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Simple Summary: Cell adhesion molecule 2 (CADM2), also known as synaptic cell adhesion molecule
2 (SYNCAM2), is the mediator of synaptic signals enriched in the brain. Overlaps between copy
number variation (CNV) regions in CADM2 and quantitative trait loci (QTL) related to body weight
have been clarified in a previous study. In this study, two loci were amplified in the CADM2 gene
(CNV1: 235,915 bp, exon 1 and partial intron 1; CNV2: 60,430 bp, intron 9) to explore the relationship
between CNV types in the CADM2 gene and growth traits in 350 Ashidan yaks. Association analysis
illustrated that no significant effect was found on growth traits in CNV1. However, the CNV2
mutation had a significant effect on body weight at the sixth month (p < 0.05). Individuals with the
gain-type copy number variation CNV2 were significantly superior to those with loss- or normal-type
in terms of body weight (p < 0.05). In summary, this study confirmed that CADM2-CNVs affect
growth traits in yaks, and may be candidate genes for successful yak breeding and genetics projects.

Abstract: Copy number variation (CNV) is currently accepted as a common source of genetic variation.
It is reported that CNVs may influence the resistance to disease and complex economic traits, such
as residual feed intake, muscle formation, and fat deposition in livestock. Cell adhesion molecule 2
(CADM2) is expressed widely in the brain and adipose tissue and can regulate body weight through
the central nervous system. Growth traits are important economic traits for animal selection. In this
study, we aimed to explore the effect of CADM2 gene copy number variants on yak growth traits.
Here, two CNVs in the CADM2 gene were investigated using the quantitative polymerase chain
reaction (qPCR), and the association of the CNVs with growth traits in yak was analyzed using
statistical methods by SPSS software. Differences were considered significant if the p value was < 0.05.
Statistical analysis indicated significant association of CADM2-CNV2 with the body weight of the
Chinese Ashidan yak. A significant effect of CNV2 (p < 0.05) was found on body weight at 6 months.
In CNV2, the gain-type copy number variation exhibited greater performance than the other variants,
with greater body weight observed at 6 months (p < 0.05). To the best of our knowledge, this is the
first attempt to investigate the function of CADM2-CNVs and their association with growth traits in
animals. This may be a useful candidate marker in marker-assisted selection of yaks.
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1. Introduction

With large duplications and deletions in gene copy numbers detected in humans and other
primates, it is not unreasonable to expect that copy number variation could be a significant source
of genetic variation in other animals [1]. In previous studies, many molecular markers have been
assessed for improving economic traits in animal breeding, including restriction fragment length
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polymorphisms (RFLP), single nucleotide polymorphisms (SNP), indels (Insertion/Deletion) and
structural variations, such as inversions, duplications and deletions. To date, SNPs are used extensively
for complex economic disease traits in livestock [2–5]. More than 99% of indels are less than 50 bp
in length [6,7], and some long insertions and deletions are returned into the concept of structural
variation [8]. As a genetic marker, indels have great potential whether in growth and reproduction
traits or the treatment of disease [9–11]. However, CNVs include duplication and/or deletions of DNA
fragments ≥50 kb, and can cause a greater number of differences than SNPs and indels [12], which
can be discovered by clone-based array comparative genome hybridization (array-CGH) [13]. Copy
number variants can be engendered through four mechanisms: non-allelic homologous recombination
(NAHR), non-homologous end joining (NHEJ), fork stalling and template switching (FoSTeS), and
L1-mediated retro-transposition [14,15]. This submicroscopic structural variation comprises insertions,
inversions and translocations in the genome [13]. Compared with SNPs, CNVs have a higher rate of
mutation, with a number of diseases and congenital deficiencies caused by the action or the process of
mutation in CNVs. Increasing evidence indicates that CNVs are associated with a number of complex
human diseases, for example, the susceptibility to HIV-1 [16], autism spectrum disorders [17] and
Tourettes Syndrome [18]. Conversely, many studies in livestock have revealed that CNVs are correlated
with some important traits, such as parasite resistance in Angus cattle [19], growth traits in Chinese
cattle [20,21], meat production and quality in pig [22] and feed conversion ratios in beef cattle [23].
These results demonstrate that CNVs may have a great influence on variation in phenotype, probably
because of the difference in the copy number of specific sequences.

