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Fungi of entomopathogenic potential in
Chytridiomycota and Blastocladiomycota,
and in fungal allies of the Oomycota and
Microsporidia
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Abstract

The relationship between entomopathogenic fungi and their insect hosts is a classic example of the co-
evolutionary arms race between pathogen and target host. The present review describes the entomopathogenic
potential of Chytridiomycota and Blastocladiomycota fungi, and two groups of fungal allies: Oomycota and
Microsporidia. The Oomycota (water moulds) are considered as a model biological control agent of mosquito larvae.
Due to their shared ecological and morphological similarities, they had long been considered a part of the fungal
kingdom; however, phylogenetic studies have since placed this group within the Straminipila. The Microsporidia are

larval stages of black flies, mosquitoes and scale insects.

parasites of economically-important insects, including grasshoppers, lady beetles, bumblebees, colorado potato
beetles and honeybees. They have been found to display some fungal characteristics, and phylogenetic studies
suggest that they are related to fungi, either as a basal branch or sister group. The Blastocladiomycota and
Chytridiomycota, named the lower fungi, historically were described together; however, molecular phylogenetic and
ultrastructural research has classified them in their own phylum. They are considered parasites of ants, and of the
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INTRODUCTION

The interaction between host and parasite is charac-
terised on the one hand by the parasites developing
more effective strategies of host exploitation, and on the
other, by the hosts mounting increasingly robust de-
fences though Red Queen dynamics or coevolutionary
arms races. Furthermore, depending on gene flow and
differences in selection pressure between sites, both host
and parasite may demonstrate local adaptation to their
counterpart or develop more general resistance or offen-
sive traits (Kaur et al. 2019).
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Although chemical pesticides have been used for the
control of insect pests for many decades, they are known
to exert side effects on non-target organisms, contamin-
ate groundwater and leave residues on food crops; they
are also believed to support the development of insect
resistance. Therefore, there is currently great interest in
the development of alternative methods for integrated
pest management (Kim et al. 2017; MuzZini¢ and Zeljezi¢
2018; Neuwirthova et al. 2019). More recent studies have
found entomopathogens to regulate many populations of
arthropods (Lacey et al. 2001; Lacey et al. 2015; Lacey
2016), and that entomopathogenic fungi themselves may
play a role in removing harmful substances and heavy
metals from the environment (Litwin et al. 2020).

The success of using an entomopathogenic fungus as a
myco-biocontrol agent depends on the selection of a
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virulent and stable strain with specific efficacy for the
target host. Hence, there has been considerable interest
in the creation of new strains of entomopathogenic
fungi, accompanied by the development of fermentation
systems for optimal biomass production, and the design
of delivery systems suitable for both the microorganism
and common agricultural practices. One key step in the
development of effective strains involves the cloning of
genes that can enhance pathogenesis (St. Leger and
Wang 2010; Jaronski and Mascarin 2017; Dobrowolski
et al. 2018; Karaborklii et al. 2018).

The co-evolution of fungi and insects over hundreds
of millions of years has resulted in the development of a
wide range of complex and intricate interactions be-
tween them (Joop and Vilcinskas 2016). Entomopatho-
genic fungi have evolved to infect a wide range of insects
in all developmental stages (viz. eggs, larvae, pupae,
nymphs and imago) across a range of niches. Such
adaptability requires considerable morphological diver-
sity, resulting in a wide range of fungal species with
morphological, phylogenetic and ecological diversity.
However, although recent advances in the genome biol-
ogy of entomopathogenic fungi indicate the genetic
bases of their adaptation to insect hosts and host ranges,
as well as the evolutionary relationships between insect
and non-insect pathogens (Aradjo and Hughes 2016;
Wang and Wang 2017), the mechanisms of host specifi-
city in pathogenic microbiology generally remain poorly
understood.

EVOLUTION OF ENTOMOPATHOGENIC FUNGI
From an evolutionary point of view, entomopathogenic
fungi do not constitute a monophyletic group. Instead,
phylogenetic data suggests that entomopathogenic activ-
ity has arisen independently, and frequently, along the
course of fungal evolution (Humber 2008; Aradjo and
Hughes 2016; Moonjely et al. 2016). Wang and Wang
(Wang and Wang 2017) proposed that this evolutionary
pattern is indicative of frequent cross-kingdom or cross-
phylum host jumping during fungal pathogen speciation.
Such phenomena may be explained by the host-habitat
hypothesis or the host-relatedness hypothesis. The host-
habitat hypothesis suggests that entomopathogens acci-
dently switch between host organisms living in a com-
mon environment; this better explains the dynamic
evolution of host diversification and adaptation in the
Hypocreales (Nikoh and Fukatsu 2000; Spatafora et al.
2007; Blackwell 2010). In contrast, the host-relatedness
hypothesis suggests that pathogens change hosts to new
species closely related with the original host (Nikoh and
Fukatsu 2000; Kepler et al. 2012).

