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A B S T R A C T   

Conceptualizing mental disorders as deviations from normative functioning provides a statistical perspective for 
understanding the individual heterogeneity underlying psychiatric disorders. To broaden the understanding of 
the idiosyncrasy of brain aging in schizophrenia, we introduced an imaging-derived brain age paradigm com-
bined with normative modeling as novel brain age metrics. We constructed brain age models based on GM, WM, 
and their combination (multimodality) features of 482 normal participants. The normalized predicted age dif-
ference (nPAD) was estimated in 147 individuals with schizophrenia and their 130 demographically matched 
controls through normative models of brain age metrics and compared between the groups. Regression analyses 
were also performed to investigate the associations of nPAD with illness duration, onset age, symptom severity, 
and intelligence quotient. Finally, regional contributions to advanced brain aging in schizophrenia were inves-
tigated. The results showed that the individuals exhibited significantly higher nPAD (P < 0.001), indicating 
advanced normative brain age than the normal controls in GM, WM, and multimodality models. The nPAD 
measure based on WM was positively associated with the negative symptom score (P = 0.009), and negatively 
associated with the intelligence quotient (P = 0.039) and onset age (P = 0.006). The imaging features that 
contributed to nPAD mostly involved the prefrontal, temporal, and parietal lobes, especially the precuneus and 
uncinate fasciculus. This study demonstrates that normative brain age metrics could detect advanced brain aging 
and associated clinical and neuroanatomical features in schizophrenia. The proposed nPAD measures may be 
useful to investigate aberrant brain aging in mental disorders and their brain-phenotype relationships.   

1. Introduction 

Schizophrenia (SZ) undergoes neurobiological alterations that are 
involved in both neurodevelopmental and neurodegenerative processes 
(Kochunov and Hong, 2014; Pasternak et al., 2012; Rapoport et al., 
2012) and manifests various impairments in brain structure and func-
tion (Brugger and Howes, 2017; Lawrie et al., 2008; Padmanabhan et al., 
2015). Neuroimaging studies reported pronounced cerebral gray matter 

(GM) volume loss (Torres et al., 2016; Vita et al., 2012) and cortical 
thickness reduction primarily in the frontal and temporal areas (van 
Haren et al., 2011), resembling the changes in normal aging (Lemaitre 
et al., 2012). Diffusion magnetic resonance imaging (MRI) constantly 
reported altered mesostructure of white matter (WM) in SZ, which re-
flects the disconnection between cortical areas (Chen et al., 2018; Huang 
et al., 2018; Kelly et al., 2018; Wu et al., 2015a) and may result in 
cognitive impairments (Nazeri et al., 2013). Voineskos et al. reported that 
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WM mesostructure was reduced in individuals with SZ, and the reduc-
tion pattern was similar to that in relatively older normal controls (NC) 
(Voineskos et al., 2010). These findings imply that individuals with SZ 
might potentially have an older brain. 

A neuroimaging-based brain age paradigm has been widely used to 
investigate aberrant brain aging in neurological diseases and psychiatric 
disorders (Chen et al., 2019; Cole and Franke, 2017; Kaufmann et al., 
2019; Koutsouleris et al., 2014). Using modern machine learning tech-
niques, brain scans are transformed from high-dimensional neuro-
imaging features to a concise brain age marker. The established model 
can predict other individuals’ brain age. The predicted age difference 
(PAD), defined as the difference between an individual’s brain age and 
chronological age, is commonly used to indicate the brain aging status 
(Cole et al., 2015). Depending on the modality of neuroimaging data, the 
derived PAD reflects modality-specific brain aging. In individuals with 
SZ, GM-based brain age measures have demonstrated apparent brain 
aging in both early and chronic stages (Hajek et al., 2019; Koutsouleris 
et al., 2014; Nenadic et al., 2017; Schnack et al., 2016). It was reported 
that accelerated brain aging occurred in the early stage of the disease 
course (Schnack et al., 2016). Also, the extent of advanced brain age 
might be correlated with polygenic risk for SZ (Teeuw et al., 2021). In 
addition, advanced WM aging has been observed in SZ by using diffusion 
MRI techniques (Tonnesen et al., 2020; Wang et al., 2021). Overall, 
these findings suggest that advanced brain aging exists in individuals 
with SZ compared to the normal (Ballester et al., 2021; Koutsouleris 
et al., 2014; Nenadić et al., 2017), but the degree of advanced brain 
aging is heterogeneous and may vary with clinical outcomes such as 
symptom severity and cognitive deficit (Koutsouleris et al., 2014; 
Schnack et al., 2016; Wang et al., 2021). 

