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Abstract

Microsimulations are increasingly used to estimate the prevalence of sexually transmitted

infections (STIs). These models consist of agents which represent a sexually active popula-

tion. Matching agents into sexual relationships is computationally intensive and presents

modellers with difficult design decisions: how to select which partnerships between agents

break up, which agents enter a partnership market, and how to pair agents in the partnership

market. The aim of this study was to analyse the effect of these design decisions on STI

prevalence. We compared two strategies for selecting which agents enter a daily partner-

ship market and which agent partnerships break up: random selection in which agents are

treated homogenously versus selection based on data from a large German longitudinal

data set that accounts for sex, sexual orientation and age heterogeneity. We also coupled

each of these strategies with one of several recently described algorithms for pairing agents

and compared their speed and outcomes. Additional design choices were also considered,

such as the number of agents used in the model, increasing the heterogeneity of agents’

sexual behaviour, and the proportion of relationships which are casual sex encounters.

Approaches which account for agent heterogeneity estimated lower prevalence than less

sophisticated approaches which treat agents homogeneously. Also, in simulations with non-

random pairing of agents, as the risk of infection increased, incidence declined as the num-

ber of agents increased. Our algorithms facilitate the execution of thousands of simulations

with large numbers of agents quickly. Fast pair-matching algorithms provide a practical way

for microsimulation modellers to account for varying sexual behaviour within the population

they are studying. For STIs with high infection rates modellers may need to experiment with

different population sizes.
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Introduction

Microsimulations or agent-based models (ABMs) are increasingly used to simulate inci-

dence and prevalence of STIs as well as to identify the costs and benefits of strategies to

contain them. Diseases modelled using this approach include HIV [1–3], syphilis [4], gonor-

rhoea [5], HPV [6], herpes, chlamydia and trichomoniasis [7]. The popularity of such sto-

chastic microsimulations may lie in the easier implementation of complex, heterogeneous

sexual behaviour when compared to traditional ordinary differential equation (ODE)

models.

However, there are many design decisions which must be made for microsimulations,

with respect to sexual behaviour modelling. For example, which agents should be considered

for relationships (i.e. placed in a partnership market), how agents in the partnership

market should be paired with one another, and which relationships should terminate

(breakups). These decisions may be informed by agent characteristics, such as age, sex and

sexual orientation, but also by individual variations in average behaviour, e.g. sexual risk

taking and propensity to remain in relationships. (This has similarities with regression

analysis for longitudinal data: Some variation of the dependent variable can be explained

by observable, group-level characteristics like age, sex, and sexual orientation., but adding a

random effect for unobservable, individual characteristics may explain additional

variation.)

It is well understood how the design decisions for ODE models affect outcomes [8], includ-

ing for specific diseases [9], but much less so for STI microsimulations. The aim of our

research is to fill this gap and to understand how the above-mentioned design decisions affect

estimates of disease incidence and prevalence. Specifically we want to analyse the effect of dif-

ferent algorithms for matching and unmatching agents and their interaction with (I) the prob-

ability of transmission, (II) the size of the model population, and (III) heterogeneity in agent

behavior.

To do this we present a microsimulation model with behaviour based on data drawn from

the German population, and which simulates the spread of a generic, fictitious STI in a fixed

cohort. To isolate the effects of different approaches to partner matching and breakups, and

to ensure that prevalence is always cumulative incidence, the STI has no recovery rate, births,

deaths or migration. Thus, the model is an Susceptible-Infected (SI) model. The prevalence

estimated at the end of our simulations is a function of the risk of infection in serodiscordant

partnerships, the number of partnerships over time, and the distribution of partnerships

over time. The last of these is especially affected by how the partnership market is chosen, the

algorithm that pairs agents in the partnership market, and how breakups are modelled.

Moreover the number and distribution of partnerships can also be affected by the likelihood

of casual sex encounters (modelled as partnerships lasting one day in our simulations), and

the heterogeneity of agent sexual behaviour. (Note on terminology: We use microsimulation
and agent based model synonymously. A single execution of a microsimulation model, usu-

ally but not always 10 years in our experiments, is called a simulation or run. A time step is a

single iteration of a simulation, which happens to always be one day in the experiments

described here. A partnership market is a subset of agents on each day that must be paired
into relationships. We use partnership, relationship and pair synonymously. The terms

breakup and unmatch describe the termination of a relationship.) Appendix 1 discusses the

implementation details of the microsimulation with respect to the necessary speed of the

simulation runs.

The influence of design decisions on incidence in microsimulations of sexually transmitted infections
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Materials and methods

General structure of the model

We implement a discrete time step microsimulation which has the structure of Algorithm 1.

(The code is available under the GNU General Public License Version 3. It is written in C++

and available on Github at: https://github.com/nathangeffen/faststi.)

Users can specify the number of agents, the time period for which to run the simulation,

and the daily risk of infection for a seronegative agent in a serodiscordant partnership. This

risk is specified based on the sex of the uninfected agent and whether it is an opposite- or

same-sex relationship. The time step of the model is one day in all the experiments described

in this paper. On each day the following series of events is executed on all or a subset of agents:

Age Each agent becomes a day older.