Historically, the Fungi were divided into four phyla;
however, following dramatic changes in higher-level tax-
onomy in the last 20 years, the number of fungal phyla
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has tripled to 12, organized into six major groups:
Dikarya, Mucoromycota, Zoopagomycota, Blastocladio-
mycota, Chytridiomyceta and Opisthosporidia (James
et al. 2020). It has been estimated that about 750 species
of entomopathogenic fungi exist, most of which are dis-
tributed in the phyla Chytridiomycota, Blastocladiomy-
cota, Zoopagomycota, Basidiomycota and Ascomycota.
Some authors have also traditionally included the Micro-
sporidia and the ecologically-similar, but
phylogenetically-distinct, Oomycota (water moulds), be-
longing to the Straminipila.

OOMYCOTA

The Oomycota are a genetically and morphologically-
diverse clade that can form hyphae or exist as simple
holocarpic thalli; the phylum contains at least 1500 spe-
cies of fungus in 100 genera (Beakes and Thines 2017).
The oomycetes are filamentous eukaryotic microorgan-
isms belonging to the kingdom Straminipila; however,
some authors placed them among the fungi, based on
their ecological and morphological characteristics, viz.
filamentous growth habit, nutrition by absorption, and
reproduction via spores (Rossman and Palm 2006;
Beakes et al. 2012; Thines 2018). Unlike the true fungi,
the cell walls of the oomycetes are composed of cellulose
derivatives that serve as structural components, rather
than chitin (Hassett et al. 2019; Klinter et al. 2019). Sex-
ual reproduction typically occurs between gametangia
(antheridia and oogonia) on the same or different hy-
phae (Rocha et al. 2018; Spring et al. 2018); however,
this is not always the case: Periplasma isogametum, for
example, demonstrates a type of sexual reproduction in-
volving morphological isogamy and physiological anisog-
amy (Martin and Warren 2020). Most oomycetes are
also capable of asexual reproduction via their kidney
bean-shaped biflagellate zoospores with apically or
laterally-attached whiplash and tinsel flagella (hetero-
konts) (Walker and van West 2007). Interestingly, the
mitochondria of the oomycetes possess tubular cristae,
as opposed to the disc-like cristae of the fungi (Powell
et al. 1985; Karlovsky and Fartmann 1992; Weber et al.
1998; Rossman and Palm 2006).

Pathogenic oomycetes are able to infect a broad
range of algae, plants, protists, fungi, arthropods and
vertebrates, including humans, and can cause losses
in agriculture and aquaculture (Mendoza and Vilela
2013; van West and Beakes 2014; Kamoun et al.
2015). Twelve species of entomopathogenic Oomycota
are known to exist within six genera: Lagenidium (L.
giganteum), Leptolegnia (L. caudata and L, chapma-
nii), Pythium (P. carolinianum, P. sierrensis, and P.
flevoense), Crypticola (C. clavulifera and C. entomo-
phaga), Couchia (C. amphora, C. linnophila, and C.
circumplexa), and Aphanomyces (A. laevis) (Araujo
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and Hughes 2016; Mendoza et al. 2018). Most are
facultative parasites of mosquito larvae belonging to
the genera Amnopheles, Culex, Aedes, Ochlerotatus,
Culiseta, Orthopodomyia, Uranotaenia, Psorophora,
and Mansonia (Frances et al. 1989; Woodring et al.
1995; Scholte et al. 2004; Patwardhan et al. 2005;
Vyas et al. 2007; Singh and Prakash 2012; Vilela et al.
2018; Shen et al. 2019; Vilela et al. 2019; Shen et al.
2020a). Some examples of infected insects are listed
in Table 1.