Recent research has demonstrated that conceptualizing mental dis-
orders as deviations from normative functioning illustrates a new 
perspective to investigate the heterogeneous neurobiology underlying 
psychiatric disorders at an individual level (Lv et al., 2021; Marquand 
et al., 2019; Wolfers et al., 2018). The normative modeling applied to 
neuroimaging features of a large-scale cognitively normal population- 
based cohort defines a normative range of neurobiological idiosyn-
crasies such as GM volume and WM mesostructure, providing person-
alized statistical inferences and being useful for parsing the 
heterogeneity in clinical cohorts. This approach may also offer a new 
viewpoint when investigating the aberrant brain aging in SZ. Hence, in 
this study, we leveraged the notion of normative modeling and applied it 
to the brain age paradigm, attempting to devise a more generalizable 
brain age metric for the investigation of brain aging in SZ on an indi-
vidual basis. We introduced a brain age measure named “normalized 
PAD” (nPAD); nPAD was defined as a normalized difference between an 
individual’s and his/her demographic-matched peers’ brain age. By 
definition, nPAD indicates the deviation of an individual’s brain age 
from what is defined in the reference cohort, while conventional PAD is 
defined as the difference between one’s predicted age and chronological 
age. It is intuitive to quantify the extent of brain aging, but it lacks an 
objective reference when the inference is interpreted on an individual 
basis. For example, PAD may not be equivalent across the lifespan; the 
same amount of increased PAD at different stages of age might not be 
biologically identical. Furthermore, PAD directly derived from brain age 
models has an intrinsic statistical bias (Smith et al., 2019); that is, the 
PAD is correlated with chronological age. This hinders the unbiased 
estimation of correlation between PAD measures and age-related vari-
ables of interest such as duration of illness. Although some correction 
methods have been proposed to remove the bias based on a regression 
adjustment of the PAD (Beheshti et al., 2019; de Lange and Cole, 2020), 
these methods are prone to artificially inflate the model accuracy and 
have inherent circularity of age and age prediction, leading to over- or 
underestimated results. (Butler et al., 2021). The framework of nPAD 
might offer a solution to these limitations; nPAD is theoretically free of 
age-related bias in terms of its definition because the reference of 
comparison of one’s brain age is the peers’ brain age. Therefore, a fair 

comparison between different modalities or different cohorts can be 
made, and the correlation of brain age measures with age-related clin-
ical variables can be estimated more reliably. 

To capture a more comprehensive picture of brain aging in SZ from 
the standpoint of normative models, we constructed three brain age 
models based on the neuroimaging features of GM, WM, and their 
combination (i.e., multimodality) from two imaging modalities, and the 
subsequent normative models of brain age were established for the 
estimation of nPAD. We compared nPAD between individuals with SZ 
and NC. In addition, the clinical significance of advanced brain aging in 
SZ was investigated to explore the associations of nPAD with various 
phenotypes, including illness duration, onset age, symptom severity, 
and general cognition (i.e., full-scale intelligence quotient, FSIQ). Lastly, 
we investigated the GM and WM features that uniquely contributed to 
the advanced brain aging in SZ by testing the effect of group-by-feature 
interaction on nPAD. The identified key features allowed us to under-
stand the structural underpinnings of aberrant brain aging in SZ. 

2. Materials and methods 

2.1. Participants 

Individuals with SZ (N = 147; mean age = 31.1; standard deviation 
[SD] = 8.3; range 16–62; sex: 46.3% men; education: 14.3 [2.5] years) 
were consecutively recruited from the outpatient clinic of the Depart-
ment of Psychiatry of National Taiwan University Hospital (NTUH). 
Individuals with SZ were diagnosed based on symptoms and clinical 
presentations which met the criteria of the Diagnostic and Statistical 
Manual of Mental Disorders-5 (DSM-5). Diagnoses of SZ were made after 
comprehensive chart reviews and personal interviews performed by the 
experienced psychiatrists listed in the author byline. Individuals were 
excluded if they had schizoaffective disorder, bipolar disorder, sub-
stance abuse, intellectual disability, major systemic disease, or neuro-
logical diseases. Baseline symptoms were assessed using the Positive and 
Negative Syndrome Scale (PANSS), and FSIQ was measured using the 
Wechsler Adult Intelligence Scale—Third Edition (Chen et al., 2008; 
Kaufman and Lichtenberger, 2005). We also enrolled NC (N = 130; 
mean age = 30.8; SD = 8.5; range 16–62; sex: 48.5% men; education: 
15.9 [1.2] years) who met the following inclusion criteria: MMSE score 
of ≥ 25 and none of the following: self-reported substance abuse, 
apparent brain injury and surgery, current serious health problems, and 
history of diagnosed neurological diseases or psychiatric disorders. 