The yak (Bos grunniens) is critical to populations living on the Qinghai-Tibet Plateau and adjacent
regions, as they provide materials indispensable for survival such as meat, milk, transportation and
fur [24]. The yak’s ability to survive in harsh conditions makes it an ideal model organism to explore
the mechanism of adaptation to high elevations in both animals and human beings. The Ashidan yak,
a new yak breed bred by Chinese scientists, has typical characteristics such as lack of horns and a mild
temperament. It is easier to maintain and feed in the stalls, and thus suited for large-scale intensive
breeding in the cold and arid alpine areas of China. In recent years, several functional CNV regions
have been discovered and validated in the yak, utilizing an NGS-based method [25–27]. In addition to
this, in a previous association study, CNVRs throughout the yak genome have been constructed using
SNP arrays which indicate that the cell adhesion molecule 2 (CADM2, also known as SynCAM2, Igsf4d
and Nectin-like molecule 3) gene overlaps with a portion of CNVR29 and CNVR30 [28]. Variants of
the CADM2 gene have been previously identified to play a pivotal role in the human body mass index
(BMI) values by means of the central nervous system [29–31]. Furthermore, analysis in mice has found
that CADM2 is strongly linked to body weight and energy homeostasis via brain activity [32].

In addition, a previous study has demonstrated that the CADM2 gene was located in quantitative
trait loci (QTLs) related to body weight both at weaning and in yearlings in cattle [33]. Together, this
evidence indicates that CADM2-CNVs in yaks may play a vital role in growth traits that are useful in
artificial selection. Nevertheless, research of CADM2-CNV has lagged far behind, in humans and other
animals. We hypothesize that copy number variants in the CADM2 gene may affect yak phenotypic
traits. The present study investigated the interrelations of CNVs including CNV1 (235,915 bp, exon 1
and partial intron 1) and CNV2 (60,430 bp, intron 9) with the CADM2 gene with growth traits in the
yak, by performing quantitative real-time PCR (qPCR).

2. Materials and Methods

2.1. Ethics Statement

All experiments in the current research were approved by the Key Laboratory of Yak Breeding
Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences (No.
LIHPS-CAAS-2017-115). Blood sample collection and body measurements were performed in strict
accordance with the guide for the Care and Use of Laboratory Animals.
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2.2. Sample Collection and Growth Traits

Three hundred and fifty unrelated female Ashidan yaks that had been raised with the same levels
of nutrition were randomly selected from the Datong yak farm (Qinghai Province, China). None of the
animals involved in this study were unhealthy. Phenotypic data (i.e., body weight, withers height,
body length, chest girth) were measured in the selected Ashidan yaks at three stages of growth (i.e.,
at 6 months, 1 year and 18 months of age) for subsequent analysis. Phenotypic measurements were
strictly in line with standard methods proposed by Gilbert et al. [34].

2.3. Genomic DNA Extraction and Copy Number Identification

Genomic DNA was extracted using an EasyPure Blood Genomic DNA kit (TransGen Biotech
Co., Ltd., Beijing, China) and its concentration and quality measured using a Nanodrop 2000
spectrophotometer (ThermoFisher Scientific Inc., Waltham, MA, USA). Quantified DNA samples were
stored at −20 ◦C.

The copy number variation regions CADM2-CNV1 and CADM2-CNV2 are located at
33,143,512–33,379,427 bp and 33,569,316–33,629,746 bp from the reference genome sequence NC_037328.1,
respectively (Figure 1).
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Figure 1. The two copy number variation regions of the CADM2 gene. The yellow boxes represent the
coding regions and red boxes represent the CNVRs.

2.4. Primer Design

The National Center for Biotechnology Information (NCBI) primer-BLAST web tool was utilized
to design the primers for the analysis of CADM2-CNVs (Table 1). A polymerase chain reaction (PCR)
was utilized to verify the quality and optimum temperature of primers. Products were analyzed on 1%
agarose gel electrophoresis.

