sample heterogeneity, they do not address the funda-
mental issue of accurately reconstructing activities of each individual CRE using sparse
data. Knowing activities of each individual CRE is crucial for functional studies. For
example, such knowledge can be used to inform the selection of CREs for knock-out or
transgenic experiments. In order to facilitate accurate reconstruction of CRE activities
using scATAC-seq data, this article introduces a new statistical and analytical framework
SCATE (Single-Cell ATAC-seq Signal Extraction and Enhancement). SCATE employs a
model-based approach to integrate three types of information: (1) co-activated CREs,
(2) similar cells, and (3) publicly available bulk regulome data. Unlike the existing meth-
ods that either aggregate CREs (category 1) or cells (category 2) but not both, SCATE
combines both types of information. SCATE also uniquely uses public regulome data to
enhance the analysis and adaptively optimizes the analysis resolution based on the avail-
able information in the scATAC-seq data. SCATE is freely available as an open source
R package via GitHub. Compared to the existing methods, SCATE can more accurately
predict CRE activities and transcription factor binding sites using the sparse data from a
single cell (Fig. 1b, d) or a rare cell type as we shall demonstrate.

Results

SCATE model for a single cell

SCATE begins with compiling a list of candidate CREs and grouping co-activated CREs
into clusters. Currently, most scATAC-seq data are generated from human and mouse.
For user’s convenience, for these two species we have constructed a Bulk DNase-seq
Database (BDDB) consisting of normalized DNase-seq samples from diverse cell types
generated by the ENCODE project. For each species, we compiled putative CREs using
BDDB and clustered these CREs based on their co-activation patterns across BDDB
samples. Users may augment these precompiled CRE lists by using SCATE-provided
functions to (1) add and normalize their own bulk and pseudo-bulk (obtained by pooling
single cells) DNase-seq or ATAC-seq samples to BDDB and then (2) re-detect and cluster
CREs using the updated BDDB. These functions can also be used to create CRE database
for other species. For human and mouse, saturation analyses show that BDDB covers most
CREs one would discover in a new DNase-seq or ATAC-seq dataset. On average, a new
sample only contributes <0.2% new CREs to our precompiled CRE lists (Additional file 2:
Fig. S1). Thus, in order to save time and computation for CRE detection and clustering,
users may directly use the precompiled CRE lists in BDDB without significant loss. In this
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article, our analyses using SCATE are all carried out using these precompiled CREs as the
input unless otherwise specified.

Given a list of CREs, their clustering structure, and scATAC-seq data from a single cell,
SCATE will estimate the activity of each CRE. Let y;; denote the observed read count for
CREi (i = 1,...,1) in cell j, and let 1;; denote the unobserved true activity. The goal
is to infer the unobserved u;; from the observed data y;;. We assume the following data
generative model:

Yij ~ Poisson(Ljp;;
log(435) = hj(log(1ij))
log(iij) = m; + 5;8;;
5 = XB;

This model is illustrated in Fig. 2a. Below, we will explain the model and key compo-
nents of the SCATE workflow in detail.

(1) Modeling a CRE’s cell-independent but CRE-specific baseline behavior using pub-
licly available bulk regulome data. By analyzing large amounts of ENCODE DNase-seq
data, we found that these bulk data contain invaluable information not captured by the
sparse single-cell data. In particular, our recent analysis of DNase-seq data from diverse
cell types shows that different CREs have different baseline activities [25]. Some CREs
tend to have higher activity levels than others regardless of cell type (Fig. 1e: compare two
CREs in blue boxes). As a result, the mean DNase-seq profile across diverse cell types can
explain a substantial proportion of data variation in the regulome profile of each individ-
ual cell type. In fact, 55.7% of the total data variance in BDDB human DNase-seq samples
is explained by the mean human DNase-seq profile, and 60.1% of the total data variance

A SCATE model for a single cell B Multiple cells
CREs’ true True True Observedi P (0
standardized  normalized  single-cell  single-cell; 00
True CRE activity activity activity data ! e0_0O
cluster se ! 0.9
activity §; W W yi
) - I
!X, rb{ m; +5;8; e - !
L l»{ > > i Cluster cells
; e%e
I ! s 0g0
; - | [ J
ICTE.S CF;E-s;;e cic Cell-specific : o®
clustering aseiine technical bias :
structure  characteristics h()
X (m,s) y :

Reconstruct the regulome
for each cell cluster by
pooling cells in the cluster

T

Public bulk regulome
data (BDDB)

Low

variability

CREs Goal:

‘ Infer p; from
the observed

CREs

Samples

i T e i

Fig.2 SCATE overview. a SCATE model for a single cell. b SCATE model for multiple cells

Page 5 of 36



Ji et al. Genome Biology (2020) 21:161 Page 6 of 36

in BDDB mouse DNase-seq samples is explained by the mean mouse DNase-seq profile
(Methods). The Pearson correlation coefficient between the mean DNase-seq profile and
each individual DNase-seq sample in the BDDB is bigger than 0.5 for most of the samples,
and the median correlation is 0.78 for human and 0.81 for mouse (Additional file 2: Fig.
S2). In other words, the mean DNase-seq profile to a large extent predicts the DNase-seq
profile in each individual cell type, even though the mean DNase-seq profile cannot cap-
ture cell-type-specific CRE activities. In [25], we found that the mean DNase-seq profile
correlates well with independently measured TF binding activities, indicating that dif-
ferences in the baseline activity among different CREs captured by the mean DNase-seq
profile are real biological signals rather than technical artifacts. These highly reproducible
CRE-specific baseline activities cannot be captured by the sparse data in a single cell or
by pooling a small number of cells (Fig.. 1b, ¢, and e). Thus, in order to better recon-
struct activities of each individual CRE from scATAC-seq, SCATE explicitly models these
cell-type-invariant but CRE-specific baseline behaviors by fitting a statistical model to
the large compendium of bulk DNase-seq data in BDDB. This allows us to estimate the
baseline mean activity (m;) and variability (s;) of each CRE i.

(2) Modeling a CRE’s cell-dependent activity by borrowing information from similar
CREs. We model the activity of CRE i in cell j, denoted by u;;, by decomposing it into
two components: a cell-type invariant component that models the baseline behavior (m;
and s;), and a cell-dependent component §;; for modeling the CRE’s cell-specific activity.
In other words, log(u;;) = m; + s;8;. The cell-type invariant component is learned from
BDDB as described above. The cell-dependent component is learned using scATAC-seq
data in each cell. To do so, we leverage CREs’ clustering structure. Recall that co-activated
CREs are grouped into clusters. We assume that CREs in the same cluster have the same
8;j. Thus, information is shared across multiple co-activated CREs. Mathematically, this
amounts to assuming §; = Xf; where §; is the vector of all CREs’ activities in cell j, X
is a binary matrix that encodes CREs’ cluster membership, and ; is a vector containing
the activities of CRE clusters (see Methods). Unlike other methods, we only share infor-
mation through §;; rather than assuming that u;; is the same across similar CREs. In
our approach, two CREs in the same cluster have the same §, but they can have differ-
ent activities (i.e., different us) because of the difference in their CRE-specific baseline
behaviors.

(3) Bulk and single-cell data normalization. Since CREs’ baseline characteristics are
learned from bulk DNase-seq data but our goal is to model scATAC-seq data, we need
to reconcile differences between these two technologies. To do so, we assume that p;; is
the unobserved true activity of CRE i in cell j one would obtain if one could measure a
bulk DNase-seq sample consisting of cells identical to cell j. In scATAC-seq data, u;; is
distorted to become ,ufj due to technical biases in sScATAC-seq compared to bulk DNase-
seq. These unknown technical biases are modeled using a cell-specific monotone function
h;j(.) such that log(ufj) = hj(log(uij)). The observed scATAC-seq read count data are
then modeled using Poisson distributions with mean Ljuf; where L; is cell s library size.
The technical bias function /;(.) normalizes scATAC-seq and bulk DNase-seq data. We
developed a method to estimate this unknown function by using CREs whose activities
are nearly constant across diverse cell types in BDDB. Once /;(.) is estimated, CRE activ-
ities §;; and p;; can be inferred by fitting the SCATE model to the observed read count
data.
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(4) Adaptively optimizing the analysis resolution based on available data. In order to
examine the activity of each individual CRE, ideally one would hope to pool as few CREs
as possible. However, when data are sparse, pooling too few CREs will lack the power to
robustly distinguish biological signals from noise. Thus, the optimal analysis should care-
fully balance these two competing needs. All existing methods reviewed in category 1
pool CREs based on fixed and predefined pathways (e.g., all motif sites of a TF binding
motif). They do not adaptively tune the analysis resolution based on the amount of avail-
able information. In SCATE, co-activated CREs are grouped into K clusters. Information
is shared among CREs in the same cluster. We uniquely treat K as a tuning parameter
and developed a cross-validation procedure to adaptively choose the optimal K based on
the available data. When the data is highly sparse, SCATE will choose a small K so that
each cluster contains a large number of CREs. As a result, the activity of a CRE will be
estimated by borrowing information from many other CREs. This sacrifices some CRE-
specific information in exchange for higher estimation precision (i.e., lower estimation
variance). When the data is less sparse and more CREs have non-zero read counts, SCATE
will choose a large K so that each cluster will contain a small number of CREs. As a result,
the CRE activity estimation will borrow information from only a few most similar CREs,
and more CRE-specific information will be retained.

(5) Postprocessing. After estimating CRE activities, we will further process all genomic
regions outside the input CRE list. SCATE will transform read counts at these remaining
regions to bring them to a scale normalized with the reconstructed CRE activities. The
transformed data can then be used for downstream analyses such as peak calling, TF
binding site prediction, or other whole-genome analyses.