To construct brain age prediction models, we obtained brain images 
of 482 cognitively normal individuals (mean age = 36.9, SD = 19.1, 
range = 14–92; sex: 53.1% women) from the NTUH image database 
(Chen et al., 2020), including T1-weighted images and diffusion spec-
trum imaging (DSI) datasets, as the training set. Another independent set 
of 70 cognitively normal individuals (mean age = 36.8, SD = 19.9, 
range = 14–83; sex: 52.2% women) from the database was used to test 
the reproducibility of the brain age models. All 552 cognitively normal 
participants met the aforementioned inclusion criteria for NC (For 
detailed information, please refer to Supplementary Material S1.1). The 
Institutional Review Board of NTUH approved the study, and all par-
ticipants provided written informed consent. 

2.2. MRI image acquisition 

All brain images used in this study were acquired on the same 3-Tesla 
MRI scanner (Tim Trio; Siemens, Erlangen, Germany) with a 32-channel 
phased-array head coil at the National Taiwan University Hospital. 
High-resolution T1-weighted imaging was performed using a three- 
dimensional magnetization-prepared rapid gradient-echo sequence 
with the isotropic spatial resolution of 1 mm^3. DSI was performed using 
a pulsed-gradient spin-echo echo-planar imaging sequence with a twice- 
refocused balanced echo that reduced distortions induced by the eddy 
current (Reese et al., 2003); the imaging parameters were bmax = 4000 s/ 
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mm^2 and in-plane spatial resolution = 2.5 mm^2. The diffusion- 
encoding acquisition scheme comprised 102 diffusion-encoding gradi-
ents corresponding to the Cartesian grids in the half-sphere of the three- 
dimensional diffusion-encoding space (Kuo et al., 2008). Each MRI 
scanning session was completed within 20 min. The details of imaging 
parameters are provided in Supplementary Material S2.1. 

2.3. Image analysis 

Before image data analysis, all T1-weighted images and DSI data 
underwent quality assurance procedures, detailed in Supplementary 
Materials S2.2. All structural and diffusion MRI datasets used in this 
study had satisfactory image quality. To extract GM features from the 
T1-weighted images, voxel-based morphometry and surface-based 
morphometry were performed using Computational Anatomy Toolbox 
(CAT12) (Gaser and Dahnke, 2016), an extension of Statistical Para-
metric Mapping 12 (Ashburner et al., 2014) (Fig. 1A). Voxel-based 
morphometry was applied to estimate voxel-wise regional volume fea-
tures according to the LONI probabilistic brain atlas, which contains 56 
regions of interest (ROIs) (Shattuck et al., 2008). Surface-based 
morphometry was employed to measure cortical thickness through 
projection-based thickness estimation (Dahnke et al., 2012). The esti-
mated thickness features were sampled according to the 68 cortical ROIs 
included in the Desikan–Killiany atlas (Desikan et al., 2006). A total of 
56 volumetric and 68 cortical thickness features were used to estimate 
the GM-based brain age. Please see Supplementary Materials S2.3 for 
details of the image processing. 

WM features were extracted from DSI datasets using an in-house 
analytic pipeline to transform DSI data into tract-specific features 
(Chen et al., 2015) (Fig. 1A). The algorithm is detailed in Supplementary 
Materials S2.3. Briefly, diffusion indices, i.e., generalized fractional 
anisotropy (GFA) and mean diffusivity (MD), were reconstructed from 
DSI data using a regularized version of the mean apparent propagator 
MRI algorithm (Hsu and Tseng, 2018; Özarslan et al., 2013). A diffusion 
MRI registration algorithm (Hsu et al., 2012) was employed to minimize 
the variation of brain morphology across subjects. To sample tract- 
specific features, the resulting transformation maps were used to proj-
ect the tract bundle coordinates predefined on the ICBM152 template in 
the MNI space to individuals’ diffusion index maps in the native space. 
The pipeline produced 45 tract-specific features for each index from 
each participant. Consequently, 45 GFA and 45 MD features were 

obtained to estimate WM-based brain age. The parcellation of GM and 
WM ROIs is detailed in Supplementary eTable. 

2.4. Brain age modeling and nPAD calculation 

The GM, WM, and multimodal brain age prediction models were 
constructed using the training set’s brain features, respectively (Fig. 1B). 
Sex was also included as a predictor. We adopted a 12-layer feedforward 
cascade neural network for the architecture of the brain age models 
(Chen et al., 2020) and used a 10-fold cross-validation procedure to 
assess model performance in the training phase. We then evaluated the 
reproducibility of the brain age models using an independent test set. 
Pearson’s correlation coefficient and mean absolute error (MAE) be-
tween predicted age and chronological age were calculated to quantify 
the model performance. Please see Supplementary Materials S1.2 for 
detailed descriptions of brain age modeling. 

