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Giant magnetic splitting inducing near-unity valley
polarization in van der Waals heterostructures
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Monolayers of semiconducting transition metal dichalcogenides exhibit intriguing funda-

mental physics of strongly coupled spin and valley degrees of freedom for charge carriers.

While the possibility of exploiting these properties for information processing stimulated

concerted research activities towards the concept of valleytronics, maintaining control over

spin–valley polarization proved challenging in individual monolayers. A promising alternative

route explores type II band alignment in artificial van der Waals heterostructures. The

resulting formation of interlayer excitons combines the advantages of long carrier lifetimes

and spin–valley locking. Here, we demonstrate artificial design of a two-dimensional het-

erostructure enabling intervalley transitions that are not accessible in monolayer systems.

The resulting giant effective g factor of −15 for interlayer excitons induces near-unity valley

polarization via valley-selective energetic splitting in high magnetic fields, even after non-

selective excitation. Our results highlight the potential to deterministically engineer novel

valley properties in van der Waals heterostructures using crystallographic alignment.
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The materials combined in the studied heterostructure are
monolayers of transition metal dichalcogenides (TMDCs)
where MX2 denotes M=Mo, W and X= S, Se, Te. These

systems were shown to host direct optical transitions in the visible
spectral range at two inequivalent valleys in momentum space,
labeled K+ and K−, which are situated at the corners of the
hexagonal Brillouin zone1–3. Since spin and valley index of charge
carriers are coupled at the K points due to the broken inversion
symmetry in the monolayer combined with strong spin–orbit
coupling, it is possible to selectively address and read out the
valley index optically by helicity-resolved measurements4–7.
However, as the two valleys are linked by time-reversal symmetry,
external fields are required to break their energy degeneracy, an
issue of central importance for future valleytronic devices.
Recently, the effective manipulation of the valley pseudospin
energy has been demonstrated for monolayer TMDCs by
magnetic8–15 and electric fields16,17. However, the extremely
short lifetimes of excitons18,19 and the fast polarization dephasing
mechanisms20 render the implementation of individual TMDC
monolayers challenging for valleytronics.

At the same time, the rapid development of transfer techniques
has opened up a vast parameter space of artificial van der Waals
heterostructures, where different two-dimensional (2D) materials
are deterministically stacked upon each other21. For TMDCs, the
resulting type II band alignment and subsequent rapid charge
transfer22 leads to the formation of interlayer excitons (IEXs),
where electrons and holes are situated in different layers23–28. For
stacking angles close to 0° (AA stacking) and 60° (AB stacking),
negligible momentum mismatch allows radiative recombination
of charge carriers at the K points29,30, leading to pronounced light
emission from IEXs below the energies of the individual mono-
layer transitions. Nevertheless, due to the spatial separation, the
wavefunction overlap in the out-of-plane direction is reduced,
facilitating the potential for long lifetimes of the interlayer exci-
tons in 2D heterostructures27, further supplemented by the pos-
sibility of spin–valley injection in close analogy to the monolayer
systems28.

Here, we show that the specific alignment of atomically thin
layers in a heterostructure leads to intriguing fundamental phy-
sics, exclusive for such artificial systems and allowing for highly
efficient external manipulation of the spin–valley degrees of
freedom. In particular, we demonstrate that the magnetic cou-
pling of electronic transitions can be strongly enhanced in AB-
stacked TMDC heterobilayers, exhibiting a giant magnetic valley
splitting with an effective g factor (geff) of about −15 that exceeds
typical values for both TMDC monolayers and more conven-
tional nonmagnetic semiconductor heterostructures by far. Of
central consequence is the resulting field-induced valley polar-
ization of the long-lived charge carriers, even though both valleys
in the two constituent materials are initially equally populated.
The degree of polarization reaching near-unity values arises
entirely due to the strong degeneracy lifting under magnetic
fields. It emerges from the specific arrangement of the individual
layers of our heterostructure in momentum space, which is not
attainable in TMDC monolayer systems, enabling momentum-
allowed optical transitions between valleys of different index. This
leads to a situation where the sum of conduction- and valence-
band valley magnetic moments contributes to significantly
enhance the valley splitting in an external magnetic field com-
pared to a monolayer system.