Table 1. Details of primers.

Gene Primer Pairs Sequence (5′-3′) Amplicon Length (bp) Tm (◦C)

CADM2-P1 F: GACTTCCCAGGATTGCCTGT
R: CCCTGGGAGCACAGTTGTTT 186 62 ◦C

CADM2-P2 F: GGCTGTCACGTTCTTCTCTCA
R: AGGGTTCATCCTGGAGGCTT 196 62 ◦C

BTF3 F: AACCAGGAGAAACTCGCCAA
R: TTCGGTGAAATGCCCTCTCG 166 62 ◦C

F: forward primer; R: reverse primer.
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2.5. Quantitative PCR Analysis

A LightCyler® 96 quantitative polymerase chain reaction (qPCR) system (Roche, Basel,
Switzerland) with SYBR Green dye was used in this study because of its convenience and accuracy.
The bovine basic transcription factor 3 (BTF3) gene was chosen as the diploid internal reference
gene [35]. The total volume of the reaction mixture was 20 µL, comprising 40 ng genomic DNA with
10 µL of SYBR Premix Ex Taq II (TaKaRa, Dalian, China), 2 µL of amplification primers and 7 µL of
ddH2O. The q-PCR procedure involved a 30 s preincubation at 95 ◦C then a two-step amplification with
45 cycles of 95 ◦C for 5 s followed by 62 ◦C for 30 s. After completion of the cycling, the reaction was
terminated by incubation at 95 ◦C for 5 s then 65 ◦C for 60 s then 95 ◦C continuously. All experiments
were conducted in triplicates, and the results represented as mean values ± standard deviation (SD).

2.6. Statistical Analysis

Copy number values of the yak CADM2 gene were determined using the formula: 2× 2−∆∆ct [36].
Cycle threshold (Ct) values for the target gene were normalized using the formula: ∆Ct = Cttarget −

Ctre f erence, with ∆Ct of the test samples normalized using the formula: ∆∆Ct = ∆Cttest − ∆Ctcontrol.
As the precondition of the analysis of variance, the homogeneity of variance test and the normality test of
each trait in different copy number variation (CNV) regions were done by Bartlett test and Shapiro-Wilk
test before association analysis. One-way analysis of variance (ANOVA) and a nonparametric test
were used to analyze the association of CADM2 gene copy number variant types with growth traits
in the Ashidan yak. The following model was used to analyze the CNV effects on growth traits:
Yi j = µ+ CNVi j + ei j, where i represents the ith region, j the jth CNV type, Yi j the observed growth
trait, µ the overall mean of each trait, with CNVi j representing the effect of ith CNV region and jth
CNV type of the CADM2 gene. ei j is a random error. Assessment of differences between means was
performed by one-way ANOVA with a post hoc least significant digit (LSD) multiple comparison
test. Differences in the distribution of CNV types for different CNV regions were analyzed using a
chi-square test in terms of the frequency of CNV types [37]. Based on the results of association analysis,
a Kendall Tau correlation test was carried out. Other than these, the combination and interaction effect
of CNV1 and CNV2 also detected by two-way analysis of variance (ANOVA).

All the statistical analyses were carried out using IBM SPSS Statistics software (Version 23, IBM,
New York, NY, USA). Significance level was set up at p < 0.05 in this experiment.

3. Results

3.1. Quantitative PCR and the Distribution of CADM2-CNVs

Specific primers for the two CNVs are displayed in Table 1. Cycle threshold (Ct) values were used
subsequently for quantitative analysis. The amplification curves and melt peaks (Figure 2) were used
to determine primer specificity. In addition, the distribution frequency of different CNV types in CNV1
and CNV2 were measured (Figure 3 and Table 2).
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Figure 3. Distribution of different copy number variation (CNV) types in CNV1 and CNV2 in the
Ashidan Yak.

Table 2. Distribution and frequency of CNV types in CNV1 and CNV2.

Type Loss Normal Gain

CNV1 176 (0.50) 161 (0.46) 13 (0.04)
CNV2 101 (0.29) 215 (0.61) 34 (0.1)

Figures represent numbers of animals (and proportion of the total population studied).