The most well-known and thoroughly-analysed en-
tomopathogenic Oomycota is arguably L. giganteum,
which was used as a biological control model of mos-
quito larvae (Vilela et al. 2019). Infection is initiated
by free-floating zoospores formed in sporangia, which
are released only in aqueous environments (Walker
and van West 2007). The spores are responsible for
recognising and binding to the host cuticle. After suc-
cessful binding, they swell, germinate and penetrate
the insect exoskeleton. The mycelia grow through the
hemocoel, resulting in the death of the insect, while
the fungus terminates with reproduction and the sub-
sequent release of infectious zoospores. Successful in-
fection requires the production of hydrolytic enzymes
such as chitinases (Shen et al. 2020b), hexosamini-
dases (Dowd et al. 2007; Olivera et al. 2016) or glyco-
side hydrolase family 5 subfamily 27 (GH5_27), which
play crucial roles in the cuticle-degrading process
(Quiroz Velasquez et al. 2014). Other important en-
zymes produced by entomopathogenic oomycetes are
trehalases, which not only take part in cuticle degrad-
ation, but may also hasten the infection process by
depleting trehalose, the most abundant sugar source
in insect hemolymph (MclInnis and Domnas 1973).

It is possible that the ancestors of L. giganteum
were plant pathogens, as sequence analyses have indi-
cated the presence of genes characteristic of plant tis-
sue infections, such as crn or cbel. However, other
genes coding cuticle-degrading enzymes have been
found, such as GH5_27 or GH20; these are character-
istic of entomopathogens and are not observed in
plant pathogens (Quiroz Velasquez et al. 2014; Oli-
vera et al. 2016). This dichotomy suggests that fungal
and oomycete entomopathogens not only share
morphology and pathological strategies, but also evo-
lutionary histories and ecological relationships (Leoro-
Garzon et al. 2019; Shen et al. 2019).

L. giganteum was used as a control agent against mos-
quito larvae in the commercial product Laginex, which
was registered and released in the USA in 1995 (Hallmon
et al. 2000); however, due to several cases of life-threating
mycoses in dogs recorded in the southern United States,
the product was later deregistered and is no longer for sale
(Mendoza and Vilela 2013; Vilela et al. 2015; Vilela et al.
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2019). Recent data has shown the existence of two forms
of L. giganteum (Vilela et al. 2015): the heat-tolerant taxon
L. giganteum f. caninum pathogenic to mammals (Spies
et al. 2016), and L. giganteum f. giganteum, which can in-
fect mosquito larvae in nature. Both taxa share a common
ancestor and can infect mosquito larvae; the only pheno-
typic difference between the two types is their tolerance
for growth at different temperatures: the latter does not
tolerate human body temperature (37°C) but develops well
at 25°C and below (Vilela et al. 2015; Vilela et al. 2019).

Oomycetes have also been found to infect non-dipteran
insects; for example Crypticola entomophaga has been ob-
served to attack aquatic insects from the order Trichop-
tera (caddis flies; Dick 2003; Gani et al. 2019).

MICROSPORIDIA

Microsporidia are unicellular eukaryotes living as obli-
gate intracellular parasites. All stages of their life-cycle
associated with growing and replication can only take
place inside host cells; in the environment, they can sur-
vive only as thick-walled spores (Timofeev et al. 2020).
Their adaptation to a parasitic strategy has resulted in
the development of a seemingly paradoxical mixture of
characteristics: the cells lack mitochondria, and their
metabolism does not employ electron transfer chains,
oxidative phosphorylation, or the tricarboxylic acid
(TCA) cycle. In addition, their genomes are poor in
genes involved in resource-producing metabolic path-
ways, such as ATP synthesis, but rich in others that en-
hance transport mechanisms and allow resources to be
hijacked from the host. Due to their highly-reduced
morphology, ultrastructure, biochemistry and metabol-
ism, as well as their considerably impoverished genome,
microsporidia need to induce considerable disruption of
host cell physiology to enable successful infection and
development (Corradi 2015; Haag et al. 2019; Timofeev
et al. 2020). One exception to this rule is Microspori-
dium daphniae, which has been found to possess a mito-
chondrial genome and the genes necessary for
producing ATP from glucose (Haag et al. 2014).

Of all known parasites, those of Microsporidia are ar-
guably the most host dependent (Corradi and Keeling
2009; Keeling 2009; Tamim EI Jarkass and Reinke 2020),
and this dependence may account for their development
of a range of mechanisms to ensure intracellular sur-
vival. For example, they demonstrate reduced expression
of immune-peptide or immune-related genes (Antinez
et al. 2009), reduced re-epithelization in infected ventric-
uli (Higes et al. 2007; Garcia-Palencia et al. 2010), in-
creased energetic stress (Mayack and Naug 2009;
Martin-Herndndez et al. 2011) and inhibited melanisa-
tion in the hemolymph of infected Bombyx mori larvae
(Wu et al. 2016).
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Table 1 Examples of insects infected by entomopathogenic fungi and fungal-like organisms

Infected insect species

Literature data

Oomycota
Aphanomyces laevis
Couchia spp.
Crypticola spp.
Lagenidium giganteum

Leptolegnia caudata spp.
Pythium spp.