Infect Each uninfected agent in a relationship with an infected one may become infected.

Breakup All the relationships are traversed and some of them are terminated.

Select A subset of unpaired agents is selected to enter a partnership market. If there is an odd

number of agents in the partnership market, a randomly chosen one is removed.

Match Agents in the partnership market are matched with each other.

An exception to this is when the model is running in stabilisation mode. This is sometimes

done at the beginning of a simulation to stabilise the number of daily breakups and pairings.

During this phase neither the age nor infect events are executed.

Algorithm 1 Structure of a discrete microsimulation from [10]
1: for each time step do
2: for each event e do
3: for each agent a do
4: if e has to be applied to a then
5: Apply e to a
6: end if
7: end for
8: end for
9: end for

Each agent has a sex, sexual orientation and age which can be used to identify the corre-

sponding characteristics of its preferred partner. An agent’s sex and age determines its daily

risk of entering the partnership market if it is single, or breaking up if it is in a relationship.

Population characteristics and agent behavior

All single agents are initialized to between 12 and 50 years old, proportionate to the German

population. The vast majority of agents in partnerships are initialised to between 12 and 50.

(The initialization routine sometimes creates agents outside this age range to be partners of

agents in the 12 to 50 age range. All agents are included in analysis, irrespective of their age. As

agents age, their sexual behaviour is updated.)

The behavior of the agents includes probabilities for breakups, entering the partnership

market for long-term relationships and casual sex encounters. To model heterogeneous versus

homogeneous behavior, two different strategies, called RANDOM and DATA, were

implemented.

• The RANDOM strategy contains no heterogeneous behavior as it randomly selects a set of

partnerships to break up and a set of agents to enter the partnership market. On average the

same number of agents break up as enter the partnership market each day.

The influence of design decisions on incidence in microsimulations of sexually transmitted infections
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• The DATA strategy estimates daily, group-level (i.e., age- and sex-specific) probabilities for

breakups, partnership formation and casual sex contacts from The German Family Panel
(pairfam) [11, 12]. This longitudinal dataset provides information about the complete rela-

tionship history of the study participants before the beginning of the survey as well as during

the survey period. For the latter, information about the frequency of sexual intercourse is

provided for the three months preceding the interview date of each wave of the survey. To

determine the probabilities of breakups and entering a new long-term relationship, the

beginnings and ends of partnerships are extracted for each study participant for all the

relationships and this data is summarised for all study participants by each age year. The

probabilities are then calculated by dividing the number of breakups by the number of rela-

tionships at each age and the number of new relationships by the number of single persons

at each age. To estimate the probability of casual sex contacts the number of sexual inter-

courses in the three months before the survey are converted to daily probabilities for

people who indicated that they had not been in a relationship during that period. When cal-

culating the risk of a breakup, the sum of the agents’ breakup probabilities are averaged.

As men-who-have-sex-with-men (MSM) or women-who-have-sex-with-women (WSW) are

not represented well in the data set, the probabilities have been estimated irrespective of sex-

ual orientation. The estimates of the age-specific model parameters can be found in Appen-

dix 2. Agents older than the highest age—50 years—for which data is available, are treated

the same as 50-year-olds.

By default the DATA strategy models group-level heterogeneity: differences in sexual

behaviour by sex and age. The implementation is as follows: Consider how an agent enters the

partnership market (i.e. the Select event). A uniform random number between 0 and 1 is gen-

erated. If the agent’s probability, p, of entering the partnership market, calculated based on sex

and age, is greater than this number, the agent enters the partnership market. Analogous

mechanisms are used for determining whether the agent will have a casual relationship, and

whether a relationship breaks up (in this case the mean of the probabilities of the two agents is

used).

To additionally model unobservable, individual-level heterogeneity, p is multiplied by a fac-

tor with normal distribution of mean 1 and standard deviation 0.3, but with a maximum value

of p = 1. This factor is set individually for each agent at the beginning of the simulation and

does not change over time. There are actually three such factors: one for entering the partner-

ship market in search of a casual sex relationship, one for entering the partnership market for

a non-casual sex relationship, and one for breaking up, thereby generating a wide variety of

individual behaviour. However, except for one set of experiments, this individual-level hetero-

geneity is deactivated.

While some of the parameters chosen to do these simulations are arbitrary (such as the

standard deviation of 0.3 in the above paragraph), our aim is proof of concept. Modelling spe-

cific diseases will require choosing appropriate parameters informed by data.

Matching procedures and algorithms

By default the simulation matches all agents in the partnership market. If the number of agents

in the market is odd, one is randomly removed. The matching algorithms have been described

and their performances analysed in [10]. They depend on the existence of a distance function

that measures the suitability of two agents for matching based on sex, sexual orientation and

age according to the distribution of relationships in the population. The smaller the distance

the more suitable are the agents for matching. All but one of the algorithms attempt to mini-

mise the sum of the distances of all matches.

