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Introduction

Preeclampsia (PE) is a significant pregnancy complication 
characterized by hypertension and proteinuria,1 affecting 
2%–8% of all pregnancies worldwide.2 PE is defined as 
systolic blood pressure (SBP) of ≥140 mmHg, and/or dias-
tolic blood pressure (DBP) of ≥90 mmHg on at least two 
occasions separated by six hours, and following 20 weeks 
of amenorrhea combined with proteinuria.3 PE is severe if 
SBP or DBP exceed 160 mmHg or 110 mmHg usually 
with abnormal proteinuria (at least 5 g/24 hours).3 PE is 
multifactorial and is accompanied by maternal multi-organ 
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dysfunction, fetal complications, and growth restriction,4 
and is considered a disease of theories.5 The progression of 
PE is related to several factors, including abnormal placen-
tal development, trophoblast invasion, and remodeling of 
uterine spiral arteries,6 along with dysregulated immunity,7 
placental ischemia,8 oxidative stress9 and thrombosis.10

The renin-angiotensin-aldosterone (RAAS) system reg-
ulates BP, vascular tone, electrolyte balance and fluid 
homeostasis.11 RAAS effects result from cleavage of angi-
otensinogen (AGT) by renin to angiotensin I,12 which sub-
sequently cleaves by angiotensin-converting enzyme 
(ACE) to (biologically active) angiotensin II (Ang II).13 
Ang II stimulates aldosterone synthesis, resulting in water 
retention and salt reabsorption in the renal tubes and sys-
temic arteriolar vasoconstriction.14 In addition, accumulat-
ing evidence highlights the contribution of extra-renal 
RAAS (brain, heart, ovary, placenta) in carrying out simi-
lar effects as renal RAAS.14,15 In particular, decidual spiral 
arteries show expression of AGT, renin, ACE and Ang II 
type 1 (AT1) receptors.16,17

During normal pregnancy, there is an increase in mater-
nal blood volume, a decrease in total resistance and ele-
vated plasma concentrations of renin, Ang II and 
aldosterone.16,18,19 This increase in the RAAS components, 
due to increased estrogen levels, mediates the expansion of 
extracellular and blood volumes typical for the normal 
adaptive mechanism of pregnancy.15 In the placenta, all 
components of the RAAS are distributed and trophoblasts 
cells are rich in AT1 receptors and thus are responsive to 
the changes in Ang II concentrations.18 Furthermore, it has 
also been shown that Ang II and aldosterone have a crucial 
role in placental development, and thus fetal perfusion.20

In PE, the intravascular blood volume and cardiac out-
put are reduced, while the total peripheral resistance is 
increased and the components of circulating RAAS are 
downregulated, including plasma renin activity, plasma 
Ang I, Ang II, Ang-(1–7) and aldosterone.19–21 PE is a mul-
tifactorial disease, and modifiable and non-modifiable risk 
factors contribute to its physiopathology, the latter includ-
ing genetic susceptibility factors.22 The AGT gene, located 
on chromosome 1 (1q42–43), encodes the precursor of all 
angiotensin peptides, and has been described as a candi-
date gene of hypertension23 and PE.24,25 The AGT gene is 
polymorphic, and 1249 variants distributed between near 
gene (154), untranslated regions (76), exons (355) and 
intron (664) regions have been reported, of which M235T 
(rs699) and T174M (rs4762) have been the most investi-
gated. These variants were associated with a rise in serum 
AGT levels in patients with essential hypertension,26 lead-
ing to increased SBP and DBP,27 and abnormal remodeling 
of the uterine spiral arteries, an early cause of PE.28 Here 
we investigate the association of AGT M235T and T174M 
variants with PE among (North African) Tunisian Arab 
women, and correlate the impact of carrying the minor 
allele of these variants on the severity of PE.