The majority of individual animals had the loss-type variant in CNV1, the proportion exceeding
50%. However, in CNV2, the largest number of individuals had the normal variant, followed by the
loss-type. The gain-type variant was similarly distributed within CNV1 and CNV2. The chi-square test
indicated a significant difference in the distribution of CNV types between CNV1 and CNV2 (p < 0.01),
suggesting that the CNV type is specific for different loci (Table 3).

Table 3. Chi-square test of CNV type distribution in CNV1 and CNV2.

Type CNV1 CNV2

CNV1 37.445 (p = 0.000 **)
CNV2

Chi-square values (χ2) for differences between CNVs. ** Represent statistically significant differences at a level of
p < 0.01.

3.2. Association Analysis

Association analysis indicated a significant correlation between copy number type and phenotypic
measurements in the Ashidan yak population. Bartlett test showed the homogeneity of variance of
each trait within each locus (Supplementary Table S1). And the Shapiro-Wilk test showed the normality
of each trait in different CNV regions (Supplementary Table S2). One-way ANOVA indicated that
the CNV2 mutation had a significant effect on body weight (p < 0.05) in 6th month yaks (Tables 4
and 5). Multiple comparisons were conducted based on the ANOVA described above. Interestingly, the
gain-type copy number variant of CADM2-CNV2 exhibited clear phenotypic superiority in comparison
with the loss and normal types, with greater body weight values in 6th month Ashidan yaks (p < 0.05).
Furthermore, our correlation test verified the significant correlation between CNV2 and body weight
in 6th month (p < 0.01) (Table 6).
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Table 4. Statistical analysis of CADM2-CNV1 growth traits in the Ashidan yak.

Age Growth Trait
CNV Type (Mean ± SE) p-Value

Loss (0.50) Normal (0.46) Gain (0.04)

6 months

Body weight (kg) 83.14 ± 0.773 a 85.60 ± 0.833 b 81.15 ± 2.207 a,b 0.052
Withers height (cm) 94.50 ± 0.376 94.27 ± 0.435 95.31 ± 1.491 0.765

Body length (cm) 91.46 ± 0.557 92.53 ± 0.594 90.54 ± 1.228 0.325
Chest girth(cm) 124.21 ± 0.567 123.66 ± 0.662 124.38 ± 1.607 0.802

12 months

Body weight (kg) 82.17 ± 0.784 83.14 ± 0.881 80.64 ± 3.058 0.584
Withers height (cm) 90.62 ± 0.324 90.28 ± 0.335 90.31 ± 0.894 0.755

Body length (cm) 95.98 ± 0.380 95.74 ± 0.387 96.92 ± 1.719 0.682
Chest girth(cm) 117.35 ± 0.379 116.93 ± 0.428 116.92 ± 0.843 0.747

18 months

Body weight (kg) 121.82 ± 1.119 122.59 ± 1.258 126.25 ± 3.371 0.516
Withers height (cm) 101.71 ± 0.452 101.73 ± 0.476 105.54 ± 3.098 0.180

Body length (cm) 101.22 ± 0.464 102.07 ± 0.460 101.69 ± 1.784 0.439
Chest girth(cm) 137.97 ± 0.840 138.57 ± 0.795 141.54 ± 3.580 0.464

a,b Represent statistically significant differences at a level of p < 0.05.

Table 5. Statistical analysis of CADM2-CNV2 growth traits in the Ashidan yak.

Age Growth Trait
CNV Type (Mean ± SE) p-Value

Loss (0.29) Normal (0.61) Gain (0.1)

6 months

Body weight (kg) 82.22 ± 1.004 a 84.75 ± 0.723 b 86.61 ± 1.559 c 0.048 *
Withers height (cm) 94.27 ± 0.544 94.28 ± 0.357 95.82 ± 0.785 0.263

Body length (cm) 90.93 ± 0.743 92.30 ± 0.499 92.74 ± 1.270 0.278
Chest girth(cm) 123.56 ± 0.877 a 123.66 ± 0.518 a 127.08 ± 1.013 b 0.051