Microsporidia
Anncaliia algerae

Antonospora locustae
(Nosema locustae)

Nosema adaliae

Nosema alticae

Nosema bombi, Nosema
ceranae, Tubulinosema
pampeana

Nosema carpocapsae

Nosema leptinotarsae
Nosema maddoxi
Nosema pernyi
Nosema pyrausta

TubuliNosema sp.
TubuliNosema suzukii

Vairimorpha (Nosema)
ceranae Vairimorpha
(Nosema) apis

Chytridiomycota

Myrmicinosporidium
durum

Nephridiophaga maderae
Nephridiophaga
archimandrita
Nephridiophaga
lucihormetica
Nephridiophaga blattellae
Nephridiophaga blaberi

Blastocladiomycota

Coelomycidium simulii

Coelomomyces africanus
Coelomomyces angolensis
Coelomomyces iliensis
Coelomomyces indicus
Coelomomyces irani
Coelomomyces lairdi

Mosquito larvae

Drosophila melanogaster

Grasshoppers

Two-spotted lady beetle, Adalia bipunctata (Coleoptera:
Coccinellidae)

Flea beetle, Altica hampei (Coleoptera: Chrysomelidae)

Bumblebees

Codling moth, Cydia pomonella L

Colorado potato beetle, Leptinotarsa decemlineata Say.
(Coleoptera: Chrysomelidae).

Brown marmorated stink bug, Halyomorpha halys (Hemiptera:
Pentatomidae)

The Chinese oak silkworm Antheraea pernyi (Lepidoptera:
Saturniidae)

European corn borer Ostrinia nubilalis, the Asian corn borer
Ostrinia furnacalis and the adzuki bean borer Ostrinia scapulalis

Loxostege sticticalis L (Lepidoptera: Crambidae)
Drosophila suzukii

Honeybee Apis mellifera

Ants from Subfamilies: Myrmicinae, Formicinae and
Dolichoderinae

Madeira cockroach (Leucophaea maderag),
Archimandrita tessellate

Lucihormetica verrucose

German cockroach Blattella germanica
Death's head cockroach Blaberus craniifer

Larval stage of black flies (Diptera): Simulium asakoae, S.
chamlongi, S. chiangmaiense, S. fenestratum, S. feuerborni, S.
nakhonense, S. nodosum, S. quinquestriatum, S. tani, and S.
Japonicum

Mosquito larvae from species of Culex, Culiseta, Aedes, Anopheles,
Psorophora, and Uranotaenia

(Patwardhan et al. 2005)

(Wallace Martin 2000)

(Frances 1991; Dick 2003; Mendoza et al. 2018)
(Golkar et al. 1993; Vyas et al. 2007; Vilela et al. 2019)
(

Bisht et al. 1996; Montalva et al. 2016; Gutierrez et al.
2017)

(Clark et al. 1966; Su et al. 2001; Su 2008; Shen et al.
2019)

(Sokolova et al. 2020)
(Lange 2005; Zhou and Zhang 2009; Gerus et al. 2020)

(Steele and Bjgrnson 2014)

(Yildirrm and Bekircan 2020)
(Brown 2017)

(Zimmermann et al. 2013)
(Bekircan 2020)

(Preston et al. 2020b; Preston et al. 2020a)
(Liu et al. 2020)
(Grushevaya et al. 2018; Grushevaya et al. 2020)

(Malysh et al. 2018)
(Biganski et al. 2020)

(Forsgren and Fries 2010; Tokarev et al. 2018;
Applegate and Petritz 2020; Chang et al. 2020;
Ostroverkhova et al. 2020)

(Sanchez-Pena et al. 1993; Gongalves et al. 2012;
Trigos-Peral et al. 2017)

(Radek et al. 2017)
(Radek et al. 2011)
(Radek and Herth 1999)
(Fabel et al. 2000)

(Levchenko et al. 1974; Kim 2011; Jitklang et al. 2012;
Kim 2015; Adler and McCreadie 2019)

(Scholte et al. 2004; Balaraman et al. 2006; Rueda-
Paramo et al. 2017; Dahmana and Mediannikov 2020;
Gao et al. 2020)
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Table 1 Examples of insects infected by entomopathogenic fungi and fungal-like organisms (Continued)

Infected insect species

Literature data

Coelomomyces maclaeyae
Coelomomyces numularius
Coelomomyces opifex
Coelomomyces
pentangulatus
Coelomomyces
polynesiensis
Coelomomyces punctatus
Coelomomyces solomonis
Coelomomyces
santabrancae spp.