Materials and methods

Study participants

From 1 May 2012, to 31 July 2014, 345 women with PE 
(mean age 31.3 ± 7.0 years), and 323 normotensive control 
women with normal pregnancy (mean age 30.5 ± 5.8 
years) were recruited from the outpatient Obstetrics & 
Gynecology service of Fattouma Bourguiba University 
Hospital (Monastir, Central Tunisia), Farhat Hached 
University Hospital (Sousse, Central Tunisia), Taher Sfar 
University Hospital (Mahdia, Eastern Tunisia) and Gafsa 
Regional Hospital (Gafsa, Southern Tunisia). Inclusion 
criteria for cases were PE during natural pregnancy, which 
was defined as gravidic hypertension, and assessed as SBP 
>140 mmHg, DBP >90 mmHg, and/or rise in SBP >30 
mm, or DBP >15 mmHg on at least two occasions six 
hours apart, following 20 weeks of gestation, and with evi-
dence of marked proteinuria (> 300 mg/24 hours), or >2+ 
proteinuria as determined by the dipstick method.

Control women with no known personal or family his-
tory of PE were recruited from the same geographical area. 
Inclusion criteria for controls were uncomplicated preg-
nancy after 20 weeks of gestation, and negative proteinu-
ria. Exclusion criteria for PE cases and control women 
were arterial hypertension, gestational hypertension, 
hemolysis, elevated liver enzymes, and low platelets syn-
drome and non-Arab origin. The investigation was 
approved by local ethics committees, and all participants 
were asked for, and provided written informed consent. 
Demographic data of participants and clinical characteris-
tics of the patients are shown in Table 1.

AGT genotyping

Peripheral venous blood samples were collected in ethylen-
ediaminetetraacetic acid-containing vacutainer tubes. 
Plasma was recovered following centrifugation at 3000 
revolutions per minute for 15 minutes, and stored in small 
aliquots at −20°C pending analysis. Genomic DNA was 
extracted by the salting-out method.29 AGT genotyping was 
performed by polymerase chain reaction-restriction frag-
ment length polymorphism (PCR-RFLP). Briefly, PCR 
was performed in a final-volume 15 µl containing genomic 
DNA (50 ng), 0.2 μM of forward and reverse primers, 0.2 
mM deoxynucleotide mix (Invitrogen, Carlsbad, CA, USA) 
and 1 U GoTaqDNA polymerase (Promega, Madison, WI, 
USA). For M235T, the following primers were used: for-
ward, 5’-CAgggTgCTgTC CAC ACT ggA CCC C-3’, and 
reverse, 5’- CCg TTT gTgCAgggCCTggCT CTC T-3’. For 
T174M, the following primers were used: forward, 5’-gAT-
gCg CAC AAggTC CTg-3’, and reverse, 5’, CAg ggTgCT-
gTC CAC ACT ggCTCg C-3’. The 165 base pair (bp) 
M235T and 303 bp T174M amplicons were digested with 
Thermus thermophilus strain 111 Tth111I at 65°C or 
Nocardia corallina (NcoI) at 37°C, respectively (New 
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England Biolabs, Ipswich, MA, USA). Digested fragments 
were separated by electrophoresis on 3% agarose gel, and 
yielded 141 bp + 24 bp for M235T, and 211 bp + 92 bp for 
T174M, respectively.

Statistical analysis

Statistics were performed by SPSS version 20 (SPSS, 
Chicago, IL, USA). Continuous data are presented as mean 
± SD, and analyzed by Student t-test, while categorical 
data are presented as frequencies, and tested by χ2 test. 
Allele frequencies were calculated by the gene-counting 
method, and each polymorphism was tested for the Hardy–
Weinberg equilibrium using Haploview 4.2 (www.broad-
institute.org/haploview). Calculation of the power for 
detecting association between AGT variants and PE was 
performed using the Genetic Power Calculator (http://
pngu.mgh.harvard.edu/~purcell/cgi-bin/cc2k.cgi). The 
parameters used were number of PE cases and control 
women, genotypic relative risk for heterozygote (1/2) and 
homozygous minor allele (2/2), and minor allele frequency 
(MAF) for PE cases and control women for the two tested 
AGT single-nucleotide polymorphisms (SNPs), and 
assuming a 3.5% prevalence of PE. Assuming these param-
eters, the overall power (53.4%) was calculated as the 
average power of the two tested SNPs. Logistic regression 
analysis was performed to build nested prediction models 
of PE. The corresponding crude odds ratio (OR) and 95% 
confidence interval (95% CI) were calculated. For all anal-
yses, statistical significance was considered at p < 0.05.