12 months

Body weight (kg) 82.53 ± 1.107 82.43 ± 0.726 84.53 ± 2.013 0.579
Withers height (cm) 90.09 ± 0.456 90.54 ± 0.278 90.94 ± 0.729 0.534

Body length (cm) 95.64 ± 0.491 96.09 ± 0.333 95.47 ± 1.038 0.656
Chest girth(cm) 116.74 ± 0.525 117.24 ± 0.355 117.65 ± 0.778 0.606

18 months

Body weight (kg) 122.71 ± 1.510 121.71 ± 1.076 125.19 ± 1.996 0.428
Withers height (cm) 101.49 ± 0.640 102.31 ± 0.414 100.34 ± 1.299 0.180

Body length (cm) 101.11 ± 0.667 101.79 ± 0.396 102.13 ± 0.913 0.567
Chest girth(cm) 137.99 ± 1.165 138.45 ± 0.698 139.19 ± 1.923 0.844

Association of CNVR30 of the CADM2 gene with yak growth traits. a,b,c Represent statistically significant differences
at a level of p < 0.05; * p < 0.05.

Table 6. Correlation test of body weight in 6 months and CNV2.

Kendall Tau correlation coefficient 0.261
Significance 0.007 **

** Represent statistically significant differences at a level of p < 0.01.

No significant difference was observed in the traits at 12 and 18 months. Association analysis of
the CADM2 gene CNVs with growth traits is presented in Tables 4 and 5.

Moreover, a two-way analysis of variance (ANOVA) was also carried out to test the joint effect
of CADM2-CNV1 and CADM2-CNV2. The results revealed a significant association in 18th month
withers height both in CNV1 (p < 0.01) and CNV2(p < 0.05) (Table 7). But no significant association
was found in their combination.
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Table 7. Two-way analysis of variance (ANOVA) of the effects of CADM2-CNVs in the Ashidan yak.

Age Growth Trait
CNVs (P Value)

CNV1 CNV2 CNV1 × CNV2

6 months

Body weight (kg) 0.129 0.485 0.884
Withers height (cm) 0.439 0.295 0.418
Body length (cm) 0.470 0.960 0.370
Chest girth(cm) 0.905 0.652 0.387

12 months

Body weight (kg) 0.447 0.958 0.859
Withers height (cm) 0.870 0.944 0.735
Body length (cm) 0.631 0.891 0.996
Chest girth(cm) 0.997 0.995 0.845

18 months

Body weight (kg) 0.622 0.941 0.354
Withers height (cm) 0.003 ** 0.039 * 0.190
Body length (cm) 0.508 0.821 0.750
Chest girth(cm) 0.122 0.253 0.168

* Represent statistically significant differences at a level of p < 0.05; ** Represent statistically significant differences at
a level of p < 0.01.

4. Discussion

Researchers have previously given considerable attention to the analysis of molecular markers
associated with economic traits in a number of species. For example, genetic variation in the ovine
PROP1 gene was identified in 670 New Zealand Romney sheep, which were related to traits such
as tailing weight and growth rate [38]. One 43-bp indel polymorphism in HS6ST3 was associated
with shank length, chest depth and other growth traits in 860 chickens [39]. SNPs within the coding
region of the KDM4D gene were explored and linked with testis morphology traits of male pigs [40].
However, copy number variance gives rise to more substantial mutations and more extensive genetic
effects than other molecular markers [41]. It has been established that the total number of nucleotides
affected by copy number variants is larger than the total number of SNPs [42]. Recently, CNV maps in
cattle [35], sheep [43] and pigs [44] have been constructed, indicating that structural polymorphisms
within them constitute an important proportion of their genomes. Furthermore, CNVs have been
associated with various growth traits, such as body length in cattle [45] and pigs [46] and pigmentation
traits in goats [47] and horses [48], in addition to reduced immunological resistance to diseases [49].
Consistent with these results, it is widely believed that this form of genetic variation in livestock is of
great importance to phenotypic traits.