SCATE for a cell population consisting of multiple cells

For a homogeneous cell population with multiple cells, we will pool reads from
all cells together to create a pseudo-cell. We will then treat the pseudo-cell as
a single cell and apply SCATE to reconstruct CRE activities. Similar to Dr.seq2,
this approach combines similar cells to estimate CRE activities. Unlike Dr.seq2, we
also combine information from co-activated CREs and public bulk regulome data
as described above. Moreover, SCATE adaptively tunes the resolution for com-
bining CREs (i.e.,, the CRE cluster number K) which is lacking in other meth-
ods. As the cell number in the population increases, the sparsity of the pseudo-
cell will decrease and the optimal analysis resolution chosen by SCATE typically
will increase.

For a heterogeneous cell population, we first group similar cells into clusters. SCATE
is then applied to each cell cluster to reconstruct CRE activities by treating the cluster as
a homogeneous cell population (Fig.. 2b). By default, SCATE uses model-based cluster-
ing [26] to cluster cells, and the cluster number is automatically chosen by the Bayesian
Information Criterion (BIC). Since one clustering method is unlikely to be optimal for all
applications, we also provide users with the option to adjust the cluster number or pro-
vide their own cell clustering. SCATE can be run using user-specified cluster number or
clustering results. For example, if users believe that the default clustering does not suf-
ficiently capture the heterogeneity, they could increase the cluster number. In the most
extreme case, if one sets the cluster number equal to the cell number, each cluster will
become a single cell.
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We note that pooling cells in each cluster to create a pseudobulk sample does not mean
that the value of single-cell analysis is lost or that scATAC-seq can be replaced by bulk
ATAC-seq or DNase-seq. This is because bulk ATAC-seq or DNase-seq analysis of a het-
erogeneous sample cannot separate different cell subpopulations or discover new cell
types. Even if one could use cell sorting to separate cells in a sample by cell type and then
apply bulk analysis to each cell type, the sorting relies on known cell type markers and
therefore cannot discover new cell types. By contrast, a sScATAC-seq experiment coupled
with SCATE can identify and characterize different cell populations including potentially
new cell types in a heterogeneous sample.

Benchmark data

We compiled three benchmark datasets for method comparison. Dataset 1 consists of
human scATAC-seq data from two different cell lines GM12878 (220 cells) and K562 (157
cells) generated by [4]. For this dataset, ENCODE bulk DNase-seq data for GM12878 and
K562 were used as the gold standard to evaluate signal reconstruction accuracy. Dataset
2 contains scATAC-seq data from human common myeloid progenitor (CMP) cells (637
cells) and monocytes (83 cells) obtained from [27, 28]. We also obtained bulk ATAC-seq
data from human CMP and monocytes generated by [28] and used them as gold standard.
Dataset 3 consists of mouse scATAC-seq data from brain (3321 cells) and thymus (7775
cells) generated by [29]. For evaluation, the ENCODE bulk DNase-seq data for mouse
brain and thymus were used as gold standard. In all evaluations, we removed the test
cell types from the BDDB before running SCATE in order to avoid using the same bulk
regulome data in both SCATE model fitting and performance evaluation.

For method evaluation, ideally one would like to have a gold standard for each single
cell. However, single-cell resolution gold standard is difficult to obtain. For this reason,
our method evaluation primarily relied on comparing scATAC-seq signals reconstructed
from a single cell or by pooling multiple cells to bulk DNase-seq or ATAC-seq signals.
In this regard, one may view single cells as random samples from a cell population, and
the bulk signal characterizes cells’ mean behavior in the cell population. Although each
cell is not exactly the same as the population mean, its behavior should fluctuate around
the mean. Moreover, one should expect that the pseudobulk signal obtained by pooling
an increasing number of cells should become increasingly more similar to the true bulk
signal.

Analysis of a homogeneous cell population - a demonstration

We first demonstrate SCATE analysis of a homogeneous cell population using the
GM12878 and K562 data (Dataset 1) as an example. It should be pointed out that “homo-
geneous” is a relative concept rather than an absolute one since one can always define cell
subtypes in a cell population by computationally grouping cells into clusters and subclus-
ters at different granularity levels. In this study, “homogeneous” is technically defined as
the finest granularity level for which we were able to obtain the corresponding bulk gold
standard regulome data for method evaluation. We use this technical definition for two
reasons. First, even if a test cell type may potentially be decomposed further into multi-
ple cell subtypes, we could not conduct the benchmark analysis at the cell subtype level
if the gold standard bulk regulome data for those cell subtypes are unavailable and the
true subtype label of each cell is unknown. Second, the primary goal of our analysis of
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a homogeneous cell population is to serve as a bridge to help readers understand how
SCATE would analyze each cell cluster in a heterogeneous cell population. Our working
definition of “homogeneous” is sufficient to meet this need.

In this section, we applied SCATE to GM12878 and K562 separately. For each cell type,
we randomly sampled # (n = 1, 5, 10, 25, 50, 100, etc.) cells and pooled their sequence
reads together to run SCATE. CRE activities reconstructed by SCATE were compared
with their activities measured by bulk DNase-seq in the corresponding cell type.

Figure 3 shows the normalization function /;(.) learned by SCATE for normalizing
scATAC-seq and the BDDB bulk DNase-seq data. Here, each scatter plot corresponds
to a pooled scATAC-seq sample. Different plots represent different cell numbers or cell
types. In these plots, each data point is a low-variability CRE with nearly constant activity
across BDDB samples. For each CRE, the read count in the pooled scATAC-seq sam-
ple or the bulk ATAC-seq sample (Y -axis) versus the CRE’s baseline mean activity in
BDDB DNase-seq data (X-axis) is shown. The red curve is the SCATE-fitted function
(/1)) for modeling technical biases in scATAC-seq. Overall, the scATAC-seq read counts
were positively correlated with CREs’ baseline activities at these low-variability CREs, and
the SCATE-fitted normalization functions were able to capture the systematic relation-
ship (i.e., technical biases) between the scATAC-seq and bulk DNase-seq data. Besides
scATAC-seq, we also tested SCATE’s normalization algorithm in bulk data. Additional
file 2: Figure S3 shows the SCATE-fitted function (ehl' O) for normalizing bulk ATAC-seq
data in three different cell types to the BDDB bulk DNase-seq data. The normalization
functions fitted by SCATE were again able to capture the systematic relationship in the
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pooling different number of cells. In each plot, the red curve is the technical bias function fitted by SCATE

Page 9 of 36



Ji et al. Genome Biology

(2020) 21:161

observed data, further demonstrating the effectiveness of our approach for modeling
technical biases.

Figure 4 shows the number of CRE clusters adaptively chosen by SCATE. For each cell
type, there are four plots corresponding to SCATE analyses by pooling different num-
ber of cells, with the cell number # shown on top of each plot. For each #n, n cells were
randomly sampled from the scATAC-seq dataset and pooled. SCATE was applied to
the pooled data to automatically choose the CRE cluster number. This procedure was
repeated ten times. The histogram shows the empirical distribution of the cluster number
chosen by SCATE in these ten independent cell samplings without using any information
from the gold standard bulk DNase-seq. As a benchmark, we also ran SCATE by manu-
ally setting the CRE cluster number K to different values. For each K, we computed the
Pearson correlation between the SCATE-estimated CRE activities in scATAC-seq and the
gold standard CRE activities in bulk DNase-seq. The dots in each plot show the correla-
tion coefficients for different Ks, also averaged across the ten independent cell samplings.
The dot with the largest correlation coefficient corresponds to the true optimal cluster
number. In real applications, this true optimal cluster number would be unknown because
one would not have the bulk DNase-seq as the gold standard to help with choosing K.

Figure 4 shows that the CRE cluster number automatically chosen by SCATE (his-
togram) typically was close to the true optimal cluster number (the dot with the highest
correlation). For instance, for analyzing a single GM12878 cell, the cluster number chosen
by SCATE had its mode at 1250, and the true optimal cluster number was 2500. For ana-
lyzing 220 GM 12878 cells, the cluster number chosen by SCATE had its mode at 521820,
and the true optimal cluster number was also 521820.

Figure 4 also shows that, as the cell number increases, both the true optimal CRE cluster
number and the cluster number chosen by SCATE also increase. Increasing the number
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Fig. 4 Adaptive tuning of analysis resolution. The number of CRE clusters automatically chosen by SCATE via
cross-validation (histogram) is compared with the true optimal CRE cluster number determined by external
information from the gold standard bulk DNase-seq data (dots). Different plots correspond to different cell
types and pooled cell number. In each plot, the histogram shows the CRE cluster number chosen by SCATE in
10 independent cell samplings. The dots show the true correlation between the gold standard bulk DNase-
seq signal and the SCATE-reconstructed scATAC-seq signal (both at log-scale) at each CRE cluster number,
averaged across the 10 cell samplings. The dot with the highest correlation is the true optimal cluster number
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of CRE clusters implies that the average number of CREs in each CRE cluster will decrease
because the total number of input CREs is fixed. Thus, SCATE adaptively changes anal-
ysis resolution: as more data are available for each CRE, SCATE gradually decreases the
number of CREs in each cluster for information sharing. This allows SCATE to maximally
retain CRE-specific information.

Figure 5 compares SCATE-reconstructed scATAC-seq signal with bulk DNase-seq sig-
nal in GM12878 and K562 in an example genomic region. The figure has six columns
corresponding to different cell types and different pooled cell numbers. For benchmark
purpose, the figure also compares SCATE with a number of other methods. The data are
displayed at a 200 bp non-overlapping genomic window resolution. Here “Raw reads” dis-
plays the scATAC-seq read count pooled across cells for each 200 bp genomic window.