Results

Characteristics of study participants

Baseline and clinical characteristics of study participants 
are described in Table 1. The total number of study women 
was 550. First we compared the clinical characteristics of 
all PE cases (N = 272) to control pregnant women (N = 
278). After that, we subdivided the PE cases into two 
groups (mild PE and severe PE form) and compared the 
severe PE (N = 147) to the mild PE form (N = 125).

While women with PE were matched to controls accord-
ing to age and Cesarean section delivery, PE cases had a 
higher mean body mass index (BMI) than the control group 
(p < 0.001). Women with PE had significantly lower gesta-
tional age at blood sampling, and lower newborn weight. 
Accordingly BMI, regional origin, newborn weight, gesta-
tion age, and pregnancy status were selected as the covari-
ates that were controlled for in subsequent analysis. Apart 
from SBP and DBP readings (p < 0.001), the characteristics 
of severe PE cases were compared to those of mild PE cases.

Association of AGT SNPs with PE

The AGT SNPs investigated were selected based on their 
MAF of >5% in Tunisians, and association with hyperten-
sion and adverse pregnancy complications, including PE. 
The allele distributions of the tested AGT SNPs between 
PE cases and control women are summarized in Table 2. 
The genotype distribution of M235T (p = 0.46) and T174M 
(p = 1.00) were in Hardy–Weinberg equilibrium among 

Table 1.  Characteristics of study participantsa.

Characteristic Control (278) All PE (272) Mild PE (147) Severe PE (125)

Ageb 30.6 ± 5.9 31.3 ± 7.0 31.1 ± 5.7 31.8 ± 7.9
BMI (kg/m2)b 28.5 ± 4.2 32.1 ± 5.0e 32.2 ± 5.1 32.2 ± 5.0
Obesityc,d 89 (31.6) 173 (59.5) 92 (58.6) 81 (60.4)
Systolic BP (mmHg)b 112.3 ± 9.4 155.2 ± 14.8e 144.5 ± 5.6 167.0 ± 12.5f

Diastolic BP (mmHg)b 68.7 ± 7.9 95.0 ± 8.6e 91.3 ± 4.9 99.3 ± 10.0f

Gestation (weeks)b 38.2 ± 3.1 35.8 ± 3.5e 35.7 ± 3.6 35.5 ± 4.3
Baby weight (g)b 3344.0 ± 398.6 2987.0 ± 634.8e 2959.9 ± 574.3 3017.6 ± 697.3
Proteinuria (mg/24 hours)b NA 617.2 ± 1017.0 628.4 ± 1189.2 604.3 ± 778.4
Fasting glucose (mmol/l)b 4.8 ± 1.6 5.0 ± 1.6 5.0 ± 1.6 5.0 ± 1.6
Creatinine (µmol/l)b 63.1 ± 27.3 66.4 ± 25.1 66.3 ± 25.6 75.4 ± 29.5
Urea (mmol/l)b 4.6 ± 1.4 3.6 ± 1.8 3.5 ± 1.8 4.0 ± 3.2
Positive family historyc NA 135 (39.1) 85 (46.4) 70 (43.2)
Miscarriagec 0 (0.00) 104 (30.1) 51 (27.9) 53 (32.7)
Cesarean section deliveryc 107 (33.1) 167 (48.4) 85 (46.4) 82 (50.6)
Fetal complicationsc 0 (0.0) 19 (5.5) 12 (6.6) 7 (4.3)

aStudy participants comprised 272 PE cases and 278 control women.
bMean ± SD.
cNumber (percentage of individuals within group or subgroup).
dObesity defined by BMI greater than 30.
ep < 0.05 (controls vs. All PE cases), fp < 0.05 (mild vs. severe PE cases), Student’s t-test (two tailed) for continuous variables, Pearson’s chi-square 
test for categorical variables.
PE: preeclampsia; BMI: body mass index; BP: blood pressure.
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study women (Table 2). MAF of M235T (p = 5.0 × 10–4), 
but not T174M (p = 0.08), were significantly higher among 
PE cases than control women, which persisted after cor-
recting for multiple comparisons. This translated into high 
risk of PE associated with M235T (OR (95% CI) = 1.63 
(1.24–2.15)), but not T174M.