Myiophagus cf. ucrainicus

Chironomus atracinus larvae

Scale insect: Caribbean black scale, Saissetia neglecta (Hemiptera),
Caliphornia red scale, Aonidiella aurantii (Hemiptera)

(Moore and Duncan 2017)
(Czeczuga and Godlewska 2001)

The life-cycle of microsporidia is characterized by
three phases: an infective or environmental phase
(spores), a merogony (proliferative) phase and a sporo-
gonic or spore-forming phase (Keeling and Fast 2002).
Microsporidia spores are first ingested or inhaled by the
host. The spores then germinate and produce a long and
convoluted tubule extrusion apparatus (polar tubule);
this tubule distinguishes them from other organisms and
plays a crucial role in host cell invasion. The spore ap-
proaches the host cell, and its polar tubule is everted to
enter the cell and inject its sporoplasm into the host cell
cytoplasm. Following successful injection, the prolifera-
tive phase begins; this phase includes all cell growth and
division from the sporoplasm until spore formation. It is
known to include two possible processes: schizogony
and merogony. Although very little is understood of
schizogony in Oomycota, merogony is known to take
place as the injected sporoplasm develops into meronts
(the proliferative stage); these in turn multiply by binary
fission or multiple fission, depending on the species, to
form multinucleate plasmodial forms. Finally, these
forms undergo sporogony, with the meronts developing
into sporonts, which produce two or more sporoblasts;
these in turn undergo metamorphosis into spores.

Interestingly, unlike other species, in which sporogony
occurs in the presence of plasmalemmal thickening, the
microsporidia undergo sporogony to produce diplokar-
yotic nuclei after meiosis. These sporonts can multiply
by binary or multiple fission, acquire specialized organ-
elles and become spores. Subsequently, the spores con-
tinue the cycle by spreading through the tissues of the
host, infecting new cells (Lallo et al. 2016; Han and
Weiss 2017; Han et al. 2020; Horta et al. 2020).

Traditionally, Microsporidia were classified within the
phylum Apicomplexa as sporozoan parasites; however,
phylogenetic studies suggest that microsporidia are related
to fungi, either as a basal branch or sister group (Lee et al.
2008; Han and Weiss 2017). They have also been found to
include chitin in the spore wall and use trehalose as a

sugar reserve, and studies have noted the presence of
closed mitosis, spindle pole bodies and meiosis (Han and
Weiss 2017). Although they can infect a great number of
domestic and wild animals, the most common hosts are
arthropods and fish. Since their discovery in the 1850s as
the causative agent of the silkworm disease pebrine, or
pepper disease, which devastated the silk industry in Eur-
ope, these pathogens have demonstrated major economic
significance in animal farming, such as nosemosis in bee-
keeping (Nosema aApis and N. ceranae) and microspori-
diosis in aquaculture (Loma salmonae for salmonids and
Thelohania spp. for shrimp); Nosema bombycis has also
been found to infect the domesticated silkworm Bombyx
mori. In addition, some microsporidia act as opportunistic
pathogens of humans, especially in patients with AIDS
(Weiss 2020).

About 93 genera of microsporidia have the ability to
infect insects (Becnel and Andreadis 2014). They are
considered as biological control agents for regulating the
population of the beet webworm Loxostege sticticalis, re-
sponsible for serious damage to crops such as soybean,
sugar beet, alfalfa and sunflower in northern Eurasia
(Malysh et al. 2020). Interestingly, some authors con-
sider microsporidia to have enabled the invasive success
of the ladybird Harmonia axyridis (Vilcinskas et al
2015; Verheggen et al. 2017), in which the microsporidia
act as a symbiotic “biological weapon” against some
predators, like Coccinella septempunctata and Adalia
bipunctata (Ceryngier et al. 2018). Some examples of in-
fected insects are listed in Table 1.

Also, Antonospora locustae, formerly known as No-
sema locustae (syn. Paranosema locustae), is commonly
used as a biological control agent for grasshoppers in
the commercial products Nolo Bait and Semaspore
(Lange 2005; Zhou and Zhang 2009; Solter et al. 2012).
Like other microsporidial pathogens, A. locustae also
needs to control the metabolic processes and molecular
programmes of the host in order to proliferate. Success-
ful infection was found to suppress the locust gut
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microbiota, including the gut bacteria that produce ag-
gregation pheromones, thus preventing host aggregation
(Pan et al. 2018).