Results
Characterization of the WSe2/MoSe2 heterostructure. The
heterostructure under study (shown in Fig. 1a) consists of a
monolayer of WSe2 transferred on top of a MoSe2 monolayer,

exfoliated onto a SiO2/Si substrate. During the transfer process,
the well-cleaved axes of the monolayers are deterministically
aligned parallel to each other, ensuring a twist angle of either
nearly 0° or 60°. The relative angle of the stacking configuration is
confirmed through spatially resolved second-harmonic genera-
tion (SHG) spectroscopy31. Figure 1b illustrates the intensity of
the parallel component of the SHG signal of the two individual
monolayer materials in a polar plot. By fitting the data with a cos2

(3θ) function we directly obtain a relative stacking angle θ of
either 6± 1° or 54± 1° (the two possibilities stem from the phase
insensitivity of the SHG intensity measurement on a single layer).
To clarify the precise alignment, we perform a spatial scan of the
resulting heterostructure where the total SHG intensity is recor-
ded at each position, as shown in Fig. 1c. In the overlapping
region of the two layers denoted by the white framed area in
Fig. 1a, we clearly observe a pronounced destructive interference
of the SHG signal with respect to the individual monolayers,
consistent with a nearly 60° stacking configuration31. Thus, we
conclude that the sample has an AB-like stacking configuration
with a relative angle of 54± 1°.

A characteristic photoluminescence (PL) spectrum of the
heterostructure recorded at 4 K is shown in Fig. 1d. In line with
recent reports, it consists of two separate spectral regions:27,28

The intralayer transitions between 1.6 and 1.8 eV result from
intralayer excitonic recombination in the constituent monolayers
(WSe2 and MoSe2). At the same time, as depicted in the inset of
Fig. 1d, rapid charge transfer leads to the formation of interlayer
excitons at around 1.4 eV, significantly lower in energy than the
intralayer transitions (Additional characterization measurements
are presented in Supplementary Note 1).

Magneto-PL measurements of the interlayer exciton. We now
turn to the valley-resolved measurements of the interlayer tran-
sitions in an out-of-plane magnetic field (Faraday geometry). The
optical experiments are carried out by exciting the sample with
linearly polarized light (laser energy 1.94 eV), initially populating
both valleys in the two monolayer constituents of the hetero-
structure equally. The emission is subsequently analyzed in a
circularly polarized basis, allowing us to directly access the
resulting valley-selective splitting of the transitions and quantify
the degree of polarization. Figure 2a shows the spectral evolution
of the interlayer excitons for both detection polarizations in
magnetic fields up to 30 T. Two main observations are immedi-
ately apparent from the data. First, the peak energy degeneracy of
the interlayer transitions is lifted for fields
B> 0. For rising magnetic fields, the energy of the σ+ polarized
component decreases monotonically while it increases for the σ−
polarized component. Second, the intensity of the interlayer
exciton strongly depends on the detected polarization in the
magnetic field. The σ+ and σ− polarized components exhibit a
drastic increase and decrease in intensity, respectively, as the
magnetic field is increased. These observations are further illu-
strated in Fig. 2b, where the two polarization configurations for B
= 0 T and B= 30 T are directly compared. While at B= 0 T the
two circularly polarized emission peaks are of same energy and
intensity, the energy splitting between the two valley configura-
tions amounts to about 26 meV for B= 30 T, exceeding the
linewidth of the two transitions. Also, the luminescence stems
almost exclusively from the σ+ transition, with the σ− emission
being strongly suppressed.