AGT genotypes.  A significant difference in the distribution 
of M235T (p = 0.003) and T174M (p = 0.015) genotypes 
was seen between PE cases and healthy controls (Table 3). 
Taking a homozygous wild-type genotype as a reference 
(OR = 1.00), increased PE risk was seen with M235T, while 
T174M was associated with decreased risk of PE. This per-
sisted after controlling for BMI, gestation age, and baby 
weight (Table 3). Stratification of PE cases into mild and 
severe PE (Table 4) resulted in the loss of M235T (p = 
0.053) and T174M (p = 0.518) effects, demonstrating that 
neither variant was associated with altered PE severity 
(Table 4). However, these findings need to be evaluated 
with caution, given the relatively low power associated with 
M235T (76.9%) and T174M (29.9%), resulting in an overall 
power of 53.4%. Carrying either M235T or T174M minor 
alleles (1/2 + 2/2) was associated with increased BMI (p < 
0.001) among unselected PE patients. On the other hand, 
carrying M235T and T174M minor alleles was not linked 
with BMI changes among subgroups of PE cases.

Haploview analysis.  Results from Table 5 demonstrated 
enrichment of threonine threonine (TT) and reduced fre-
quency of methionine (M)T haplotypes among PE cases 
compared with control women, thereby assigning PE sus-
ceptibility and protective nature to these haplotypes, 

respectively. The negative association of MT haplotype 
(corrected p (pc) = 0.02) and positive association of TT 
haplotype (pc = 7.0 × 10–4) with PE persisted after correct-
ing for multiple comparisons. On the other hand, none of 
the four two-locus haplotypes was associated with severity 
of PE, even before correcting for multiple comparisons 
(Table 5). This was evidenced by the comparable haplo-
type frequencies among severe versu mild PE cases.

Discussion

Insofar as RAAS stimulation and increased levels of its 
components regulate physiologic hypervolemia during nor-
mal pregnancy, decreased RAAS activity resulting in vas-
cular resistance was seen in women with PE. AGT, the 
precursor of angiotensin peptides, especially (vasoactive) 
Ang II, is key to vascular remodeling.30,31 Genetic associa-
tion studies demonstrated a strong link between variation in 
the AGT gene and its gene expression, and altered plasma 
AGT levels.32 AGT M235T and T174M were previously 
associated with altered susceptibility to vascular diseases, 
including hypertension, atherosclerosis and PE.33 This is 
the first study that evaluates the contribution of these com-
mon SNPs to PE in (North African) Tunisian women.

The main finding of this study is that the M235T minor 
allele increases the risk of PE by almost three-fold. Haplotype 
analyses confirmed this association, as the 235T-T174 haplo-
type was positively associated with PE, which remained sig-
nificant after controlling for potentially confounding 
variables. While T174M was not significantly associated 
with PE at the allele level, in partial agreement with two 
recent meta-analyses that reported that T174M is not 

Table 2.  Distribution of AGT alleles in PE cases and control women.

SNP Positiona MAF PE Controls HWE χ2 p aORb (95% CI) Power %

M235T (rs699) 230710048 T 161 (0.30) 114 (0.21) 0.46 12.12 5.0 × 10–4 1.63 (1.24–2.15) 67.5
T174M (rs4762) 230710231 M 26 (0.06) 37 (0.09) 1.00 3.00 0.08 0.63 (0.38–1.07) 72.3

aLocation on chromosome based on the Single Nucleotide Polymorphism database build 125.
baOR: adjusted OR, adjusted for body mass index, gestation, and baby weight.
AGT: angiotensinogen; PE: preeclampsia; SNP: single-nucleotide polymorphism; MAF: minor allele frequency; T: threonine; M: methionine; HWE: 
Hardy–Weinberg equilibrium; CI: confidence interval.