The influence of design decisions on incidence in microsimulations of sexually transmitted infections
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Using distance to measure the suitability of a match has the following advantages: (1) the

algorithms can be kept generic with domain specific details confined to the distance function,

(2) category mismatches (such as agents with different sexual orientations) can be dealt with

by the distance function returning very large values rendering such matches unlikely or even

impossible if the penalization is higher than a maximal distance threshold for matching, and

(3) it provides a measurement for comparing how closely algorithms estimate the underlying

distribution. Algorithm 2 provides the distance function we used.

Algorithm 2 Distance function used in simulations
Parameters:
a, b: agents between whom to measure distance
Return value: real number that determines how likely a partnership is
between a and b according to the distribution of partnerships in the
population being studied.
0 is a good match, while 50 or more is a poor one.
A modification in some simulations we ran was to remove the previous
partnership penalty.
1: function DISTANCE(a, b)
2: ageProb  lookup probability of matching a with b based on ages.
3: agePenalty  (1 − ageProb) � 50
4: if mismatch on sex based on sexual orientation then
5: orientationPenalty  50
6: end if
7: if a and b have been partners previously then
8: prevPenalty  50
9: end if
10: Return agePenalty + orientationPenalty + PrevPenalty
11: end function

Two algorithms serve as upper and lower boundaries of the quality of matches. Random-
Pair Matching (RPM), in which agents in the partnership market are paired randomly, sets the

lower limit on quality. The average distance between paired agents in the partnership market

that the other algorithms generate should be much smaller than that of RPM.

On the other end of the scale, the Blossom algorithm, first described by [13], finds the mini-

mum sum of the distances of pairs of vertices in a graph. We use it by first generating a fully

connected undirected graph in which each vertex represents an agent in the partnership mar-

ket and each edge represents the distance between two agents. Under the assumptions that

(1) the distance functions contains relevant components influencing the partner selection, and

(2) that the quality of the data sources used to inform the distance function, the Blossom algo-

rithm finds the theoretically closest set of pairs to the distribution of relationships in the popu-

lation being studied.

The problem with Blossom is that it is impractically slow when there are a large number of

agents in the partnership market, even when using a highly optimised recent implementation

called Blossom V [14]. The time to create the graph increases quadratically with the number of

agents in the partnership market, and the time for the Blossom V algorithm increases approxi-

mately cubicly with the number of agents in the partnership market. Generally, algorithms in a

simulation whose execution time increases more than linearithmically (n log n) with the num-

ber of agents are impractical if modellers wish to do sensitivity analysis, calibrate parameters,

or build confidence intervals (see Appendix 1). Furthermore it is not a stochastic algorithm

which is often a desired feature of pair-matching.

Between the high and low precision of Blossom and RPM, respectively, are algorithms that

approximate the minimum sum of distances. With the exception of the Cluster Shuffle Pair

The influence of design decisions on incidence in microsimulations of sexually transmitted infections
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Matching (CSPM) algorithm, all algorithms store the agents randomly in an array to avoid sys-

tematic bias in the matching. We also used the following matching algorithms in our analyses:

• Random K pair matching (RKPM) is similar to RPM. For each agent a in the partnership

market that still needs to be matched, it examines up to k adjacent neighbouring agents in

the partnership market—where k is a user-defined constant positive integer that is usually

much smaller than the number of agents in the partnership market—and matches a with the

agent with the lowest distance to it. RPM is essentially RKPM with k = 1.

• Brute-Force pair matching (BFPM) is similar to RKPM except that k is set to a value equal to

or greater than the maximum number of agents in the partnership market. This means that

for each agent a that still needs to be matched, it will be partnered with the remaining

unmatched agent that has the shortest distance to it.

• Cluster Shuffle Pair Matching (CSPM) relies on the existence of a cluster function as

described by [10]. It sorts the agents by the value returned by the cluster function. The sorted

agents are divided into a user-specified number of clusters. Each cluster is then shuffled to

introduce stochasticism. Next, as with RKPM, for each unmatched agent a, it examines the k
adjacent neighbouring agents in the partnership market, choosing the one with the lowest

distance to a. Since it is more complex than the above two algorithms, pseudocode for the

CSPM algorithm is presented in Algorithm 3.

Algorithm 3 Cluster shuffle pair-matching (CSPM)
Parameters:
Agents, an array of agents, with subscripts 0..n − 1, where n is the
number of agents. For simplicity assume n is even.
c, the number of clusters to divide the agents into. For simplicity
assume c divides into n.
k, the number of adjacent agents to consider when finding a suitable
partner.
1: function CLUSTERSHUFFLEMATCH(Agents, c, k)
2: for each agent, a, in Agents do
3: a.weight  cluster(a)
4: end for
5: sort Agents by weight
6: clusterSize  n/c
7: i  0
8: for each cluster do
9: first  i � clusterSize
10: last  first + clusterSize
11: shuffle Agents[first.. .last − 1] . to introduce stochasticism
12: i  i + 1
13: end for
14: for each unmatched agent a in Agents do
15: best  1
16: for each unmatched agent b in one of up to k positions in the

array after a do
17: d  distance(a, b)
18: if d < best then
19: best  d
20: bestPartner  b
21: end if
22: end for
23: Make a and bestPartner partners
24: end for
25: end function

The influence of design decisions on incidence in microsimulations of sexually transmitted infections
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[10] discusses the selection of values of k in the CSPM and RKPM algorithms, and the num-

ber of clusters in the CSPM algorithm. In this work we varied k between 30 and 300, and we

varied the number of clusters between 10 and 100, depending on the number of agents in the

simulation’s population.