Most microsporidia species require two successive
host generations to complete their life-cycle, and at least
three genera, viz. Amblyospora, Hyalinocysta and Para-
thelohania, also require development in an intermediate
copepod host (Becnel and Andreadis 2014). These gen-
era are also highly host- and tissue-specific, with com-
plex developmental sequences comprising unique stages
and events (Becnel et al. 2005). They are mostly patho-
gens of mosquito larvae (Andreadis 1985; Andreadis
2007; Shen et al. 2020a); interestingly, microsporidian in-
fection has also been found to be associated with a re-
duction in Plasmodium falciparum transmission in
Anopheles arabiensis mosquitoes (Herren et al. 2020).

In contrast, some species of microsporidia exhibit sim-
ple life-cycles with a single spore type responsible for
oral (horizontal) transmission; these affect only one gen-
eration of insects and are not usually host or tissue spe-
cific (Becnel et al. 2005). A good example of a genus
with this simple life-cycle is Nosema, including the spe-
cies N. apis and N. ceranae. These species are respon-
sible for most microsporidian infections in bees and
other species of Hymenoptera, resulting in ecological
and economical losses in apiculture (Higes et al. 2006;
Forsgren and Fries 2010; Grupe and Alisha Quandt
2020; Ostroverkhova et al. 2020; Paudel et al. 2020).
Interestingly, phylogenetic studies have placed the No-
sema species able to infect bees within a new genus,
Vairimorpha (Tokarev et al. 2020).

N. apis is believed to have long been a parasite of the
European honeybee Apis mellifera, whereas N. ceranae
is presumed to have more recently undergone a host
shift to A. mellifera from the Asian honeybee A. ceranae
(Buczek et al. 2020; Ostroverkhova et al. 2020). The par-
asites exhibit a tissue tropism for honey bee ventriculus
(Higes et al. 2020) and are believed to infect their ven-
tricular epithelial cells during digestion; infected bees
suffer impaired nutrient absorption, resulting in energy
loss and death by starvation (Valizadeh et al. 2020).

Nosema pernyi, a microsporidium infecting the Chin-
ese oak silkworm Amntheraea pernyi, can enter the gut
cell by polar tube infection in most situations. The spore
in the polar tube germinates within the alkaline environ-
ment of the intestine, inducing destructive chronic dis-
ease (Wang et al. 2019; Han et al. 2020). It is also
possible for the parasite to exploit the metabolism of the
host cell to progress its own life-cycle. A recent study
found that successful infection of the honeybee midgut
by the microsporidian pathogen N. ceranae involves the
inhibition of apoptosis (Higes et al. 2013; Kurze et al.
2018); in such cases, the parasite appears to inhibit
apoptosis by regulating the genes involved in the
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process, as well as in the cell cycle (Martin-Herndndez
et al. 2017), thus increasing oxidative stress and antioxi-
dant enzyme generation in the gut, and inhibiting the
genes involved in the homeostasis and renewal of intes-
tinal tissues (Dussaubat et al. 2012; Liu et al. 2020).
Microsporidial infection can also alter host metabol-
ism and induce both local and systemic innate immune
responses (Pan et al. 2018). For example, N. ceranae in-
fection is believed to suppress immune defence mecha-
nisms in honey bees; studies have indicated that
infection downregulates some immune-related genes, in-
cluding abaecin, apidecin, defensin, hymenoptaecin, glu-
cose dehydrogenase (GLD) and vitellogenin (Vg), and
upregulates Jun-related antigen Jra and pi3k (Chang
et al. 2020). Additionally, transcription of the inhibitor
of apoptosis protein (iap-2) gene was found to be upreg-
ulated in Nosema-tolerant honeybees (Kurze et al. 2015);
it is possible that inhibition of apoptosis might help the
parasites optimize their environment and extend the
period during which they can grow and differentiate
within host cells (Higes et al. 2013). It also appears that
pheromone production in worker and queen honeybees
to be modified during infection (Dussaubat et al. 2013).

CHYTRIDIOMYCOTA

The Chytridiomycota comprise zoosporic fungi phylogenet-
ically related to the true fungi. This group comprises at least
three major lineages of chytrids: (1) Rozella spp., the earliest
diverging lineage in kingdom Fungi; (2) Olpidium brassicae,
the only species classified in Zygomycota; and (3) the core
chytrid clade, encompassing the remaining orders and fam-
ilies and most flagellated fungi, including those of Chytri-
diales, Spizellomycetales p.p., Monoblepharidales and
Neocallimastigales (Barr 2001; James et al. 2006). Chytrids
are unicellular, colonial or filamentous organisms with ab-
sorptive nutrition, and which reproduce through the produc-
tion of motile zoospores, typically propelled by a single,
posteriorly-directed flagellum (Barr 2001).