Table 3.  Association of AGT genotypes with PE.

SNP Genotype PE cases Controls p OR (95% CI) p aORb (95% CI)

M235T MM 137 (0.50)a 176 (0.63) 0.003 1.00 (reference) 0.006 1.00 (reference)
  MT 109 (0.40) 90 (0.32) 1.56 (1.09–2.22) 1.79 (1.18–2.71)
  TT 26 (0.10) 12 (0.04) 2.78 (1.36–5.72) 2.43 (1.05–5.63)
T147M TT 196 (0.89) 167 (0.82) 0.015 1.00 (reference) 0.031 1.00 (reference)
  TM 22 (0.10) 37 (0.18) 0.51 (0.29–0.89) 0.49 (0.25–0.96)
  MM 2 (0.01) 0 (0.00) NA NA

aNumber (frequency).
baOR: adjusted OR, adjusted for body mass index, gestation, and baby weight.
AGT: angiotensinogen; PE: preeclampsia; SNP: single-nucleotide polymorphism; T: threonine; M: methionine; OR: odds ratio; CI: confidence interval.
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associated with PE,34,35 a protective effect of T174M emerged 
when genotypes were examined. The association of M235T 
with PE was first reported for Caucasians in 1993,36 and an 
earlier meta-analysis demonstrated significant association of 
M235T with PE, under dominant and recessive genetic mod-
els.37 An ethnic contribution to M235T was suggested, 
exemplified by a meta-analysis involving 32 studies that 
reported an association of M235T with higher PE risk in 
Caucasians and Mongolians, but not in Black South Africans 
and African Americans.34 Another meta-analysis involving 
22 studies reported evidence of an association of M235T 
with PE in Caucasians, but not in Indian, Black South 
African, African American, and Asian populations.38

Carrying AGT M235T and T174M minor alleles posi-
tively associated with BMI among unselected PE patients 
suggests gene-environment interaction in determining PE 
risk. A recent meta-analysis reported that increased BMI 
is associated with heightened risk of PE, suggesting that 
obesity constitutes a predictor of PE development.39 Our 
results are in agreement with an earlier Japanese study 
that reported a positive association of M235T with vis-
ceral obesity in obese women,40 and with morbid obesity 
in patients with type 2 diabetes mellitus (T2DM).41 
Obesity and hypertension are two parameters of meta-
bolic syndrome; our result is favorable for the hypothesis 
that PE is considered a metabolic syndrome. In the 
Tunisian population, M235T has been investigated to be 
associated with atherosclerotic stroke42 and T2DM,43 and 
to affect the susceptibility to nephropathy in T2DM 
patients,44 increased risk of heart failure and death.45

We examined the prognostic role of M235T and 
T174M as determinants of the severity of PE by analyzing 

the effects of carrying the minor allele in mild versus 
severe PE women. There was a trend toward increased 
risk of severe PE in the presence of M235T, but it did not 
reach statistical significance (p = 0.053); no significance 
was noted in the case of T174M between both groups. 
Parallel studies that examined the contribution of M235T 
to PE severity did not find a significant association.46–48 A 
recent Iranian study reported that carrying the M235T 
minor allele with the −217A allele increased the risk of 
severe PE 2.23-fold.49 Concerning AGT T174M, our study 
is the first to investigate the association of this variant 
with PE severity.

Mechanistically, the contribution of AGT M235T to PE 
was suggested earlier to be exacted at the level of local 
elevation of Ang II, and hence abnormal physiologic 
remodeling of the uterine spiral arteries.28 Higher plasma 
AGT levels were seen in PE women carrying 235T/T or 
235M/T compared to 235M/M genotypes,36 which was 
associated with a parallel increase in Ang II production, 
and hence vascular tone and vascular hypertrophy.50 When 
combined with AGT promoter –6G>A, carrying the AGT 
M235T minor allele was associated with augmented AGT 
expression.32 Moreover, placental abruption because of 
defective spiral artery remodeling was associated with 
AGT M23T minor allele in 63% of women with PE, and 
60% in intrauterine growth restriction compared with nor-
mal pregnancy.46–51 On the other hand, MAF of AGT 
T174M is lower in Tunisians and European, Asian, and 
African American populations, but was found to be at 
lower frequencies in PE cases than in control pregnant 
women. While no study addressed the impact of AGT 
T174M genotypes on plasma AGT levels in PE, it was 

Table 4.  Distribution of AGT alleles in mild type PE and severe PE.