GM12878 GM12878 GM12878 K562 K562 K562
1 Cell 25 Cells 100 Cells 1 Cell 25 Cells 100 Cells

I m l _u Bulk DNase-seq
—— l s l s o 2 A o
| | || l | J Raw reads

un - s o .. 18

Dr.seq2 (Raw reads)

scABC (Raw reads)

e Ll -

Cicero (Binary)
Scasat (Binary)
cisTopic (Binary)

Destin (Binary)

SCRAT 500
CRE Cluster

SCRAT 1000
CRE Cluster

SCRAT 2000
CRE Cluster

Average DNase-seq

|RRQ Uy Ty | 1 S A

Fig. 5 Comparison of different methods in an example genomic region. Each row is a method, each column
corresponds to a different cell type or pooled cell number. All columns show the same genomic region. The
blue boxes highlight two CREs. The left CRE occurs in both GM12878 and K562. It cannot be detected by Raw
reads, Binary and SCRAT CRE cluster methods in a single cell, but can be detected by Average DNase-seq and
SCATE. The right CRE is K562-specific. It cannot be detected by Average DNase-seq but can be detected by
SCATE
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“Binary” converts the 200 bp window read counts in each cell to a binary accessibility
vector and then adds up the binary accessibility vectors across cells. Note that the raw
read count approach is also used by Dr.seq2 and scABC to characterize CRE activities
in single cells, but only in peak regions detected from the scATAC-seq data. The binary
approach is also used by Cicero, Scasat, cisTopic, Destin, and PRISM to characterize CRE
activities in peak regions. Since different implementations of a method may lead to vari-
able method performance [30], we also displayed the signals obtained using these existing
methods except for PRISM for which we were not able to modify its code to export the
binary accessibility matrix (PRISM does not report binary accessibility as it is only used
as an intermediate step to compute cell distances). Unlike these existing methods, the
“Raw reads” and “Binary” methods implemented by us processed all genomic windows
rather than only peak regions. ChromVAR, SCRAT, and BROCKMAN only analyze and
report aggregated CRE pathway activities rather than activities of individual CREs. Thus,
they cannot be compared here. However, for our previously developed SCRAT, we were
able to modify the codes to estimate CRE activities by directly using pathway activities.
This results in three methods, “SCRAT 500 CRE cluster,” “SCRAT 1000 CRE cluster,” and
“SCRAT 2000 CRE cluster,” shown in the figure. Here, CREs were clustered into 500,
1000, or 2000 clusters as in SCRAT using the bulk DNase-seq data in BDDB. For each
CRE cluster, the average normalized scATAC-seq read count across all CREs in the clus-
ter was calculated. It was then assigned back to each CRE in the cluster to represent the
estimated CRE activity. The “Raw reads” method may be viewed as a special case of the
“SCRAT CRE cluster” method when each genomic window is viewed as a CRE and each
CRE forms a CRE cluster by itself (i.e., the number of CRE clusters is equal to the total
number of CREs, and each cluster only contains one CRE). “Average DNase-seq” shows
the average normalized read count profile of bulk DNase-seq samples in BDDB. It reflects
CRE’s baseline mean activity.

Figure 5 shows that SCATE-reconstructed scATAC-seq signals accurately captured
the variation of CRE activities in bulk DNase-seq across different genomic loci and dif-
ferent cell types, whereas CRE activities estimated using raw read counts, binarized
chromatin accessibility, or SCRAT CRE cluster methods all failed to accurately capture
the bulk DNase-seq landscape. Interestingly, SCATE was able to use scATAC-seq data
from one single cell to accurately estimate CRE activities in bulk DNase-seq. By con-
trast, the raw read count and binary accessibility methods both failed, likely due to data
sparsity (e.g., see regions in blue boxes). The SCRAT CRE cluster method also failed,
likely because (1) it assigns the same activity to all CREs in the same CRE cluster and
ignores CRE-specific behaviors, and (2) it does not adaptively tune the analysis resolu-
tion as in SCATE to maximally retain CRE-specific signals. While it is also possible that
signals in a single cell do not necessarily need to look like the bulk signal due to cell het-
erogeneity and hence explaining why signals generated by Raw reads, Binary, and CRE
cluster methods in a single cell were different from the bulk signal, Fig. 5 shows that
SCATE also outperformed these methods when pooling multiple cells into pseudobulk
samples (e.g., pooling 25 and 100 cells), suggesting that the better performance of SCATE
is real. The “Average DNase-seq” approach produced relatively continuous signals and
captured some variation across genomic loci in the GM12878 and K562 bulk DNase-seq
data. However, it was unable to capture cell-type-specific signals, such as those shown in
the blue boxes.
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Analysis of a homogeneous cell population - a systematic evaluation

Next, we systematically evaluated SCATE and the other methods in all three bench-
mark datasets by treating the six test cell types as six homogeneous cell populations. The
evaluation was based on the correlation with gold standard bulk regulome data, peak call-
ing performance using reconstructed signals, and ability to predict transcription factor
binding sites (TFBSs).

In the first evaluation, we computed the Pearson correlation between the scATAC-seq
signals reconstructed by each method and the gold standard bulk signals across all CREs.
As one example, Fig. 6a and Additional file 2: Figure S4A show the results based on pool-
ing scATAC-seq data from 10 GM12878 cells. There are multiple methods that use the
raw read counts and binary methods. For clarity of display, in this and all other analyses
below, only the “Raw reads” and “Binary” methods implemented by us are shown in the
main figures (e.g., Fig. 6), and the results from the other raw counts and binary methods
are shown in supplementary figures (e.g., Additional file 2: Fig. S4A). Among all meth-
ods, SCATE showed the highest correlation with the bulk gold standard. We performed
the same analysis on all six test cell types by pooling different cell numbers. For each cell
number, we repeated the analysis ten times using ten independent cell samplings. The
median performance of the ten analyses was then compared. Figure 6b and Additional
file 2: Figure S4B show that SCATE consistently outperformed all the other methods and
showed the strongest correlation with the bulk gold standards in all test data. When the
pooled cell number was small, the improvement of SCATE over many methods was sub-
stantial. For instance, for the analysis of one single monocyte cell, the correlation was
0.01-0.22 for the different implementations of raw reads and binary methods. It was 0.57,
0.57, and 0.57 for SCRAT 500, 1000, and 2000 CRE cluster methods, respectively. For
SCATE, it was 0.67, representing an improvement of 18~6700% over the other methods.
Of note, the Average DNase-seq method performed relatively well in this evaluation when
the cell number was small. However, as we will show later, the average DNase-seq profile
cannot predict changes in CRE activity between different cell types, but SCATE can.

In the second evaluation, we performed peak calling using scATAC-seq signals recon-
stucted by SCATE and other methods. Peak calling is a common task in DNase-seq
or ATAC-seq data analyses. Its objective is to find genomic regions with significantly
enriched signals. We implemented a peak calling algorithm using a moving average
approach (see Methods) and applied it to signals reconstructed by SCATE, Raw reads,
Binary, SCRAT CRE cluster, and Average DNase-seq. For the other existing raw reads and
binary methods, we used their default peak calling methods to call peaks. In addition,
we also performed peak calling by applying MACS2 [19] to the pseudobulk sample we
obtained by pooling cells. The peak calling performance of each method was evaluated
using the sensitivity versus false discovery rate (FDR) curve, where the “truth” was defined
by the peaks called from the bulk gold standard data. Here, sensitivity is the proportion
of true bulk peaks discovered by scATAC-seq, and FDR is the proportion of scATAC-seq
peaks that are false (i.e., not found in bulk peaks). As one example, Fig. 7a and Additional
file 2: Figure S5A compare the sensitivity-FDR curves of different methods when they
were applied to the pooled scATAC-seq data from 25 GM12878 cells. For each curve,
we computed the area under the curve (AUC). Fig. 7b and Additional file 2: Figure S5B
systematically compare the AUCs of all methods in all six test cell types. In each plot,
the analyses were run by pooling different numbers of cells, and the median AUC from
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Fig. 6 Correlation between reconstructed and true CRE activities. a Scatterplots showing true bulk CRE

activities vs. CRE activities estimated by different methods in an analysis that pools 10 GM12878 cells. In this
analysis, both activities are at log-scale. b The correlation between the scATAC-seq reconstructed and true
bulk regulome for different methods. Each plot corresponds to a test cell type. In each plot, the correlation is
shown as a function of the pooled cell number

10 independent cell samplings was plotted as a function of the cell number. Once again,
SCATE showed the best overall peak calling performance. When the cell number was
small, the improvement was substantial. For analyzing one monocyte cell, for example,
the AUC of SCATE was 0.4, whereas the AUCs for the other methods (except for Average
DNase-seq) were all below 0.21. Thus, SCATE improved over these methods by 90% or

more.
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In the third evaluation, we used signals reconstructed by each method to predict TFBSs.
We evaluated 28 TFs in GM12878 and 29 TFs in K562 (Additional file 3: Table S2). As
gold standard, we collected ChIP-seq peaks for these TFs from the ENCODE [15]. For
the other cell types, we did not find TF ChIP-seq data suitable for evaluation. There-
fore, our TFBS prediction analysis was focused on GM12878 and K562. To predict TFBSs
of a TF, we mapped its motif sites in the genome using CisGenome [31]. Genomic win-
dows overlapping with motif sites were sorted based on their reconstructed scATAC-seq
signals. Windows with the highest signals were labeled as predicted TFBSs (Fig. 8a).
Motif-containing windows that overlap with TF ChIP-seq peaks were viewed as gold stan-
dard true TFBSs. Based on this, we generated the sensitivity-FDR curve for each TF by
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Fig. 8 TFBS prediction performance. a An illustration of TFBS prediction in an example genomic region. The
region contains a genomic bin with ELF1 motif and high SCATE-reconstructed CRE activity in GM12878. The
bin is predicted as a ELF1 binding site. The prediction can be validated by ELF1 ChIP-seq peak in GM12878. b
An example sensitivity versus FDR curve for comparing different methods for predicting ELF1 TFBSs in an
analysis that pools 25 GM12878 cells. ¢ Two examples (ELF1 in GM12878 and JUND in K562) that illustrate the
method comparison across different cell numbers. In each example, analyses are performed by pooling
different numbers of cells. The median AUC under the sensitivity-FDR curve from 10 independent cell
samplings is shown as a function of pooled cell number. d The averaged AUC across all TFs is shown as a

function of pooled cell number in GM12878 and K562 respectively
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gradually relaxing the TEBS calling cutoff. As one example, Fig. 8b and Additional file 2:
Figure S6B show the sensitivity-FDR curves of different methods for predicting ELF1
binding sites by pooling scATAC-seq data from 25 GM12878 cells. For each TF and cell
type, we performed this analysis using different cell numbers. For each cell number, the
median area under the sensitivity-FDR curve (AUC) of 10 independent cell samplings was
computed. As two examples, Fig. 8c and Additional file 2: Figure S6C show the AUCs for
different methods as a function of pooled cell number for two TFs: ELF1 in GM12878
and JUND in K562. Finally, Fig. 8d and Additional file 2: Figure S6D show the average
performance of all 28 TFs in GM12878 and 29 TFs in K562. In all these analyses, SCATE
robustly outperformed all the other methods. The overall improvement was substantial
(e.g., see K562 in Fig. 8d and Additional file 2: Fig. S6D).