Infection begins with the attachment of a motile
zoospore to the surface of a host cell, and the forma-
tion of a thickened wall around the zoospore. In a
successful infection, the encysted zoospore will de-
velop into a mature sporangium, following which, a
germ tube typically forms, which enters the host cell
via the girdle zone. The zoospores form within the
host cell and are released to infect other cells by de-
hiscence. The attached zoospores completely depend
on the host cell for nourishment and their develop-
ment into mature sporangia (Ibelings et al. 2004).

Traditionally, Chytridiomycota have been regarded as
aquatic fungi (Ibelings et al. 2004), but most species
occur in soil as saprophytes growing on organic material
(Digby et al. 2010). In addition, certain obligate
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anaerobic species also occur in the digestive tract of her-
bivores, and these are probably very important in the di-
gestion of cellulose and hemicellulose (Li and Heath
1993; Paul et al. 2018; Saye et al. 2021). A few halophytes
have been found in estuaries (Powell et al. 2015). A sig-
nificant number of species are known as parasites of
algae, vascular plants, amphibians, rotifers, tardigrades,
protists (Luttrell 1974; Barr 2001; Ibelings et al. 2004)
and invertebrates such as nematodes (Betancourt-Roman
et al. 2016) and insects (Sinha et al. 2016). The first de-
scribed parasites of vertebrates were isolated from frog
skin (Longcore et al. 1999).

The chytrids include one entomopathogenic genus:
the monotypic Myrmicinosporidium (M. durum). That
species is an obligate endoparasite of various ant hosts
with a global or wide-ranging specific distribution
(Lapeva-Gjonova 2014; Trigos-Peral et al. 2017). Infected
ants can be distinguished by their darker colour and lar-
ger abdomen size. Although the numbers of lentiform
spores within an infected ant may initially be very low,
they increase during infection, to the point where they
can be found throughout the whole body, numbering
more than one hundred in a single ant (Sanchez-Peiia
et al. 1993; Pereira 2004; Espadaler and Santamaria
2012; Gongalves et al. 2012). Although the spores de-
velop extensively in the ant haemocoel, an infected ant
does not exhibit significant differences in life span or be-
haviour from uninfected ones (Sanchez-Pefa et al.
1993); however, several studies have reported the early
death of infected ants after hibernation (Espadaler and
Santamaria 2012; Giehr and Heinze, 2015). Some exam-
ples infected of insects are listed in Table 1.

Recent studies have also placed the nephridiophagids
in Chytridiomycota (Strassert et al. 2020). The systematic
position of the nephridiophagids has been discussed in-
tensively, and they were historically placed with the hap-
losporidians or microsporidians (Radek et al. 2017). A
preliminary molecular analysis placed them within the
Fungi, close to the Zygomycota (Wylezich C, Radek R
2004); however, a later phylogenetic analysis of SSU and
LSU rRNA gene sequences placed them in the phylum
Chytridiomycota (Strassert et al. 2020).

Nephridiophagids are unicellular, spore-forming para-
sites which infect the Malpighian tubules of insects, es-
pecially  cockroaches  (Dictyoptera) and  beetles
(Coleoptera), where they are mainly found in the lumen
(Radek et al. 2011). The life-cycle of the nephridiopha-
gids includes a merogony phase with vegetative multinu-
cleate plasmodia that divide into oligonucleate and
uninucleate cells. The sporogonial plasmodia form in-
ternal, 5-10 um long, oval, flattened spores, generally
with one nucleus, with the residual nuclei of the mother
cell remaining in the cytoplasm between them (Radek
et al. 2017).
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BLASTOCLADIOMYCOTA

Historically, the fungi belonging to the phylum Blasto-
cladiomycota were described together with the Chytri-
diomycota; however, recent molecular phylogenetic and
ultrastructural research has classified them in their own
phylum (James et al. 2006; Porter et al. 2011). Genome-
scale trees suggest Blastocladiomycota may have di-
verged around the same time as Chytridiomycota (James
et al. 2020).