In summary, a simulation therefore has a breakup and partnership market strategy (DATA

vs RANDOM) coupled with a pair-matching algorithm (Blossom vs BFPM vs CSPM vs RKPM

vs RPM). (We use “strategy” to describe the Select and Breakup events, and “algorithm” for the

Match event so as to keep RANDOM and DATA differentiated from Blossom, BFPM, CSPM,

RKPM and RPM in the reader’s mind.)

The DATA strategy coupled with Blossom, BFPM, CSPM or RKPM accounts for the differ-

ences between agents, while the RANDOM strategy coupled with RPM treats all agents

equally. DATA coupled with RPM, and RANDOM coupled with Blossom, BFPM, CSPM or

RKPM represent compromises between respecting and ignoring agents’ characteristics.

Accounting for group-specific differences in sexual behaviour makes matches more repre-

sentative of the population being studied, and prevents the model from overestimating the

spread of the STI. However, all the algorithms generate at least some poor matches, i.e.

matching agents across vastly different age groups or with differing sexual orientations.

These “mismatches”, provided they are not too frequent, actually assist the simulation by

ensuring the STIs eventually cross into different subgroups. It is possible to set the model to

ignore poor matches, but this comes with severe disadvantages: (a) the number of matches,

especially with the RANDOM strategy or RPM algorithm, would be too few, and (b) we

would in essence have several entirely independent subgroups such as MSM and men who

have sex with women (MSW) having no effect on each other, which is not realistic and

defeats the purpose of using a microsimulation as opposed to an ODE model with multiple

compartments.

Simulation set-up

General set-up. Our aim is to show the qualitative effects of design decisions on preva-

lence. Hence, the results presented here should be seen as illustrative; their precise impact will

be a function of the particular disease, setting and time being modelled.

In these experiments, the group of MSM between the ages of 15 and 20 are initiated to an

infected state in the initial population. The generic STI spreads out from this group across the

population. This results in about 1 in 1,000 agents being infected in the initial population. (We

also re-ran several simulations which, instead, distributed the initial infections across various

demographic groups. There was no qualitative difference in the results.)

Experiment set-ups. To determine the effect of the different pair-matching algorithms on

prevalence under different risk of transmission scenarios (research question I), we ran the

algorithms in simulations of 20,000 and one million agents for ten years with a time step of

one day. It was only feasible to execute the Blossom algorithm with 20,000 agents as it is simply

too slow on a population of 1 million agents. For this experiment we chose different scenarios

of the transmission probability per contact (low, medium and high risk of infection as given in

Table 1) with all other model parameters held constant. Since the model is stochastic, we gen-

erally repeated each simulation 30 times to build mean final prevalence and confidence inter-

vals. From our experience in HIV modeling, a higher infectiousness for males was implicitly

assumed.

A second experiment was set up to further analyse the effect of the different algorithms in

combination with various different population sizes, ranging from from 10,000 to 1 million

agents, answering research question II.

The influence of design decisions on incidence in microsimulations of sexually transmitted infections
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To analyse the effect of agent heterogeneity a two-step experiment was conducted (research

question III). First, the effect of group-level heterogeneity was analysed by comparing the

RANDOM and DATA strategy for agent behavior. To stabilise the number of daily breakups

and partnership market entrants in the DATA strategy, the stabilisation period was set to 60

days (i.e. no ageing or infections occur in this period). To avoid bias in our comparison of

strategies, the stabilisation period was also run with the RANDOM strategy.

Relevance to various STIs

Table 2 summarises estimated transmission probabilities for various STIs from the literature

for comparison to the different transmission scenarios used in our model. The way transmis-

sion is modelled varies considerably between models and ranges from modelling a single

transmission route in a sexual contact to the transmission per partnership. Transmission

probabilites are therefore not easily comparable, but must be seen with respect to their unit of

reference. As our model uses the transmission probabilities per day, the above scenarios are

easily comparable for the estimates for gonorrhea and chlamydia used by Kretschmar et al.

[15].

Unfortunately, it is not possible to present the transmission probabilities on the same scale

because not all sources stated the types and frequencies of transmission routes per sexual con-

tact, the number of sexual contacts per partnership, or the duration of partnerships.

Ethics

This article is based on secondary analyses. Compliance with ethical standards for German

social research and data protection laws were secured throughout by the project team of the

Table 1. Daily risk of infection for susceptible agent in a discordant relationship.