For the quantitative analysis of the data, we use Gaussian fit
functions, and extract the PL peak positions of the interlayer
transition for both polarizations as function of the magnetic field.
The resulting valley splitting, presented in Fig. 2c, clearly follows
a linear dependence. Using the definition of the splitting as
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Fig. 2 Magnetic field dependence of interlayer excitons. a False color representation of the interlayer exciton PL for σ+ and σ− polarized detection as a
function of out-of-plane magnetic field up to 30 T. The excitation is performed with linearly polarized light. For better clarity the PL intensity is plotted on a
logarithmic scale. b Comparison of PL spectra of the interlayer exciton for 0 T and 30 T. At 0 T, both polarizations show the same energy and intensity. At
30 T, the energy degeneracy is fully lifted and the emission stems almost exclusively from the σ+ transition. c Corresponding valley-selective splitting of the
interlayer exciton. The solid line corresponds to a linear fit of the data, yielding an effective g factor of −15.1± 0.1. d Magnetic-field-induced valley
polarization of the interlayer exciton. e Time-resolved PL of the interlayer exciton for B= 0 T and B= 28 T
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Fig. 1 Interlayer excitons in a WSe2/MoSe2 heterostructure with nearly 60° angle alignment. a Optical micrograph of the WSe2/MoSe2 heterostructure
under study. The white framed area depicts the region where the two materials overlap vertically. The scale bar is 25μm. b Angle-dependent plot of the
parallel component of the SHG intensity of the individual monolayers, indicating the armchair directions of the monolayers. The relative angle between the
monolayers amounts to about 54°. c Spatial scan of the sample where the total SHG intensity is recorded for each datapoint. The region of the
heterostructure shows clear destructive interference of the SHG signal with respect to the individual layers. d PL spectrum taken on the heterostructure at
4 K. The emission stemming from interlayer excitons is spectrally well separated from the intralayer luminescence. The inset schematically depicts the type
II band alignment of the heterostructure which leads to a spatial separation of electrons and holes
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ΔEIEX= Eσ+−Eσ−= geffμBB, where μB is the Bohr magneton
(≈58 μeV/T), we extract geff= −15.1± 0.1 for the interlayer
exciton.

The corresponding degree of the valley polarization, defined as
P ¼ Iσþ � Iσ�ð Þ= Iσþ þ Iσ�ð Þ, is presented in Fig. 2d. While it is
strictly zero at B= 0, as expected, the emission is strongly
polarized under the external magnetic field, exceeding values of
80% for the highest fields up to 30 T (see Supplementary Note 2
for a discussion of the enhanced valley polarization in the data
around B= 24 T). We further note that such overall high degree
of field-induced polarization is particularly remarkable given the
fact that both valleys are initially equally populated in the
experiment. Using time-resolved PL measurements (see Methods)
we also track the decay dynamics of the interlayer exciton in the
magnetic field. The sample is excited linearly and the total PL
intensity is detected. The data are presented in Fig. 2e. The decay
dynamics exhibit a complex nonexponential decay, with a 1/e
time constant of about 40 ns at 0 T followed by a longer decay
(>100 ns) at later times and exceeding typical values for
individual TMDC monolayers by several orders of magnitude.
The lifetime further increases with rising magnetic field, with the
1/e constant reaching 70 ns at 28 T and the longer component
increasing beyond 200 ns (see Supplementary Note 3 for more
detailed data). Applying an external magnetic field therefore
allows us to not only to generate strongly valley-polarized
carriers, but also maintain the interlayer emission on very long
timescales.

The determined value of about −15 for the effective g factor of
the interlayer exciton is in stark contrast to experimentally
determined effective g factors of excitons in individual TMDCs,
found to be around −4 in most cases9–12,14,15. As we show in the
following, this anomalously high effective g factor results from
spin-allowed intervalley transitions in our AB-stacked hetero-
structure, which enables us to access novel valley physics in an
external magnetic field. In monolayers, the magnitude of the
magnetic coupling is often understood in terms of a simplified
semiquantitative model, including three contributions, namely
the spin, the atomic orbitals, and the valley magnetic
moment8–12. Since the optical transitions are spin conserving