The Blastocladiomycota contains only the order Blas-
tocladiales; this group contains zoospore-producing true
fungi, with well-developed hyphae, closed mitosis, cell
walls with -1-3-glucan, and a secretory vesicle complex
known as the Spitzenkorper (James et al. 2020; Roberson
2020). Several of these were once model organisms (e.g.,
Allomyces and Blastocladiella; (Cantino et al. 1968;
Burke et al. 1972), and obligate parasites of plants and
animals (Longcore and Simmons 2012). They are divided
into five families (Barr 2001): Blastocladiaceae which
contains only saprobic species; Catenariaceae with both
saprobes and pathogens; Coelomomycetaceae with path-
ogens of invertebrates; Physodermataceae with obligate
parasites of plants; and Sorochytriaceae which contains a
pathogen infecting tardigrades. Powell (2017) subse-
quently described a sixth family, Paraphysodermataceae,
which includes parasites of algae.

The entomopathogenic Blastocladiomycota are found in
the genera Coelomomyces and Coelomycidium of Coelo-
momycetaceae. These genera include approximately 70
species pathogenic to insects such as mosquitoes and flies
(Powell 2017; Shen et al. 2020a). Some examples of insects
infected by Blastocladiomycota are listed in Table 1.

Coelomycidium simulii is a widespread species patho-
genic to black flies, being mostly found in the larvae,
and rarely in pupae and adults. Infected larvae have large
numbers of minute, spherical thalli throughout the body
cavity. These thalli give rise to spores that are released
into the water column after the death of the host. An
intermediate host might be required to complete the
life-cycle (McCreadie and Adler 1999; Boucias and
Pendland 2012).

The species of Coelomomyces are aquatic fungi that
act as obligate parasites. They are best known as patho-
gens of mosquito larvae; however, some might infect
aquatic dipteran insects including those of the Psychodi-
dae, Chironomidae, Simuliidae and Tabanidae (Scholte
et al. 2004; Shen et al. 2020a). Although they are prob-
ably not host specific, they nevertheless have relatively
restricted host ranges (Federici 1981). The life-cycle of
Coelomomyces is complex and comprises obligatory de-
velopment in an intermediate microcrustacean host
(cyclopoid copepods, harpacticoid copepods, or ostra-
cods) and two mosquito generations. Infection is also
known to cause significant epizootics which can persist
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in larval populations for several years, resulting in mor-
tality rates greater than 50%, and often higher than 90%
(Scholte et al. 2004). Moreover, the fungus might remain
inside the insect, passing through the larval and pupal
stages to mature in the ovaries of adult females, where
the sporangia start to produce zoospores. After the first
blood meal, these zoospore-filled sporangia are ‘laid’ by
the female mosquito, ready to infect new larvae, instead
of eggs (Aratjo and Hughes 2016). Due to the relatively
specific host range of the fungus, being generally re-
stricted to mosquitoes, and the devastating effects of
natural epizootics on larval populations, it has been pro-
posed as a suitable biocontrol of mosquito populations.
However, these advantages have to be weighed against
its unpredictable infection rate, complicated life-cycle
and problem with mass production (Scholte et al. 2004).

The fungi placed in Myiophagus were initially con-
sidered to belong to Chytridiomycota (Blackwell and
Powell 2020); however, based on their morphological
differences, they are now placed in Blastocladiomycota
(Humber 2012; James et al. 2014; Powell 2017). Spe-
cies of this genus infect leeches (Czeczuga et al
2003), scale insects, mealybugs, beetle larvae, and dip-
teran pupae (Karling 1948) resulting in chytridiosis in
subtropical regions (Tanada and Kaya 2012). As Myio-
phagus requires free water for dissemination (Cole
2012), infection takes place shortly after or during
heavy rainfall. In such conditions, motile zoospores
are released from resting sporangia and these swim
through the water film that forms over “drip leaves”
to find potential hosts; similar to other aquatic fungi,
the zoospores are believed to be guided to the host
by specific chemoreceptors (Luisa 2012).

CONCLUSION

Biological control is an effective and environmentally-
acceptable alternative to chemical insect control
methods. Entomopathogenic fungi and their metabo-
lites are believed to represent potential alternatives to
chemical pesticides. When used as biocontrol agents,
entomopathogens might offer several advantages over
conventional insecticides, such as high efficiency and
selectivity, safety for beneficial organisms, reduction
of residues in the environment, and increased bio-
diversity in human-managed ecosystems. However,
relatively little is known of their effectiveness in field
applications and the potential side effects of their use.
It is also important to emphasise that due to the glo-
bal distribution and variety of insects, many as yet
unknown entomopathogenic fungi may exist; as such,
there is a clear need for further comprehensive stud-
ies of the biology and ecology of entomopathogenic
organisms and of the mechanisms underlying their
action on insect hosts.
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