Risk Scenario

Low Medium High

Male Female Male Female Male Female

Male 0.002 0.001 0.02 0.01 0.2 0.1

Female 0.002 0.001 0.02 0.01 0.2 0.1

https://doi.org/10.1371/journal.pone.0202516.t001

Table 2. Probabilities of infection for different STIs. (URAI = Unprotected, receptive penile-anal intercourse; UIAI = Unprotected, insertive penile-anal intercourse;

MtoF = male to female transmission; FtoM = female to male transmission; 1act/transmission route not further specified.)

STI Unit Tranmission probability Comment Source

HIV act 0.014 [95%CI 0.002;0.025] URAI [16]

partner 0.404 [95%CI 0.060;0.749] URAI

partner 0.217 [95%CI 0.160;0.429] UIAI

Syphilis act 0.014 UAI [4]

partner 0.627 [17]

HPV act 0.400 (range 0.050–1.000) Simulated1 [18]

partner 0.270 [95%CI 0.210;0.350] MtoF1 [19]

partner 0.310 [95%CI 0.240;0.400] FtoM1 [19]

Gonorrhea day 0.150/0.600 (steady/casual) MtoF1 [15]

day 0.063/0.250 (steady/casual) FtoM1

Chlamydia day 0.039/0.154 (steady/casual) MtoF1 [15]

day 0.305/0.122 (steady/casual) FtoM

https://doi.org/10.1371/journal.pone.0202516.t002
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pairfam study. Informed consent was obtained from all individual participants included in the

study by the professional interviewer at the beginning of each interview.

Results

Effect of pair matching algorithms and transmission probability

Table 3 shows the results of the model using the different matching algorithms. In the low-risk

scenario, there was no significant difference in prevalence by algorithm, irrespective of

whether a small (20,000) or large (1 million) number of agents was used. But as the risk

increased RKPM, CSPM, BFPM and Blossom showed a trend towards lower prevalence com-

pared to RPM, and this trend was significant for simulations with 1 million agents. Moreover,

all the algorithms, except RPM, calculated lower prevalence with a higher number of agents.

The higher the risk of transmission the more sensitive the final prevalence was to the number

of agents in the simulation. Also, as expected, the confidence intervals were narrower for 1 mil-

lion versus 20,000 agents for all algorithms.

Except for RPM, all the pair-matching algorithms in the high-risk scenario—and to a lesser

extent with the medium-risk scenario—resulted in lower prevalence in the population with 1

million agents. By contrast, RPM generated the same prevalence, irrespective of the population

size. As the equilibrium of an STI model without birth is reached as soon as all persons are

infected, these results suggest, that the equilibrium in our model is reached faster in scenarios

of higher infectiousness, with smaller population size and with algorithms that match agents

randomly.

Blossom is too slow to run with 1 million agents, but with 100,000 agents the mean final

prevalence over 12 runs was 42%, compared to 47.7% with 20,000 agents (see Table 4). Again,

this might suggest that the time to equilibrium increases with population size and the more

complicated matching algorithms.

Effect of population size

To follow up the different results for the different population sizes, we ran further simulations

in the high-transmission risk scenario for 10,000, 50,000 and 100,000 agents for all algorithms,

and 300,000 and 600,000 agents for all algorithms except Blossom. As Fig 1 shows, the simula-

tions reveal a pattern of lower prevalence after 10 years for a higher number of agents and for

the more complex algorithms.

Table 3. Prevalence after 10 years of low, medium and high infection risk scenarios for pair-matching algorithms, sorted by prevalence of high risk scenario. Each

entry in the Low, Medium and High columns is the mean and 95% confidence interval of 30 runs.

N Algorithm Infection risk scenario

Low Medium High

20,000 RPM 0.3% [0.2;0.4] 1.1% [0.7;1.8] 50.8% [47.9;52.0]

RKPM 0.3% [0.2;0.4] 1.1% [0.8;1.5] 48.9% [46.5;51.6]

BFPM 0.3% [0.2;0.4] 1.0% [0.6;1.4] 49.3% [47.7;51.4]

CSPM 0.4% [0.2;0.5] 1.0% [0.5;1.5] 48.2% [45.3;49.8]

BLOSSOM 0.3% [0.2;0.4] 1.0% [0.8;1.4] 47.7% [46.5;48.9]

1,000,000 RPM 0.3% [0.3;0.3] 1.1% [1.0;1.1] 51.1% [50.9;51.3]

RKPM 0.3% [0.3;0.3] 0.8% [0.8;0.8] 46.2% [46.0;46.5]

BFPM 0.3% [0.2;0.3] 0.5% [0.4;0.5] 43.8% [43.4;44.4]

CSPM 0.3% [0.3;0.3] 0.8% [0.7;0.8] 37.7% [36.3;39.2]

Blossom NA NA NA

https://doi.org/10.1371/journal.pone.0202516.t003
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We also examined the behavior of the CSPM algorithm for different population sizes

(10,000, 20,000, 50,000, 100,000, 500,000 and 1 million) to explore if the effect of decreasing

prevalence with increasing number of agents tapers off. Fig 2 depicts this visually, showing

that reduced prevalence is much greater moving from 100,000 to 500,000 agents, than from

500,000 to 1 million agents.