between conduction and valence band, the net contribution from
the spin to the energy splitting of the respective resonances is
zero. On the other hand, only the valence bands carry a non-zero
magnetic moment μl from the atomic orbitals with μl= 2 for the
K+ valley and μl= −2 for the K− valley, leading to an overall
splitting between the valley-selective transitions of −4μBB. The
third contribution, the valley magnetic moment μk, arises from
the self-rotation of the Bloch wavepackets32. It is defined by
± μck ¼ m0=me for the conduction band and ± μvk ¼ m0=mh for
the valence band in the K+/K− valley, respectively. As the
optically allowed transitions in a monolayer take place between
valleys of the same index (intravalley), these contributions cancel
out almost entirely. For intervalley transitions in a monolayer
system, the contributions from the valley magnetic moments add
up, leading to higher g factors33. These transitions cannot be
optically accessed in a pristine monolayer system due to their
high momentum mismatch. However, they may be responsible
for the large g factors observed in defect-related emission34–38.
Therefore, the total field-induced magnetic shift for a monolayer
TMDC can be written as ΔE1L= Eσ+−Eσ−= −(4−2(m0/me−m0/
mh))μBB≈ −4μBB, as mh≈me in many cases. The deviations from
this value are attributed both to nonequivalent effective masses of
electrons and holes and the complexities of the orbital
contributions to the energetic shift beyond the simplified
model12.

In an AB-stacked heterostructure, however, we encounter a
markedly different situation for optically bright transitions.
Figure 3a schematically depicts the configuration of the Brillouin
zones for interlayer excitons in an AB-stacked WSe2/MoSe2
heterostructure. Here, the optical transitions take place between
the K− valley of WSe2 and the K+ valley of MoSe2 (and by
symmetry, also from K+ in WSe2 to K− in MoSe2). Hence, in
contrast to monolayer systems, the optical transitions are not
valley conserving for AB-stacked heterobilayers. This is further
illustrated in Fig. 3b which shows one of the two interlayer
transitions. After the optical excitation and following fast charge
transfer, electrons in the upper conduction band of MoSe2 reside
in the K+ valley whereas the holes in WSe2 are located in the K−
valley (here, we use the convention where the vacant electron
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Fig. 3 Giant magnetic valley splitting in an AB-stacking configuration. a Momentum space arrangement of the relevant band extrema in an AB-stacked
WSe2/MoSe2 heterostructure. Blue (red) depicts electronic bands from the K+ (K−) valleys. b Type II band alignment of MoSe2 and WSe2 for the AB-
stacking configuration, indicating spin-allowed optically bright interlayer transitions. Arrows indicate spin-up and spin-down states. c Evolution of the
transitions such as indicated in b with positive applied magnetic field. Dashed lines indicate the situation for B= 0. The arrows depict the possible
contributions to the valley-selective splitting (black for spin, black framed for atomic orbital and gray for valley magnetic moment)
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states and the corresponding holes in the valence band are
defined to have the same momenta). This configuration, in
analogy to tungsten-based monolayer TMDCs, leads to the spin-
allowed and optically bright transitions involving the upper
conduction band of MoSe2 while a transition from the lower
conduction band is not spin conserving and thus optically dark.
The anomalous situation in momentum space directly impacts
the valley splitting of the interlayer exciton in an external
magnetic field, which is schematically depicted in Fig. 3c.