Analysis of a heterogeneous cell population—demonstration and systematic evaluation
The analyses of homogeneous cell populations provide a demonstration of the basic
building block of SCATE. In reality, however, scATAC-seq is usually used to ana-
lyze a heterogeneous cell population consisting of multiple cell types where the cell
type labels are unknown. To analyze such a heterogeneous cell population, one usu-
ally will first computationally cluster cells into relatively homogeneous subpopulations
and then analyze each cell cluster as a homogeneous population. Due to inevitable
noises, each cell cluster obtained in this way may not be pure. For example, while
the majority of cells in a cell cluster may be of one cell type, the cluster may
also contain cells from other cell types. As data analysts do not know cells’ true
cell type labels, they can only treat all cells in the same cluster as if they were
one cell type.

In order to see how SCATE tunes the analysis resolution when a cell cluster con-
tains noise, we mixed K562 and GM12878 cells with different ratios (K562:GM12878 =
100%:0%, 80%:20%, 60%:40%) to mimic a cell cluster dominated by K562 cells but with
different levels of noises introduced by GM12878 cells. The cross-validation procedure of
SCATE was used to select the CRE cluster number as in Fig. 4. The analysis was repeated
by setting the total cell number to 10 and 100 respectively. Additional file 2: Figure S7
shows that as the number of cells increased, the number of CRE clusters chosen by
SCATE also increased regardless of the noise level. This indicates that when more reads
are available by pooling more cells, SCATE will increase the analysis resolution. In most
cases, the optimal CRE cluster numbers chosen by SCATE were largely consistent with
the true optimal CRE cluster number determined by comparing scATAC-seq with bulk
K562 DNase-seq. The only exception is when the noise level was high (K562:GM12878 =
60%:40% for cell number=100, where the optimal cluster number chosen by SCATE was
bigger than the optimal cluster number based on bulk DNase-seq). In that case, however,
one can argue that K562 bulk DNase-seq data may not reflect the chromatin profile of
a mixture of K562 and GM12878 cells, whereas SCATE attempts to optimize the signal
reconstruction for the cell cluster which is a mixture of K562 and GM12878 cells with
almost equal proportion. Therefore, they try to measure different things and one should
not expect that the optimal cluster number determined by K562 bulk DNase-seq will be
consistent with the cluster number chosen by SCATE. This is different from Fig. 4 where
the cell type measured by bulk gold standard is consistent with the cells analyzed by
SCATE.
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Next, we demonstrate how a heterogeneous cell population would be analyzed in prac-
tice. We mixed GM12878 and K562 cells from Dataset 1 with different ratios to create
synthetic samples with different heterogeneity levels. Each synthetic sample had 100 cells
representing a mixture of GM12878 and K562 cells. The percentage of GM12878 cells
was set to x = 10%, 30%, and 50%, respectively. For each percentage x, ten synthetic sam-
ples were created using independently sampled cells. The median performance of each
method on the ten analyses was compared.

Each synthetic sample was analyzed by first clustering cells using the default cell clus-
tering algorithm in SCATE. SCATE and other methods were then used to estimate CRE
activities for each cell cluster. In all these analyses, we pretended that cells’ true cell type
labels were unknown and did not use them. The number of cell clusters automatically
determined by SCATE in these samples ranged from 2 to 5 (Fig. 9a). Figure 9b shows one
example in which cells were grouped into 2 clusters.

After running all methods, in order to evaluate whether the analysis can discover the
true biology, we annotated each cell cluster using cells’ true cell type labels. Each cluster
was annotated based on its dominant cell type. A cell cluster was labeled as “predicted
GM12878” if over 70% of cells in the cluster were indeed GM12878 cells. Similarly, a cell
cluster with >70% K562 cells was labeled as “predicted K562” All other clusters were
labeled as “ambiguous”” For a given sample, if at least one cell cluster was labeled as “pre-
dicted cell type X” (X = GM 12878 or K562), we say that cell type X was detected. Based on
this definition, both GM12878 and K562 can be detected in all samples (Fig. 9c). Note that
one cell type may be identified by multiple cell clusters. Given the cell type annotation, we
then compared the regulome of each cell type reconstructed by SCATE and other meth-
ods. Since all methods used the same cell clustering results, the comparison of their signal
reconstruction ability is a fair comparison. We conducted four types of comparisons.

First, we asked whether the regulome reconstructed by each method for each pre-
dicted cell type can accurately recover the cell type’s true regulome measured by the
gold standard bulk data. Take GM12878 as an example. For each cell cluster predicted as
GM12878, the Pearson correlation between the cluster’s reconstructed scATAC-seq sig-
nal and the gold standard bulk GM 12878 DNase-seq data was computed. If a sample had
two or more cell clusters predicted as GM12878, each cluster was analyzed separately.
The median correlation of all such clusters in ten independent synthetic samples is shown
in Fig. 9d and Additional file 2: Figure S8A. SCATE again performed the best. When
the proportion of GM12878 cells in a sample was small, the improvement by SCATE
was larger. Figure 9e and Additional file 2: Figure S8B show the same analysis for K562,
but the performance was shown as a function of GM12878 cell proportion. Figure 9f
and Additional file 2: Figure S8C show the combined results. Here, at each cell mix-
ing proportion, the median scATAC-bulk correlation of all cell clusters predicted either
as GM12878 or K562 was shown. In all these analyses, SCATE consistently performed
the best.

Second, we conducted peak calling and evaluated each method’s ability to recover true
peaks in each cell type. Here, the truth was defined as peaks called from the gold standard
bulk data, and the evaluation was conducted similar to Fig. 7. Figure 9g and Additional
file 2: Figure S8D show the median AUC of all cell clusters predicted either as GM12878
or K562 as a function of cell mixing proportion. SCATE robustly outperformed the other
methods.
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Fig. 9 Analyses of a heterogeneous cell population. a Distribution of cell cluster numbers obtained by SCATE
for synthetic samples with different cell mixing proportions. GM12878 and K562 cells are mixed at different
proportions. For each mixing proportion, 10 synthetic samples are created and analyzed. b An example tSNE
plot showing clustering of cells in a synthetic sample. € At each cell mixing proportion, the frequency that
each cell type is detected in the 10 synthetic samples is shown. d—f The correlation between the scATAC-seq
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Third, we compared different methods in terms of their ability to predict TFBSs. TFBS
prediction and evaluation were performed similar to Fig. 8. The results are shown in
Fig. 9h and Additional file 2: Figure S8E, in which the median AUC for each method
is plotted as a function of cell mixing proportion. SCATE produced the best prediction
accuracy.

Last but not least, we applied different methods to predict differential CRE activities
between different cell types, which is crucial for characterizing the regulatory landscape
of a heterogeneous sample. Note that if one views scATAC-seq as a tool for studying cell
heterogeneity, then a good analysis method should have the ability to accurately capture
differences among cells. Importantly, since differences between cell types are a special
case of cell heterogeneity, a good method should be able to keep cell type differences when
comparing two cells or two pseudobulk samples from two different cell types. Here, we
collected all pairs of cell clusters that were predicted as two different cell types (i.e., one
cluster was “predicted GM12878” and the other cluster was “predicted K562”; ambiguous
cell clusters were excluded). For each such pair, we computed the difference of recon-
structed CRE activities between the two cell clusters. We then compared this predicted
difference with the true differential CRE activities derived from the gold standard bulk
DNase-seq data for GM12878 and K562. The Pearson correlation between the predicted
and true differential signals was calculated. As one example, Fig. 10 and Additional file 2:
Figure S9 show the results for a cell cluster pair in a synthetic sample in which 30% of cells
was GM12878. SCATE best recovered the differential CRE activities (correlation = 0.43).
Figure 9i and Additional file 2: Figure S8F show the median correlation across ten inde-
pendent synthetic samples at each cell mixing proportion. Once again, SCATE performed
the best.

In the above analyses, the Average DNase-seq method completely failed for predicting
differential signals between two cell types (correlation = 0) (Figs. 9i, and 10), even though
it performed relatively well for estimating CRE activities within one cell type, and peak
calling and TFBS prediction in one cell type (Figs. 6, 7, 8, 9f—h). Similarly, each of the
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other methods may perform well in some datasets or analyses but not in others. SCATE
is the only method that robustly performed the best in all our analyses.

Similar to GM12878 and K562 (Dataset 1), we also constructed heterogeneous cell
populations using the other two datasets (Datasets 2 and 3) and used them to evaluate
different methods. The results are shown in Figure 9j—o and Additional file 2: Figures
S8G-L and S10. For these two datasets, we did not perform TFBS prediction due to lack
of gold standard ChIP-seq data. For estimating CRE activities (Fig. 9j, m, Additional file 2:
Fig. S8G,]), peak calling (Fig. 9k, n, Additional file 2: Fig. S8H,K), and predicting differen-
tial CRE activities (Fig. 91, o, Additional file 2: Fig. S8L,L), SCATE again outperformed all
the other methods. In many cases, the improvement was substantial (e.g., Fig. 9k, |, n, o,
Additional file 2: Fig. S8).