Running the medium-risk scenario for long enough demonstrated that the effect of declin-

ing prevalence as the number of agents increases that we saw with the high risk scenario was

still present, but took longer to be as noticeable. Average final prevalence for 10,000 agents for

a 100 years using CSPM was 81.7% [95%CI: 65.4;90.2 over 200 runs] for 10,000 agents versus

74.1% [95%CI 73.2;74.9 over 16 runs] for 1 million agents.

Heterogeneity of agents entering the partnership market and breaking up

Effect of group-level heterogeneity. We used a similar methodology to compare the

DATA and RANDOM strategies (using only CSPM and RPM as the pair-matching algo-

rithms). The daily number of breakups and agents entering the partnership market in the

Table 4. Comparison of prevalence for CSPM against Blossom after 10 years for three different population sizes.

Each entry in the CSPM and Blossom columns is the mean of 12 runs.

Population CSPM Blossom

10,000 47.9% 48.7%

50,000 45.5% 44.3%

100,000 43.9% 42.0%

https://doi.org/10.1371/journal.pone.0202516.t004

Fig 1. Disease prevalence by population. Mean disease prevalence after 10 years of 30 simulation runs for different population sizes of 10,000, to 600,000 agents.

https://doi.org/10.1371/journal.pone.0202516.g001
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RANDOM strategy was set to closely match (less than 0.2% difference) the daily average for

the DATA strategy. The results are presented in Table 5.

The DATA strategy coupled with CSPM resulted in the lowest estimates of prevalence in all

risk scenarios, followed by RANDOM coupled with CSPM. The approach that treats agents

entirely equal, RANDOM coupled with RPM, estimated the highest prevalence.

Effect of individual-level heterogeneity. To test individual-level heterogeneity we ran 30

simulations each with DATA coupled with CSPM for 10,000, 50,000, 100,000, and 500,000

agents over 10 years with the high risk scenario with and without individual-level heterogene-

ity. The results are presented in Table 6. There were no significant differences in mean final

prevalence. Confidence intervals were also roughly the same width.

Fig 2. DATA/CSPM simulations for different population sizes. DATA/CSPM simulations run for ten years (3,650 days) on 20,000, 300,000, 500,000 and 1

million agents. The lower prevalence with higher number of agents appears to be a consequence of the longer time that the STI takes to begin growing rapidly in its

early stage.

https://doi.org/10.1371/journal.pone.0202516.g002

Table 5. Prevalence after 10 years of low, medium and high infection risk scenarios for breakup and partnership market strategies, sorted by prevalence of high risk

scenario. Each entry in the Low, Mean and High columns is the mean and 95% confidence interval of 30 runs.

Strategy Algorithm #Agents Infection risk scenario

Low Medium High

DATA CSPM 1,000,000 0.3% [0.3;0.3] 0.8% [0.7;0.8] 37.7% [36.3;39.2]

20,000 0.4% [0.2;0.5] 1.0% [0.5;1.5] 48.2% [45.3;49.8]

RANDOM CSPM 1,000,000 0.9% [0.8;0.9] 39.0% [37.8;40.2] 81.7% [78.3;88.1]

20,000 3.2% [2.1;4.0] 100% [99.9;100] 100% [100;100]

RPM 1,000,000 3.5% [2.9;3.9] 100% [100;100] 100% [100;100]

20,000 3.4% [1.3;4.8] 100% [100;100] 100% [100;100]

https://doi.org/10.1371/journal.pone.0202516.t005
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Supplementing group-level heterogeneity by individual-level in this way and to this extent

does not appear to affect overall prevalence. However, we do not rule out the possibility that a

more in-depth analysis may revise this finding.

Effects of other design decisions

We explored several other issues that may effect incidence and prevalence estimates.

Changing the number of partnerships. In the default data set we used, the average num-

ber of partners per agent per year was 2.9. The output of the model showed that 98% of all

these are casual interactions. To see the effect of reducing partnerships across the model, for

the DATA strategy coupled with CSPM, we compared the effect on prevalence of reducing the

casual partnerships by 50%, 75% and 90%.

Table 7 presents the results of these simulations, showing that even after massively reducing

the partnerships the prevalence still declines with an increase in the number of agents for the

medium- and high-risk scenarios. However, the effect becomes less pronounced as the number

of partnerships declines.

Discouraging previous partnerships. A dilemma we had was how to deal with a potential

new partnership between agents who had previously been partners. We implemented two vari-

ations of the distance function, one that keeps track of all partnerships and penalises potential

pairings between agents who have previously been in a relationship, and one that does not

keep track of partnerships at all. We found no meaningful difference in results using these two

methods.