Quantitative polymerase chain reaction (q-PCR) is widely used, especially for the measurement
of copy number variation because of its accuracy and simplicity. To investigate the probable effects of
CADM2-CNVs in the yak growth process, we conducted an association study between 12 phenotypic
traits and different CNV types using a general linear model for the first time. Significant association
was observed between 6th body weight and CNV2. The statistics demonstrate that weaning weights
are significantly correlated with CNV2 type. Interestingly, this is in agreement with the conclusion
of previous studies [28]. This phenomenon may be due to the function of the CADM2 gene, which
plays an important role in maintaining the synaptic circuitry of the central nervous system [50], and
can mediate leptin sensitivity, thermogenesis and energy metabolism [51]. Notably, the gain-types
in CNV2 caught our attention due to the outstanding body weight in 6th month animals. Here, no
significant association between CNV1 and CNV2 and the body weight in 12 month-olds was observed,
while in cattle a QTL harboring CADM2 gene was thought to be associated with the yearling weight.
This was most likely cause by the following points. First of all, a quantitative trait like body weight is
regulated by multiple genes with small effect. Though a 350 yak sample size is an appropriate sample
to examine the variance, the marker’s effect is too insufficient to be detected. A larger population
is needed to be studied in the future. Secondly, it is probably due to the yak’s special physiological
regulation mechanism due to its particularity harsh living conditions. Unlike the cattle industry, yak
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has to struggle to survive in a cold season lasting for six months after weaning, which is extremely
cold along with severe forage shortage.

A 6 months hay period they will endure after weaning, which is different from cattle.
This phenomenon may lead to a unique physiological regulation of growth in yaks. Here, we
did not find any associations between CNV types and phenotype at 12 and 18 months.

To explain why this CNV has such an uncommon influence on phenotype, firstly the CADM2
gene had been reported to overlap a QTL region that is correlated with body weight (weaning and
yearling) [28]. Secondly, body weight and energy metabolism are maintained by the central nervous
system and previous studies have identified that CADM2 is expressed more abundantly in different
regions of the brain than in any other tissue [52]. Furthermore, plenty of studies have reported that
CADM2 can significantly improve body weight and decrease leptin sensitivity via the brain and
adipose tissue [32,53]. Moreover, genome-wide association studies in humans have demonstrated
clear evidence that the CADM2 gene is strongly associated with the body mass index through the
encoding of membrane proteins that mediate synaptic assembly [31,52,54]. Because of the importance
of both the CADM2 gene and copy number variance in animals, we propose that CADM2-CNVs can
be used as indispensable molecular markers of genetic improvement of the yak. To the best of our
knowledge, copy number variance of CADM2 has not been previously investigated in livestocks such
as cattle, sheep, pigs, etc. Therefore, we speculate that the CADM2 gene might play a crucial role in
growth traits in the yak.

Growth traits are an economically important factor in animal husbandry that can improve
production performance by selective breeding [55]. Consistent with this research, numerous studies
have illustrated the association between gene copy number type and growth traits. Shi et al.
demonstrated that the CNV of the LEPR gene exhibited significant correlation with growth traits in
Chinese cattle [56]. Jiang et al. clarified that CNV of the sheep SHE gene was greatly linked with
economic traits, such as body length and chest width [57]. Lin et al. suggested that the CNV of SOX6
is responsible for muscle development in chickens [58]. We propose that these molecular markers in
various livestock offer the theoretical promise of animal selection.

The yak is a specialized breed famous for its adaptation to life on the plateau and hypoxia.
Distinctive regulatory mechanisms require exploration, particularly their growth mechanism. In the
present study, the two CNVs of the CADM2 gene in the Ashidan yak have been characterized and
validated. The results demonstrate the effect of the CADM2 CNVs on phenotypic traits in different
CNV types. From this evidence, we have established that CADM2 CNVs can act as molecular markers
in Ashidan yaks for early selection.

5. Conclusions

In conclusion, this study described the distribution of CADM2 gene copy number variant types
in 350 Ashidan yaks. CADM2-CNV2 is significantly associated with body weight in 6 months in the
Ashidan yak. Further studies, such as the mechanism of physiological regulation with the CADM2
gene in yaks need to be carried out. Also a larger population is required to validate the association of
this CADM2 gene with growth traits in the yak.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/9/12/1008/s1,
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