Example 1: Analysis of scATAC-seq data from human hematopoietic differentiation
To further demonstrate and evaluate SCATE in a more realistic setting, we ana-
lyzed a scATAC-seq dataset generated by [27] which consists of 1920 cells from 8
human hematopoietic cell types for which corresponding bulk ATAC-seq data are avail-
able. These cell types include hematopoietic stem cell (HSC), multipotent progenitor
(MPP), lymphoid-primed multipotent progenitor (LMPP), common myeloid progeni-
tor (CMP), common lymphoid progenitor (CLP), granulocyte-macrophage progenitor
(GMP), megakaryocyte-erythrocyte progenitor (MEP), and monocyte (Mono). In this
dataset, the true cell type label of each cell was known since cells were obtained by cell
sorting. However, they were not used in our SCATE analyses so that our results reflect
how data would be analyzed in reality. The true cell type labels were only used after the
analysis to evaluate methods. Figure 11a shows the tSNE [32] plot of all cells color-coded
by their true cell types. In the plot, different cell types were distributed along three major
differentiation lineages (myeloid: HSC— MPP —(CMP or LMPP)— GMP — Mono;
erythroid: HSC— MPP — CMP — MEP; lymphoid: HSC— MPP — LMPP —CLP),
which are consistent with known biology. For method evaluation, we analyzed all cells
together as a heterogeneous cell population and pretended that the cell type labels were
unknown. We also downloaded and processed bulk ATAC-seq data for these 8 cell types
from [28] and used them as the gold standard to assess regulome reconstruction accuracy.
Using its default cell clustering method, SCATE identified 14 cell clusters. To evalu-
ate the performance of this unsupervised analysis for recovering true biology, we first
assigned a cell type label for each cluster. A cluster was annotated as “predicted cell type
X” if the cluster contained at least two cells and the true cell type label of > 70% cells from
the cluster was cell type X. Clusters that cannot be annotated using this criterion were
labeled as ambiguous. In this way, we were able to unambiguously annotate 9 clusters.
Since multiple clusters may be annotated with the same cell type, these 9 annotated clus-
ters corresponded to a total of 6 cell types (Fig. 11b). For these 9 clusters, one can evaluate
signal reconstruction accuracy because the bulk ATAC-seq data for the annotated cell
type was available. Each cluster was treated as a homogeneous cell population by SCATE
and other methods in our analysis (as one would do in real applications), even though
the cluster actually may not be pure and may contain cells from more than one cell types.
Figure 11d and Additional file 2: Figure S11A compare the Pearson correlation between
the gold standard bulk signal and the CRE activities reconstructed from scATAC-seq
by different methods. Each boxplot contains 9 data points corresponding to the 9 cell
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Fig. 11 Analysis of human hematopoietic differentiation cell types. a tSNE plot showing cells color-coded by
their true cell types. b tSNE plot showing cells color-coded by their predicted cell types. Using the default
setting, SCATE grouped cells into 14 clusters (numbers in the plot indicate cluster centers). The clusters that
can be unambiguously linked to a cell type are color-coded by cell type. ¢ Similar to b, but cells are clustered
using user-specified cluster number (38 clusters). d-f Regulome reconstruction performance of different
methods in the default analysis, including d correlation between reconstructed and true bulk log-CRE
activities, e peak calling AUC, and f correlation between predicted and true differential log-CRE activities. g—i
Regulome reconstruction performance using user-specified cluster number (38 clusters), including g
correlation between reconstructed and true bulk log-CRE activities, h peak calling AUC, and i correlation
between predicted and true differential log-CRE activities. j Comparison of different methods in an example
genomic region in HSC cell cluster in the default analysis

clusters. Figure 11e and Additional file 2: Figure S11B compare the peak calling perfor-
mance (AUC under the sensitivity-FDR curve). Figure 11f and Additional file 2: Figure
S11C compare the accuracy for predicting differential CRE activities between different
cell types. Here, each data point in the boxplot is a pair of cell clusters annotated with two
different cell types. The Pearson correlation between the gold standard bulk differential
signal and differential signal reconstructed from scATAC-seq was computed and com-
pared. In all these analyses, SCATE outperformed the other methods. Figure 11j shows
an example genomic region in a HSC cell cluster. SCATE most accurately reconstructed
the bulk ATAC-seq signal in HSC.

SCATE provides users with the flexibility to specify their own cell cluster number
or use their own cell clustering results. The software can reconstruct signals based on
user-provided cell cluster number or clustering structure. For instance, suppose one
is not satisfied with the default cell clustering and wants to increase the granularity
of clustering to make each cluster smaller and more homogeneous, one can manually
adjust the cluster number. To demonstrate, we increased the cell cluster number to
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38. After increasing the cell cluster number, each cell cluster contained approximately
50 cells on average. After rerunning SCATE, 24 of the 38 cell clusters can be unam-
biguously annotated, identifying a total of 7 cell types (Fig. 11c). As a comparison,
the default analysis only unambiguously identified 6 cell types. For the unambiguously
annotated cell clusters, Fig. 11g—i and Additional file 2: Figure S11D-F compare the
performance of different methods for reconstructing CRE activities, peak calling, and
estimating differential CRE activities between different cell types. SCATE still deliv-
ered the best performance. Since the average cell cluster size became smaller, the
performance of some methods decreased substantially in some analyses (e.g., the CRE
reconstruction and peak calling accuracy for Raw reads and Binary in Fig. 11g, h and
Additional file 2: Figure S11D, E). In these cases, the benefit from SCATE was even more
obvious.

Example 2: Analysis of 10x Genomics scATAC-seq data from human peripheral blood
mononuclear cells (PBMC)

We also analyzed a scATAC-seq dataset generated from 10x Genomics platform by
[33] which consists of 10,027 human peripheral blood mononuclear cells. These cells
were sorted into 5 cell types using magnetic-activated cell sorting: B cells, CD4+ T
cells, CD8+ T cells, monocytes, and natural killer (NK) cells. Figure 12a visualizes
the data with true cell type labels color-coded. Consistent with known biology, CD4+
T cells, CD8+ T cells, and NK cells are closer to each other, whereas B cells and
monocytes form more distinct clusters. Again, in order to illustrate how scATAC-
seq data would be analyzed in reality, we pretended that cells’ true cell type labels
are unknown when running SCATE and other methods. We downloaded and pro-
cessed bulk ATAC-seq data for these cell types from [28] and used them as the gold
standard.

Using its default cell clustering method, SCATE identified 15 cell clusters. To eval-
uate how this unsupervised analysis recovered true biology, we first computationally
assigned a cell type label to each cell cluster using the same protocol as in Example
1’s hematopoietic analysis. In this way, we were able to unambiguously annotate 11
clusters representing all 5 cell types (Fig. 12b). For these 11 clusters, we evaluated sig-
nal reconstruction accuracy using the bulk ATAC-seq data of the annotated cell type.
SCATE again outperformed the other methods in terms of Pearson correlation between
the gold standard bulk signal and the CRE activities reconstructed from scATAC-seq
(Fig. 12d, Additional file 2: Fig.S12A), peak calling performance (Fig. 12e, Additional
file 2: Fig. S12B), and accuracy for predicting differential CRE activities between differ-
ent cell types (Fig. 12f, Additional file 2: Fig. S12C). Figure 12j shows an example genomic
region in a B cell cluster. SCATE most accurately reconstructed the bulk ATAC-seq signal
in B cells.

In the default analysis, the average number of cells in a cluster for the 11 annotated
clusters was 852. Similar to Example 1, we also rerun the analysis by manually setting
the cell cluster number to 100 to increase the granularity of clustering. This reduced the
average number of cells in a cluster to 100. After running SCATE, we were able to unam-
biguously annotate 86 clusters corresponding to the 5 cell types (Fig. 12c). Figure 12g—i
and Additional file 2: Fig. S12D-F show that SCATE still delivered the best overall
performance.
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Discussions

In summary, SCATE provides a new tool for analyzing scATAC-seq data. Our analyses
show that it robustly outperforms the existing methods for reconstructing activities of
each individual CRE. In many cases, the gain can be substantial.

The main novelty of SCATE is its unique strategy to reconstruct CRE activities from
sparse data by (1) integrating data from both similar CREs and cells, (2) leveraging the rich
information provided by publicly available regulome data, and (3) adaptively optimizing
the analysis resolution based on available data. Coupled with appropriate cell clustering,
SCATE allows one to systematically characterize the regulatory landscape of a heteroge-
neous sample via unsupervised identification of cell subpopulations and reconstruction
of their chromatin accessibility profile at the single CRE resolution.

Since many methods for clustering cells using scATAC-seq data have been developed
(Additional file 1: Table S1), cell clustering per se is not the focus of this article. In prin-
ciple, the SCATE model may be coupled with any cell clustering method. While our
implementation uses model-based clustering as the default, users are provided with the
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Fig. 12 Analysis of human PBMCs from the 10x Genomics platform. a tSNE plot showing cells color-coded by
their true cell types. b tSNE plot showing cells color-coded by their predicted cell types. Using the default
setting, SCATE grouped cells into 15 clusters (numbers in the plot indicate cluster centers). The clusters that
can be unambiguously linked to a cell type are color-coded by cell type. € Similar to b, but cells are clustered
using user-specified cluster number (100 clusters). d—f Regulome reconstruction performance of different
methods in the default analysis, including d correlation between reconstructed and true bulk log-CRE
activities, e peak calling AUC, and f correlation between predicted and true differential log-CRE activities. g—i
Regulome reconstruction performance using user-specified cluster number (100 clusters), including g
correlation between reconstructed and true bulk log-CRE activities, h peak calling AUC, and i correlation
between predicted and true differential log-CRE activities. j Comparison of different methods in an example
genomic region in B cell cluster in the default analysis
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option to use their own cell clustering results as the input for SCATE. For example, cell
clustering may be influenced by cell cycle which is not adjusted for in the default cluster-
ing method in SCATE. However, if users want to adjust for cell cycle and have performed
their own cell clustering to do so, they could replace the default SCATE clustering with
their own cell clustering. As another example, some recent studies suggest that distal
regulatory elements such as enhancers may be more informative for clustering cells com-
pared to proximal elements such as promoters [21]. Although this information is not
currently considered in our default cell clustering algorithm, users have the flexibility to
replace the default SCATE cell clustering by cell clustering obtained from other tools (e.g.,
[21]) that treat distal and proximal regulatory elements differently. Once cell clustering is
given, SCATE will apply the same algorithm to estimate activities of all CREs regardless
of whether they are proximal or distal. We note that the input CREs for SCATE are com-
piled from DNase-seq or ATAC-seq data which cover both proximal and distal elements.
When we use these data to detect CREs, proximal and distal elements were not treated
differently.