SNP MAF Severe PE Mild PE HWE χ2 p aOR2 (95% CI) Power (%)

M235T T 88 (0.35)a 73 (0.25) 0.56 3.750 0.053 1.60 (0.99–2.53) 76.9
T174M M 9 (0.05) 17 (0.07) 0.16 0.573 0.518 0.715 (0.29–1.71) 29.9

aNumber (frequency),
baOR: adjusted OR, adjusted for body mass index, gestation, and baby weight.
AGT: angiotensinogen; PE: preeclampsia; SNP: single-nucleotide polymorphism; MAF: minor allele frequency; HWE: Hardy–Weinberg equilibrium; T: 
threonine; M: methionine; OR: odds ratio; CI: confidence interval.

Table 5.  Haplotype frequencies across AGT SNPsa in PE cases and control women.

Haplotypeb PE cases, controls χ2 pc aOR (95% CI) Severe PE, mild PE χ2 pc aOR (95% CI)

MT 0.67, 0.73 5.20 0.023 1.34 (1.04–1.73) 0.63, 0.696 2.32 1.00 1.00
TT 0.27, 0.19 4.93 7.0 × 10–4 1.61 (1.22–2.13) 0.32, 0.233 2.03 0.06 1.48 (0.99–2.21)
MM 0.04, 0.07 3.52 0.06 0.02, 0.05 1.37 0.23 0.45 (0.12–1.65)
TM 0.02, 0.02 0.09 0.76 0.03, 0.02 0.70 0.51 (0.28–13.26)

aSNP within AGT haplotypes were M235T and T174M.
bUnderline indicates minor allele.
cAdjusted p value, adjusted for body mass index, regional origin, baby weight, gestation age, and pregnancy status.
AGT: angiotensinogen; SNP: single-nucleotide polymorphism; PE: preeclampsia; T: threonine; M: methionine; OR: odds ratio; CI: confidence interval.
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shown that plasma AGT levels were significantly lower in 
women without a medical history of essential hypertension 
who were carriers of 174M/M or 174T/M rather than 
174M/M genotypes.52

The pathogenesis of PE results from the altered expres-
sion of angiogenic factors, including placental growth fac-
tor (PIGF),53 and anti-angiogenic antagonists, like soluble 
fms-like tyrosine (sFlt1),54 both of which are implicated in 
regulating placental vasculogenesis.55 This carries the 
potential to offer major advances in the diagnosis and 
management of this obstetric complication even in early 
gestation.53,56,57 A recent study of a Chinese population 
showed that AGT M235T may contribute to altered PIGF 
and sFlt1 concentrations, with plasma sFlt1 levels higher 
and PIGF lower in PE patients carrying 235T/T compared 
with 235M/M genotypes.58

To the best of our knowledge, this is the first study in 
North Africa that investigates the association of these SNPs 
with PE and its severity. The strengths of our study are the 
homogeneity of the population tested, which minimizes the 
problems of differences in genetic background inherent in 
gene-association studies, and that potential covariates were 
controlled for. Some potential limitations should be consid-
ered in our study. Our study population has a relatively 
small sample size in terms of PE manifestation, in particular 
when PE patient subgroups were analyzed separately, which 
affected overall study power. Further studies with larger 
samples are necessary to augment our findings. Another 
limitation is that we have used two missense SNPs located 
in the coding region, but we did not investigate polymor-
phisms –6G>A and –20A>A in the promoter region that are 
in linkage disequilibrium with AGT M235T and T174M, 
respectively. In conclusion, AGT M235T and T174M con-
tribute to an increased risk of developing PE in Tunisians 
and to BMI excess in women with PE, and AGT M235T 
may predispose patients to severe PE.
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