There are practical implementation consequences of this finding. Our largest simulations

(40 million agents, see Appendix 1) use a large amount of memory. The number of simulations

we could run in parallel was limited by the available memory on our machine. The largest data

structure by far in our simulations, despite extensive optimisation, is the one that keeps track

of previous partnerships. With the finding that penalising previous partnerships made no

Table 6. Mean prevalence and 95% confidence interval over 30 runs comparing group- (age, sex and sexual orien-

tation) versus individual-level heterogeneity (age, sex and sexual orientation modified by factors set for each

agent).

Agents Group Individual

10,000 48.5% [45.8;51.0] 47.8% [42.2;51.9]

50,000 45.9% [44.5;47.4] 46.3% [44.4;48.1]

100,000 43.9% [41.6;45.5] 44.4% [43.1;45.8]

500,000 38.6% [37.5;39.7] 40.2% [38.5;41.9]

https://doi.org/10.1371/journal.pone.0202516.t006

Table 7. Results of simulations with reduced number of casual partnerships. Each entry in the Low, Medium and High is the mean and 95% confidence interval over 30

runs.

# Agents % of default Infection risk scenario

Low Medium High

20,000 50 0.4% [0.2;0.5] 0.7% [0.4;1.1] 29% [24.1;32.8]

25 0.3% [0.2;0.4] 0.6% [0.4;0.8] 6.1% [3.8;8.1]

10 0.3% [0.2;0.4] 0.5% [0.3;0.7] 1.1% [0.6;1.6]

1,000,000 50 0.3% [0.3;0.3] 0.5% [0.5;0.6] 16.7% [16.1;17.7]

25 0.3% [0.3;0.3] 0.5% [0.4;0.5] 2.8% [2.6;3]

10 0.3% [0.3;0.3] 0.4% [0.4;0.4] 0.8% [0.8;0.9]

https://doi.org/10.1371/journal.pone.0202516.t007

The influence of design decisions on incidence in microsimulations of sexually transmitted infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0202516 August 29, 2018 12 / 17

https://doi.org/10.1371/journal.pone.0202516.t006
https://doi.org/10.1371/journal.pone.0202516.t007
https://doi.org/10.1371/journal.pone.0202516


difference to the results, this data structure could be disabled on large simulations, allowing

more simulations to be run in parallel.

Discussion

The aim of our paper was to explore the influence of model design decisions on the results of

epidemiological individual based models with the focus on the choice of matching algorithm

and their interactions with transmission probability, population size and population heteroge-

neity. Our experiments found the following:

• Random matching of agents in an STI microsimulation leads to higher infection incidence

than non-random matching. This is unsurprising and a consequence of not accounting for

differences in sexual behaviour of agents.

With less randomness in pair-matching, the STI is more confined to subgroups that have

riskier sexual behaviour profiles. When mating and breaking up randomly (i.e. treating all

agents equally), the infection spreads uniformly through the population.

• Confidence intervals around the prevalence estimates after 10 years of simulation narrow as

the number of agents in the population increases.

• The incidence and prevalence that microsimulations using sophisticated pair-matching algo-

rithms estimate are sensitive to the number of agents in the model. As the risk of infection

for the sero-negative partner in a sero-discordant partnership increases, or as the frequency

of partnership formation and breakups in the population increases, the more sensitive to the

number of agents the model becomes.

• CSPM is a pair-matching algorithm that (1) appears to produce results comparable to the

Blossom algorithm (which optimally approximates the distribution of partnerships in a part-

nership market), (2) is practical to use in microsimulations with very large numbers of

agents, and (3) is practical to use when many thousands of simulations need to be run in a

reasonable amount of time.

Effect of population size

The finding that incidence declines as population increases when algorithms account for more

complex partner matching, is surprising.

This does not appear to be explained by the increasing quality of matches as the partnership

market increased. The average distance between the agents in partnerships in the algorithms is

approximately 14, 20.5, 26.5, 29.5 and 61 for Blossom, BFPM, CSPM, RKPM and RPM respec-

tively (higher scores mean worse matches). These values do not change much as the number of

agents increases. In fact, CSPM has a slightly lower average score for 20,000 agents than 1 mil-

lion agents. If the larger partnership market resulted in better quality matches, we would

expect the average distance to decrease.

Fig 2 depicts what is occurring. During the early stages of the epidemic incidence is lower

for a longer period of time, resulting in lower prevalence at any given time in the ten year

period of the simulation. When we started simulations in an already mature epidemic (e.g.

10% prevalence), the effect of prevalence being lower with higher numbers of agents

disappeared.

A possible explanation for what is happening is that as the number of agents decreases, an

infection occurring in a relatively low-risk subgroup of agents (e.g. WSW aged between 45 and

50 years old) has a disproportionately greater effect on the number of infections that will sub-

sequently occur in that subgroup. For example, if there are only 10 WSW aged 45 to 50 in a
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simulation and one of them, via a poor match or stochastic variation, becomes infected, then

10% of the subgroup is immediately infected. However if in a much bigger population there

are 100 agents in this subgroup, then only 1% of this low-risk subgroup is infected. On conse-

quent time steps, the risk of prevalence increasing substantially in this subgroup is much

higher for the smaller population. This is particularly the case for Blossom by virtue of the fact

that it generally makes better matches than the other algorithms. For CSPM the effect may be

due to it clustering agents that are more likely to be paired; even poor matches will be in neigh-

bouring or nearby clusters, and partnering within clusters is accentuated as the population

grows.