For estimating CRE activities, the default setting of SCATE takes a precompiled list
of CREs and their clustering structure as input. These precompiled CREs and clusters
are learned from a large number of DNase-seq samples representing diverse cell types in
BDDB. As Additional file 2: Figure S1 shows, the precompiled CREs in BDDB typically
cover most of the CREs one would detect in a new dataset. The precompiled CRE clusters
contain information about which CREs are correlated. The correlation itself does not tell
one the actual activity of each CRE in a new scATAC-seq dataset. For example, knowing
that CRE X, CRE Y, and CRE Z are correlated does not tell one whether they will have
high activity or low activity in a new dataset. To infer CREs’ actual activity in scATAC-
seq, one also needs to use the read count information from the scATAC-seq data. In
SCATE, the prior information learned from BDDB about CRE correlations is combined
with the observed read counts in scATAC-seq data to infer CRE activities. In this way,
information about how CREs are correlated (but not about the actual activities of CREs)
are transferred from the existing BDDB data to the new scATAC-seq data. The trans-
ferred correlation information is helpful for improving the estimation of CRE activities.
For example, consider two scenarios: (1) CRE Z has 0 read, but all other CREs in the same
cluster have non-zero read counts; (2) CRE Z has 0 read, and all other CREs in the same
cluster have 0 read. Based on the knowledge that CREs in the same cluster tend to be
co-activated, one can infer that CRE Z is more likely to be active in scenario (1) than in
scenario (2). In other words, based on the read counts observed at the correlated CREs,
the zero read count for CRE Z in scenario (1) is more likely to represent an inaccurate
measurement, whereas the zero read count for CRE Z in scenario (2) more likely reflects
its real low activity level.

A potential limitation of using our precompiled CRE list and clusters is that for a given
version of BDDB, these lists will be fixed and remain the same for analyzing all new
scATAC-seq datasets. A new scATAC-seq dataset may contain new CREs and new CRE
correlation structures that may not be fully captured by our precompiled CRE list and
clusters. For this reason, SCATE also provides functions to support users to compile their
own CRE list and CRE clusters. Users can use these functions in two ways. In one way
denoted as “SCATE(User Data),” one can compile CREs from their own scATAC-seq data
(by clustering cells and detecting CREs in each cell cluster) and cluster CREs based on



Ji et al. Genome Biology (2020) 21:161 Page 25 of 36

their own scATAC-seq data (using normalized CRE-read count matrix, where each row
is a CRE and each column is a pseudobulk sample obtained by pooling cells in a cluster).
In another way denoted as “SCATE(BDDB+User Data),” users can cluster cells into pseu-
dobulk samples and add the pseudobulk samples obtained from their scATAC-seq data
to BDDB to expand the database. One can then compile CREs and their clustering using
the expanded BDDB. The difference among the default SCATE, SCATE(User Data) and
SCATE(BDDB+User Data) is that (1) the default mode only uses existing data in BDDB
to compile input CREs (thus it is also denoted as SCATE(BDDB)), (2) SCATE(User Data)
does not use any information from BDDB, and (3) SCATE(BDDB+User Data) combines
BDDB with users’ own data to compile CREs and hence uses both sources of information.

While SCATE(User Data) and SCATE(BDDB+User Data) provide users with the flexi-
bility to compile dataset-specific CREs, we choose SCATE(BDDB) as the default mode of
SCATE for two reasons. First, based on our own experience with real data, SCATE(BDDB)
usually performs better than SCATE(User Data) (Additional file 2: Fig. S13). This is likely
because CREs and their clustering patterns compiled from diverse cell types in BDDB
are more informative than those compiled from a limited number of cell types in a
new scATAC-seq data. Second, SCATE(BDDB) and SCATE(BDDB+User Data) usually
show similar performance, with SCATE(BDDB+User Data) being slightly better. Despite
the slight loss of accuracy, SCATE(BDDB) is substantially easier to use. In order to use
SCATE(BDDB+User Data), users have to download the DNase-seq data in BDDB and run
CRE detection and clustering themselves which require extensive computation (it typi-
cally takes 1-2 days in a computer with 20 cores (2.5 GHz CPU/core)). By contrast, in
order to use SCATE(BDDB), one can skip these tedious and computation heavy steps and
only download the precompiled CRE list and clustering. With these precompiled CREs
and clusters, running SCATE only takes a few minutes per cell cluster.

In the future, the SCATE framework may be extended in multiple directions. For exam-
ple, how should one account for the effects of cell cycles in scATAC-seq analysis remains
an open problem. Addressing this problem requires robust methods to accurately infer
cells’” phase in cell cycle using scATAC-seq data and systematic benchmark datasets and
method evaluation. Both are non-trivial for scATAC-seq and are beyond the scope of this
study. However, they are interesting topics for future research. As another example, our
current implementation of SCATE is focused on identifying and characterizing cell sub-
populations. A future direction is to extend this framework to other types of analyses such
as pseudotime analysis [34] to allow the study of CRE activities along continuous pseu-
dotemporal trajectories. In the future, it is also useful to develop new methods that utilize
the improved CRE estimation to more accurately reconstruct gene regulatory networks.

The basic framework adopted by SCATE to improve the analysis of sparse data by
integrating multiple sources of information is general. In principle, a similar approach
may also be used to analyze other types of single-cell epigenomic data such as single-cell
DNase-seq or ChIP-seq, and possibly single-cell Hi-C [35].

Methods

Single-cell ATAC-seq data preprocessing

Single-cell ATAC-seq data for GM12878 and K562 cells were obtained from GEO
(GSE65360) [4]; single-cell ATAC-seq data for human hematopoietic cell types were
obtained from GEO (GSE96769) [27]; single-cell ATAC-seq data for mouse brain and
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thymus were obtained from GEO (GSE111586) [29]. For each cell, paired-end reads were
trimmed using the program provided by [4] to remove adaptor sequences. Reads were
then aligned to human (hg19) or mouse (mm10) genome using bowtie2 with parameter
-X2000. This parameter retains paired reads with insertion up to 2000 base pairs (bps).
PCR duplicates were removed using Picard (http://broadinstitute.github.io/picard/).

The 10x Genomics single-cell ATAC-seq data for human PBMC were downloaded from
GEO (GSE129785) [33]. The 10x Cell Ranger ATAC Software Suite were used to process
reads and align them to human hgl19 genome. All other analysis procedures were the same
as the analysis of human hematopoietic cell types.

Genome segmentation

Genome is segmented into 200 base pair (bp) nonoverlapping bins. Bins that overlap with
ENCODE blacKklist regions are excluded from subsequent analyses since their signals tend
to be artifacts [36].

Bulk DNase-seq database (BDDB)

SCATE borrows information from large amounts of publicly available bulk DNase-seq
data to improve scATAC-seq analysis. We compiled a database consisting of 404 human
and 85 mouse DNase-seq samples obtained from the ENCODE. Take human as an
example, we downloaded all ENCODE DNase-seq samples generated by the University
of Washington [15] in bam format. Files marked by ENCODE as low quality (marked
as “extremely low spot score” or “extremely low read depth” by ENCODE) were fil-
tered out. Technical replicates for each distinct cell type or tissue were merged into
one sample. This has resulted in 404 DNase-seq samples representing diverse cell types
(Additional file 4: Table S3). Mouse samples were processed similarly (Additional file 5:
Table S4).

Compiling cis-regulatory elements (CREs) using bulk data compendium
Given a species and a compendium of bulk regulome samples (e.g., DNase-seq sam-
ples in BDDB), SCATE systematically identifies CREs in the genome as follows. Let y;;
denote the raw read count of bin i in sample j. Let L; be sample ;s total read count
divided by 108 (i.e., the library size in the unit of hundred million. For example, a sam-
ple with 200 million reads has L; = 2). We normalize the raw read counts by library
size and log2-transform them after adding a pseudocount 1. This results in normalized
data y;; = log,(y;;/L; + 1). Bin i is called a “signal bin” in sample j if (1) y;; > 10, (2)
¥ij = 5, and (3) y;; is at least five times (three times for mouse) larger than the back-
ground signal defined as the mean of y;;s in the surrounding 100 kb region. The cutoffs
for defining signal bins are used to filter out noisy genomic loci since including such loci
will increase computational burden. For example, the CRE clustering below failed to run
on our computer when we included all genomic bins in the analysis. We explored dif-
ferent choices of cutoffs that were computationally feasible on our computer and found
that the cutoffs used above had good empirical performance compared to using looser
or more stringent cutoffs (see details in Additional file 2: Fig. S14 and Additional file 6:
Supplementary Note).

If a bin is a signal bin in at least one bulk sample, it is labeled as a “known CRE” In this
way, all genomic bins are labeled as either “known CREs” or “other bins” 522,173 known
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CREs for human and 475,865 known CREs for mouse are identified using our bulk DNase-
seq compendium. Locations of these CREs are stored in SCATE and provided as part of
the software package. Saturation analysis shows that typically a new bulk sample from a
new cell type only contributes a small fraction (0.013% for human and 0.18% for mouse)
of new CREs to the known CRE list (Additional file 2: Fig. S1A). In the three benchmark
scATAC-seq datasets used in this article, datasets 1, 2, and 3 would only add 0.050%,
0.0013%, and 0.063% new CREs, respectively, to our known CRE list. For the human
hematopoietic differentiation and PBMC datasets used in the last two “Results” sections,
the scATAC-seq dataset would only add 0.118% and 0.058% of new CREs to the known
CRE list, respectively (Additional file 2: Fig. S1B; the calculation was based on detect-
ing CREs in each cell type separately and then adding the union of all CREs from all cell
types in the scATAC-seq data to the known CRE list). This suggests that the majority of a
new sample’s regulome can be studied by analyzing the precompiled known CREs, which
can save user’s work on compiling and clustering their own CREs. In this article, SCATE
is demonstrated using our precompiled known CRE list, as the performance curves and
statistics do not change much by adding new CREs from each scATAC-seq dataset to the
analysis.