In analogy to the monolayer system, the contribution to the
valley splitting from spin cancels out and the magnetic moment
from the atomic orbitals μl in the valence bands results in an
expected energetic splitting of −4μBB. The contributions from the
valley magnetic moments μk, however, now have the opposite
sign for the conduction and valence bands and thus add up
instead of canceling out as it is the case for individual monolayers.
This signifies the main magnetic property of the interlayer
transitions in AB-stacked heterostructures with the energetic
shifts of the valley magnetic moments evolving antiparallel in the
conduction and valence bands in a magnetic field. For the σ−
transition in Fig. 3c this leads to a drastic increase of the
transition energy when a magnetic field is applied. For the same
reasons, a strong decrease occurs for the σ+ transition, since the
two valley configurations are linked by time-reversal
symmetry. The total valley-selective splitting of the interlayer
transition ΔEIEX induced by the magnetic field then amounts
to ΔEIEX= Eσ+−Eσ−= −(4 + 2(m0/me +m0/mh))μBB. Using calcu-
lated values39 for the effective masses of electrons (me= 0.57m0)
in the upper conduction band of MoSe2 and holes (mh= 0.36m0)
in the valence band of WSe2 we obtain geff= −13.1 for the
interlayer transition, in close agreement with the experimentally
determined value of geff= −15.1± 0.1.

Discussion
The presence of large band offsets in TMDC heterostructures
combined with the angle alignment of the nonequivalent valleys
thus yields interlayer transitions with an unusually large total
effective g factor, which is a powerful lever to exploit the valley
degree of freedom. Even higher effective g factors can be expected
when suitable van der Waals materials with lower effective masses
are combined. Thus, even for nonselective injection with respect
to spin–valley degrees of freedom, strong spin–valley polarization
in an applied magnetic field is expected already at thermal
equilibrium steady-state conditions, as demonstrated in our
experiment. This finding is of particular importance when-above
bandgap optical excitation or electrical injection are considered,
both being most common scenarios in devices. Additionally, we
envision the use of local (stray or exchange) magnetic fields
generated by microstructured ferromagnets to define valley-
selective potential landscapes for interlayer excitons. These local,
valley-selective potentials may be used to filter or trap excitons
with a specific valley polarization, and the large energy splitting
resulting from the effective g factor will enable operation of such
devices well above liquid-helium temperatures. Finally, the
demonstrated stability of the spin–valley polarization through the
complete lifting of valley degeneracy in artificial heterostructures
provides a highly promising route towards the implementation of
the spin–valley degree of freedom for future applications in the
fields of quantum computation and nanophotonics.

Methods
Sample fabrication. The WSe2/MoSe2 heterostructure was fabricated by means of
an all-dry transfer procedure40 on a Si/SiO2 substrate. The constituent monolayer
samples were obtained by mechanical exfoliation of bulk crystals (HQGraphene).
After the transfer process, the sample was annealed for 5 h at 150 °C in high
vacuum.

Second-harmonic generation spectroscopy. SHG measurements were carried
out at room temperature with a Ti:sapphire laser (pulse length 100 fs, central
wavelength 810 nm) focused on the sample via a 40 × microscope objective. The
signal was coupled into a grating spectrometer and detected with a CCD camera.
For polarization-dependent measurements, the laser light was linearly polarized
and the reflected light was analyzed by the same polarizer, thereby selecting the
parallel signal component of the SHG. The sample was rotated by a mechanical
stage in order to obtain angle resolution. For mapping of the total SHG intensity,
the sample was excited using circularly polarized light without any polarization
analysis in the detection. The sample was scanned under the microscope using a
motorized x–y stage and the total SHG intensity was recorded for each sample
position.

Magneto-PL spectroscopy. The sample was placed on a x–y–z piezoelectric stage
and cooled down to 4.2 K in a cryostat filled with liquid helium. Magnetic fields up
to 30 T were applied by means of a resistive magnet in Faraday configuration. For
static PL measurements, laser light at an energy of 1.94 eV was focused onto the
sample with a microscope objective resulting in a spot size of ~4μm. The polar-
ization of the PL was analyzed with a quarter-wave plate and a linear polarizer.
Using a nonpolarizing beam splitter, the backscattered PL was guided to the
spectrometer and detected with a liquid nitrogen-cooled CCD. Time-resolved PL
measurements were carried out with a pulsed diode laser (laser energy 1.80 eV,
repetition rate 2.5 Mhz) which was synchronized to an avalanche photodiode. The
PL from the interlayer exciton was spectrally selected with a longpass filter.

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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