Further research is needed to understand this phenomenon properly and offer an explana-

tion with confidence.

Trade-off between complexity and speed

Our results raise a dilemma for STI microsimulation modellers. The advantage of microsimu-

lations over ODE models is that the former can practically account for a much greater number

of compartments, i.e. a greater variety of agent characteristics. However, a pair-matching algo-

rithm such as Blossom that best accounts for these characteristics is extremely slow. It can be

used effectively only with smaller population sizes or choosing small subgroups of a population

(e.g., [20]). However, when the risk of infection is high (e.g. for HPV and gonorrhea), the time

horizon is long or the turnover of partnerships is high, modelling with an agent population

that is much lower than the real world population of interest may considerably underestimate

incidence and prevalence. Although in practice this would be corrected by calibrating the

model to real world data points, the calibration process may in turn result in parameter values

(i.e., for infection rates) being set far off their real world values, so that the further into the

future the model projects, the greater will be the error in its estimates.

Modellers may wish to consider using an algorithm such as CSPM that usually offers a

good trade-off between speed and approximation of the distribution of relationships in the

population being studied. Ideally a simulation should have a similar number of agents as the

population being studied. This is often impractical though, and even where it is practical, the

poor quality of data on the distribution of partnerships based on sex, age, sexual orientation

and even the role of geographical location, is a much bigger problem.

Of course, if the risk of infection per serodiscordant partnership is low then using a large

population for the microsimulation may be unnecessary. The same is true if the simulation

begins when an epidemic is already established.

Limitations

Our analysis has several limitations:

• The DATA strategy is based on sex survey data, with the well-documented problems that

this presents [21].

• Our modelling of casual relationships is unsophisticated, and possibly overstates casual sex

as one-night stands and understates short-term relationships involving a few sexual encoun-

ters. However, our results appear to be robust when accounting for this by greatly reducing

the number of casual partnerships.

• We did not model varying the risk of transmission over the course of an infection, for exam-

ple, the higher transmission risk of HIV during primary infection. This would be particularly

interesting to examine in research that extends our work.
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• We did not model concurrent relationships, although they might play a significant role in

the spread of STIs [22]. This too would be an interesting way to extend our research.

• As noted in the introduction, we did not model birth and mortality, healing, condom use,

circumcision and other factors, as including these would confuse the analysis and make it

difficult to isolate the role of the partnership market and breakup strategy, and pair-match-

ing algorithm.

• We have not done systematic subgroup analysis, e.g. the effect of the different algorithms on

a particular 5-year age group or sexual orientation.

• In our base case analyses, we included a random effect for individual behavior associated

with unobserved characteristics of the agents. For some agents, this factor might dominate

the influence of the observable characteristics (e.g., age). However, there were no significant

differences when we compared these results to analyses that excluded the random effects.

• The base case also included a penalty for previous partners which might not be realistic.

Generally, the pairfam dataset allows the identification of partnerships with previous part-

ners. As we summarized recurrent partnership episodes in the parameter estimation, we did

not encourage partnerships with previous partners to be consistent with the parameter esti-

mation. This assumption may influence the results, but removing the penalty on previous

partnerships in a sensitivity analysis did not produce significantly different results.

In preparing this paper we ran tens of thousands of simulations with the number of agents

ranging from 10,000 to as high as 40 million using affordable consumer hardware. The feasibil-

ity of this is likely of interest to other modellers; Appendix 1 contains further notes on our

implementation.

Further research needs to be done refining the cluster function of CSPM, as well as identify-

ing ideal values of k (for RKPM as well) and the number of clusters. A deeper analysis of poor

matches, and how frequently to block or allow them is also needed. We also recommend

examining the effect of using the CSPM algorithm to model HPV or gonorrhoea in real world

populations, using different numbers of agents in the model.

Mismatches in CSPM are more likely to occur between agents in neighbouring clusters. A

possible pitfall of CSPM—depending on the domain being studied and how the clustering is

implemented—is that the neighbourhood of clusters is arbitrary, and therefore the mismatches

will mirror the arbitrariness of the neighbouring clusters. If this is the case, the clusters them-

selves should be shuffled on each time step of the simulation.

Conclusion

Microsimulations have become a popular method for the analysis of the spread of STIs and for

the evaluation of interventions to alleviate them. While the effects of structural assumptions

about pair formation and infectivity are well known for the classical method of ODEs, the anal-

ysis of design decisions of microsimulations are less well understood.

Our findings contribute to closing this gap by providing insights into the effect of different

matching algorithms for various infection rates. Additionally, we found that there exist fast

pair-matching algorithms that provide a practical way for microsimulation modellers to

account for more complex sexual behaviour and without limiting the population to a small

subgroup. Our findings may also inform reviewers of STI microsimulations about the extent

to which the pair matching methodology can influence the results of a model.
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