SCATE model for known CREs in a single cell

Consider scATAC-seq data from one single cell j. Given aligned sequence reads, SCATE
will estimate activities of known CREs first. Let y;; denote the observed read count for
CREi (i = 1,...,I) in cell j, and let u;; denote the unobserved true activity. Our goal
is to infer the unobserved u;; from the observed data y;;. We assume the following data

generative model:
Yij ~ Poisson(Lju;)
log(ui;) = hj(log(ki )
log(uij) = m; + si8
3 = XB;
This model has three main components which will be explained below.

1. Model for true activity. The unobserved u;; is modeled as log(u;;) = m; + s;8;.
Here m; and s; represent CRE i’s baseline mean activity and standard deviation
(SD). They are used to model the locus-specific but cell-type-independent baseline
behavior of each CRE (i.e., the locus effects observed in Fig. 1e). Since these
locus-specific effects cannot be reliably learned using sparse data or data from one
cell type, we learn them using the bulk data from diverse cell types in our bulk
regulome data compendium (see below). Once they are learned, m; and s; are
treated as known. The unknown §;; describes CRE i’s cell-specific activity after
removing locus effects (i.e., 6;; = W). Due to data sparsity, accurately

estimating d;; using the observed data from only one CRE in one cell is difficult.

Thus, we impose additional structure on d;s to allow co-activated CREs to share

information to improve the estimation. We group CREs into K clusters based on

their co-activation patterns across cell types (see below). We assume that CREs in
the same cluster share the same 8. Mathematically, let §; = (81,...,57,)T bea

column vector that contains §;s from all CREs in cell j. Let X be a1 x K cluster
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membership matrix. Each entry of this matrix x is a binary variable: x;x = 1 if CRE
i belongs to cluster k, and x;x = 0 otherwise. Let i ; denote the common activity of
all CREs in cluster k. Arrange Br,js into a column vector ﬂj = (Brjr---» /SIQ)T. Our
assumption can be represented as §; = X;. When the cluster number K is smaller
than the CRE number I, imposing this additional structure on §;; reduces the
number of unknown parameters from I to K. As a result, it increases the average
amount of information available for estimating each parameter. Note that in our
model, two CREs with the same § can still have different activities (i.e., different

i s) because log(u;j) = m; + 5;8;;. In other words, SCATE allows co-activated
CREs to share information through §, but at the same time it also allows each CRE
to keep its own locus-specific baseline characteristics. This is an important feature
missing in other existing methods. Another unique feature of SCATE is that we
treat the cluster number K as a tuning parameter and adaptively choose it based on
available information to optimize the analysis’ spatial resolution. Unlike SCATE,
other existing methods aggregate CREs based on known pathways. For them, K is
fixed and the analysis’ spatial resolution cannot be tuned and optimized.

2. Model for technical bias. Since the locus effects m; and s; are learned from the bulk
data, we view i;; as the activity one would obtain if one could measure a bulk
regulome sample (e.g., bulk DNase-seq) consisting of cells identical to cell j. In
scATAC-seq data, u;; is distorted to become /ij due to technical biases in
single-cell experiments (e.g., DNA amplification bias). We model these unknown
technical biases using a cell-specific monotone function #;(.). In other words, we

assume log(uf;) = hj(log(u;;)). We estimate the unknown function #;(.) by
comparing scATAC-seq data with the bulk regulome data at CREs that show
constant activity across different cell types (see below). Once /;(.) is estimated, it is
assumed to be known.

3. Model for observed read counts. We assume that the observed read count y; is
generated from a Poisson distribution with mean Ljuffj. Here L; is the total number
of reads in cell j divided by 108. It is a cell-specific normalizing factor to adjust for
library size.

For a fixed cluster number K, we fit the model as follows: (1) use the bulk regulome
data compendium to learn locus effects m; and s;; (2) use scATAC-seq data and the
bulk regulome data compendium to learn technical bias function /;(.) which normalizes
scATAC-seq data with the bulk regulome compendium used to learn locus effects; (3)
given my;, s; and 4;(.), use the observed data y to estimate g which will determine § and p.
The estimated p provides the final estimates for CRE activities.

In order to optimize the analysis’ spatial resolution, SCATE treats the cluster
number K as a tuning parameter. CREs are clustered at multiple granularity lev-
els corresponding to different Ks. As K increases, the average number of CREs
per cluster decreases. This increases spatial resolution because the cluster activ-
ity more resembles the activity of individual CREs. However, increasing K also
decreases the amount of information for estimating the activity of each cluster,
and thus the estimates become noisier. We use a cross-validation approach to
choose the optimal K that balances spatial resolution and estimation uncertainty
(see below).
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Estimate locus effects m; and s;

We estimate locus effects using the rich bulk data from diverse cell types in the bulk regu-

lome compendium. Let y;; be the observed read count for genomic bin i and bulk sample

j(i=1,...,]). L represents sample ’s library size in the unit of hundred million. For each

genomic bin i, locus effects are estimated using the observed counts {yi,j j=1,...,] }

We model y;; in bulk data as:
yij ~ Poisson(Lju;j) @)
log(pij) = m; + si8;

This is similar to the single-cell model above but without the technical bias component.
Without additional constraints, 7; and s; are not identifiable since each bin i has only J
observed data points but / +2 unknown parameters (i.e., m1;, s;, and J different §;;s). Thus,
we further assume 8;; ~ N(0, 1). This is equivalent to assuming that log(i;;) for bin i
is normally distributed, and m; and s; are its mean and SD respectively. This assumption
is based on observing that CREs’ log-normalized read counts after standardization (i.e.
subtract m; and divide by s;) are approximately normally distributed (Additional file 2:
Fig. S15). With this additional constraint, #; and s; become identifiable. Since maximum
likelihood estimation for all genomic bins in a big genome like human is computationally
slow, SCATE employs the method of moments to estimate m; and s;. Based on the model
and theoretical moments of Poisson and Lognormal distributions, the first and second

moments of y;;/L; are (see Additional file 7: Supplemental Note for derivations):

E (J’l,}) = emi-"—%siz
L

2
Pi 1 12 1272 2
E<ylvl> — emi+§si + [emiJrESi] &S
L j

By matching the model-based moments to the empirical first two moments of the

®3)

observed y;;/L;s, we obtain the following closed-form estimates for m; and s; which can

be computed efficiently:

) (E}@uﬂﬁzﬂ*—Z}@wﬂ$V1>
log

5=
l i/ L /D?
(4)
i/ Lj)
I’hlzlog<x:](y]”] —Ei/2
i/ L) 1T =30 /LD /T . .
In rare cases where 0L < 1, the estimates become:
5;=0
: (mew> (5)
m; = log B —

Estimate technical bias function h;(.)

The cell-specific technical bias function /;(.) is estimated using known CREs whose activ-
ities do not change much across cell types. For each CRE, the 5; estimated above reflects
its variability across diverse cell types in the bulk regulome data compendium. To select
low-variability CREs, we first group all known CREs into 10 strata based on their base-
line mean activity values (i.e., 71;s). To do so, the 7;s from all CREs are collected and their
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10%, 20%, ..., 90% quantiles are computed. These quantiles are used to define the 10 strata.
Within each stratum, we find 1000 CREs with the smallest 5; values. The union set of
these 10000 CREs creates the set 77 of “low-variability” CREs. For these low-variability
CREs, their activities are almost constant across cell types. Thus, one can assume that
their activities in a new cell are known and approximately equal to 71;, and the model for
their scATAC-seq read counts in a new cell j can be simplified to:
Yij ~ Poisson(Ljp;}) ©
log(ui}) = hj(log(wi ) ~ hj(im;)
We estimate /;(.) using y; ;s from these low-variability CREs. The function /;(.) is mono-
tonically increasing but has unknown form. We model it using monotone spline [37]

(splines2 package in R):
T
() = o+ el (%) sty =0t =1,.,T)
t=1

Here, I;(x) are known I-spline basis functions (which are monotone functions [37])
and aj;s are unknown regression coefficients. The constraints oj; > 0 make /;(.)
monotone and non-decreasing. The maximum likelihood estimates for coefficients o; =
{a,-,t :t=0,..., T} can then be obtained as:

&j = arg max Z Lyij* h(m;) — Ljeh(';”')] st.oj,>0@t=1,.,T) (7)
Y ies

To select the optimal set of basis functions, we try different settings of knots by changing
T.Weset T = 1,2, .., 6, respectively, which sets the number of knots from 0 to 5. For each
T, the t/T'th quantiles (¢ = 1, ..., T — 1) of 7i1; are chosen as the knots. Given the knots, the
spline basis functions are then generated by splines2. The T with the smallest Bayesian
information criterion (BIC) is chosen to obtain the optimal set of basis functions.

Estimate 3, 5, and u

Once the locus effects m; and s; and technical bias function /;(.) are estimated, SCATE
treats them as known and will then estimate 8. Suppose CREs are grouped into K clusters.
The activity for cluster k in cell j, B, can be estimated using the observed read counts
in cell j for all CREs in the cluster. When data are sparse (particularly for clusters with
small number of CREs), the maximum likelihood estimate can be unreliable due to its
high variance. Thus, consistent with our bulk regulome data model, we impose a prior
distribution on By ; to help regularize its estimation: g ; ~ N(0, 1). We then estimate f ;
using its posterior mode:

By =argmax Y [yijhim + 5if) — L0 - g2/
ieC(k)

Here ,C(k) represents the set of CREs in cluster k. The above optimization involves only
one variable $, and thus the computation is not expensive. Estimation of different B ;s
are handled separately.

Given ﬁk,j, 8;j and p;; can be derived using model (1).

Analysis at multiple spatial resolution levels (i.e., multiple Ks)
SCATE analyzes data at multiple spatial resolution levels by setting the cluster number
K to different values. To do so, known CREs are clustered based on their co-activation
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patterns across all samples in the bulk regulome data compendium. Before clustering,
CREs’ normalized data y;; are organized as a matrix. Rows of the matrix correspond to
CREs and columns correspond to samples. Each row is standardized to have zero mean
and unit SD. Then, CREs (i.e., rows) are clustered hierarchically at multiple granular-
ity levels. A naive hierarchical clustering of 522,173 CREs (475,865 CREs for mouse)
is difficult because it requires computing a distance matrix on the order of 500,000 x
500,000. To make the computation tractable, SCATE employs a three-stage clustering
approach.

e Stage 1: K-means clustering (Euclidean distance) is used to group all CREs into 5000
clusters. Each cluster consists of a group of CREs with similar cross-sample activity
patterns. The mean number of CREs contained in each cluster is approximately 100
(for human 522,173 CREs/5000 clusters = 104 CREs/cluster; for mouse 475,865
CREs/5000 clusters = 95 CREs/cluster). The end product of this stage is 5000 CRE
clusters. For each cluster, the mean activity of all CREs in each sample is computed. It
is then standardized to have zero mean and unit SD across samples.

e Stage 2: To obtain coarser clusters, the 5000 clusters from stage 1 are grouped
hierarchically using hierarchical clustering (Euclidean distance, complete
agglomeration) based on their mean activity profile. In this way, CREs are
hierarchically grouped into 5000, 2500, 1250, 625, 312, and 156 clusters.

e Stage 3: To obtain fine-grained clusters, for each cluster obtained in Stage 1,
hierarchical clustering is applied to split CREs in that cluster into smaller clusters. In
this way, each cluster from Stage 1 can be divided into 2, 4, 8, ... subclusters until each
subcluster contains only one CRE. For different Stage 1 clusters, their CRE numbers
are different and therefore the exact number of their subclusters obtained in Stage 3

may vary.

After all three stages, we obtain clusters of CREs at multiple granularity levels. In
other words, CREs are grouped into K clusters for different K values. For human,
K = 156,312,625,1250, 2500, 5000, 9856, 19008, 35361, 64398, 117596, 213432, 521820.
For mouse, K = 156, 312, 625, 1250, 2500, 5000, 9996, 19953, 39732, 78868, 154813,
283422,465055. CREs’ clustering structure for human and mouse obtained using our
BDDB DNase-seq compendium is stored and provided as part of the SCATE package.
Users can use it directly without recomputing them.

Optimizing spatial resolution (K) by cross-validation
SCATE optimizes the spatial resolution of the analysis by choosing the optimal K
via cross-validation. For a given K, after clustering CREs, CREs are randomly par-
titioned into a training set (90% CREs) and a testing set (10% CREs). Next, for
each cluster k, CREs in the training set are used to estimate f; which is the com-
mon activity of all CREs in that cluster. Using the estimated B j» the log-likelihood
of the test CREs in cluster k can be computed according to model (1) because
they share the same fj; with training CREs in the same cluster. We perform the
same calculations for all clusters and obtain the median log-likelihood of all testing
CREs.

The above procedure is run for different values of K. The cluster number K with the
largest median log-likelihood in test data is selected as the optimal K.
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Postprocessing — SCATE for other genomic bins in a single cell

After estimating activities of known CREs, SCATE will analyze all other bins in the
genome. These bins fall into two classes. First, some bins have zero scATAC-seq read
count across all cells. For these bins, u;; is estimated to be zero. Second, the remaining
bins have at least one read in the scATAC-seq data. For these bins, we estimate 1;; using
a predictive machine learning approach xgboost (eXtreme Gradient Boosting [38]) where
the response variable is the SCATE signal fi;; and the predictors are normalized read
count y;;/Lj, m; and s;. The model is trained using known CREs. The trained model is then
applied to bins not included in the known CRE list to make predictions. This will trans-
form the read counts at these bins to a scale consistent with the reconstructed activities
for known CREs.

SCATE for multiple cells

When a scATAC-seq dataset contains multiple cells, we first cluster cells using a method
similar to our previously published method SCRAT [13]. Before clustering cells, CREs
are grouped into 5000 clusters using BDDB as before. For each cell, the average activity
of all CREs in each CRE cluster is calculated as in SCRAT. This transforms the scATAC-
seq data in each cell into a feature vector consisting of 5000 CRE cluster activities. After
quantile normalizing features across cells, features with low-variability across cells are fil-
tered out. To identify low-variability features, for each feature, we calculate the mean and
SD of its activity across cells. Using the means and SDs of all features, we fit a polyno-
mial regression with degree=3 to describe the relationship between the SD (response)
and mean (independent variable). Features for which the observed SD is smaller than the
expected SD (from the fitted model) given the mean activity are filtered out. Among the
remaining high-variability features, we retain those that have non-zero read count in at
least 10% of cells. PCA is then performed on the retained features. The top 50 principal
components are then used to perform tSNE. The model-based clustering (mclust in R)
[26] is used to perform clustering on tSNE space with default settings. The cluster num-
ber is chosen based on the Bayesian Information Criterion in mclust. If users do not want
to use the default cluster number or clustering method, SCATE also provides an option to
allow them to specify the cluster number by their own or use their own clustering results
from other algorithms.

After cell clustering, each cluster consists of a set of similar cells and represents a rela-
tively homogeneous cell subpopulation. SCATE will estimate the regulome profile of each
cluster. For each cell cluster, reads from all cells are pooled together to create a pseudo-
cell. The SCATE model for a single cell described above is then applied to the pseudo-cell
to estimate CRE activities. For instance, the bias normalizing function %;(.) is estimated
by treating the pseudo-cell obtained from cluster j (after pooling cells) as a single cell. The
estimated regulome profile of the pooled sample typically will achieve higher spatial res-
olution than a single cell since (1) the pseudo-cell contains data from more than one cell
and (2) SCATE automatically tunes the spatial resolution based on available information.
The output of SCATE is the estimated regulome profile for each cell subpopulation.

Peak calling and evaluation
A moving average approach is used to call peaks from the reconstructed regulome profile.
Given a moving window size 2W + 1, the moving average signal for each 200 bp bin is
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calculated as the average signal of the bin and its 2W neighboring bins (W bins on the
left and W bins on the right). By default, W = 1 which amounts to averaging signals
from 3 bins spanning 600 bp in total. In parallel, we also calculate the average signal of
2W + 1 randomly selected bins (not necessarily neighboring bins) for 100,000 times to
construct a background distribution for the moving average signal. For a genomic bin
with moving average signal s, the false discovery rate (FDR) is estimated as the proportion
of background distribution larger than s divided by the observed proportion of genomic
bins with signals larger than s. Genomic bins with FDR smaller than 0.05 are identified
and consecutive bins are merged into peaks. Peaks are ranked by FDR. For peaks tied with
the same FDR, they are ranked further by the moving average signals.

For evaluation, peaks called using signals constructed by different methods are com-
pared with peaks called using bulk regulome data. In the evaluation, we also assessed
MACS peak calling on pooled cells. MACS is run with settings —nomodel —extsize 147.

TFBS prediction

TF motifs are downloaded from JASPAR [39] (Additional file 3: Table S2). These motifs
were mapped to the genome using CisGenome with likelihood ratio cutoff = 100. Narrow
peak files of the corresponding ChIP-seq data in GM12878 and K562 are downloaded
from ENCODE. For each TF and cell type, genomic bins with motif were ranked based
on reconstructed scATAC-seq signals to predict TFBSs. Genomic bins with motif that
overlap with ChIP-seq peaks are used as gold standard.

Processing of benchmark bulk DNase-seq and ATAC-seq data

The benchmark bulk DNase-seq data for GM12878 and K562 (Dataset 1) are obtained
from ENCODE. Bulk ATAC-seq data for human CMP and monocytes (Dataset 2), human
hematopoietic cell types, and human PBMC in the last two examples are obtained from
GEO under accession GSE74912. Bulk DNase-seq data for mouse brain and thymus
(Dataset 3) are obtained from ENCODE.

Bulk DNase-seq samples are processed using the same protocol as DNase-seq data pro-
cessing in BDDB. For ATAC-seq sample, reads are aligned to human genome hgl19 using
bowtie with parameters (-X 2000 -m 1). PCR duplicates are removed by Picard (http://
broadinstitute.github.io/picard/). The aligned reads are used to obtain bin read counts.

BDDB data variance explained by mean DNase-seq profile

Denote y;; as the log-normalized read count for CRE i (i = 1,2,..,) and sample j
(j = 1,2,..,]) in BDDB. Denote a; as the mean DNase-seq activity (i.e., mean of y;;s) for
CRE i computed using BDDB samples. Denote j = > i Yij/d), and a = 3, ai/I. The
proportion of variance explained is calculated as / 3_;(a; — @)%/ 20y — 2.

Analyses using existing methods

Existing methods were run using their default parameter settings implemented in their
software or reported in their original publications. All these methods used MACS for
peak calling. The parameters for running MACS as reported in their original papers are:

e Cicero: MACS2 with parameters —nomodel —extsize 200 —shift -100 —keep-dup all.
e Dr.seq2: MACS1.4 with parameters —keep-dup 1 —nomodel —shiftsize 73.
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® Scasat: MACS2 with parameters —nomodel, —nolambda, —keep-dup all
—call-summits -p 0.0001.

e scABC: MACS2 with parameters -p 0.1.

e cisTopic: MACS2 with parameters —nomodel -q 0.001.

® Destin: MACS2 with parameters —nomodel -p 0.01.

Software

SCATE is implemented as an R package. It can be installed from GitHub. In terms of
computational time, compiling CREs and clustering CREs typically take 1-2 days. Given
the CRE list and CREs’ clustering structure, running SCATE to reconstruct regulome
approximately takes 5 minutes per cell cluster on a computer with 10 computing cores
(2.5 GHz CPU/core) and a total of 20GB RAM.
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