After the model performance was determined, we used the same 
training set to construct normative models to transform individuals’ 
brain-predicted age to nPAD scores (Fig. 1B). Gaussian process regres-
sion (GPR) (Rasmussen and Williams, 2004) was used to obtain 
regression estimates for the training set; the independent variables were 
chronological age and sex, and the dependent variable was brain- 
predicted age. The GPR model estimated the mean and SD of the 
training sample’s brain-predicted age at a certain age and sex. In the 
model inference phase, an individual’s brain-predicted age was trans-
formed to nPAD by the formula: 

nPAD =
Predicted Age − x̂peers

Ŝpeers
,

where x̂peers and Ŝpeers were the estimated mean and SD of brain- 
predicted age of the peers with the same age and sex derived from the 
GPR normative model, respectively. The additional information on the 
estimation and validation of nPAD is provided in the Supplementary 
Materials S3. This normalization procedure is concordant with the 
notion of normative modeling (Marquand et al., 2016; Tung et al., 
2021). Given that nPAD is a standardized value (i.e., Z-score), it is free of 
age-related bias (Smith et al., 2019) and remains the biological meaning 
of PAD. A higher value of PAD indicates that a person’s brain age is older 
than his/her chronological age; in contrast, a higher value of nPAD means 
that a person’s brain age is older than his/her peers’ brain-predicted age 

Fig. 1. Processing pipeline and conceptual explanation of brain age. Subplot A illustrates the imaging processing for the T1-weighted images and diffusion spectrum 
imaging datasets. Subplot B represents the brain age models established using the data sampled from a normal population. Abbreviations: DK40 = Desikan-Killiany 
atlas; dMRI = diffusion MRI; DSI = diffusion spectrum imaging; GFA = generalized fractional anisotropy; GM = gray matter; LDDMM-DSI = large deformation 
diffeomorphic metric mapping for DSI; LPBA40 = LONI probabilistic brain atlas; MD = mean diffusivity; MPRAGE = magnetization prepared rapid gradient echo; 
MRI = magnetic resonance imaging; NTU-DSI-122 = National Taiwan University DSI template; PAD = predicted age difference; ReMAP-MRI = regularized mean 
apparent propagator MRI; ROI = region of interest; SD = standard deviation; T1w = T1-weighted; WM = white matter. 
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(Fig. 1B, 1C). As a benchmark, we used a well-established bias correction 
approach to calculate the “corrected PAD” (cPAD) (de Lange and Cole, 
2020). 

2.5. Statistical analysis 

Three analyses were performed in the study. The first analysis was 
the comparison of nPAD between SZ and NC; the nPAD scores derived 
from GM, WM, and multimodal models were compared using Analysis of 
Covariance (ANCOVA), adjusting the education factor. The cPAD mea-
sures were also compared using ANCOVA while adjusting sex and edu-
cation factors as a benchmark. Paired t-tests and Pearson’s correlation 
coefficients were employed to examine the difference and correlation, 
respectively, between nPAD-GM- and nPAD-WM scores in individuals 
with SZ and NC. In addition, within the SZ group, the comparison of sex 
difference in nPAD measures was investigated. 

Multiple linear regression analysis was performed to assess the re-
lationships between nPAD (as dependent variables) and clinical phe-
notypes (as independent variables). Three classes of clinical phenotypes 
were analyzed, namely symptom scores (i.e., PANSS positive, negative, 
and general scores), clinical factors (i.e., duration of illness, onset age, 

and antipsychotic dosage), and FSIQ. Three regression models were 
estimated for the three classes. In the FSIQ model, education was 
controlled. 

To investigate regions that uniquely contributed to the advanced 
brain aging in SZ, we fitted multiple linear regression models to the 
nPAD measures. The dependent variable was nPAD (i.e. nPAD-GM or 
nPAD-WM), and the independent variables were an image feature (e.g., 
hippocampal volume), a group index (SZ and NC), an interaction term of 
the image feature with group index, and the covariates, including age, 
sex, and education. The regression model was built for each image 
feature. We tested the significance of the interaction term and calculated 
the effect size using Cohen’s f2. A significant interaction indicated that 
the relationship of the image feature with nPAD metrics was signifi-
cantly distinct between SZ and NC, implying that this image feature was 
a candidate contributor to the aberrant brain aging in SZ. For all the 
analyses, the multiple comparison problem was addressed by Benjamini- 
Hochberg correction (Benjamini and Hochberg, 1995). 

Fig. 2. Scatter plots of the predicted age derived from gray matter (GM), white matter (WM), and multimodal brain age models against chronological age in the 
training set (A, C, E) and test set (B, D, F). Taking the multimodal-based brain age model for illustration, the scatter plots of the predicted age difference (PAD) 
metrics against chronological age are shown in the training set (G, I, K) and test set (H, J, L). Uncorrected PAD in both training and test sets is correlated with 
chronological age, indicating a significant age-related bias. In contrast, normalized PAD does not have the age-related bias, similar to corrected PAD. 
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3. Results 

3.1. Model performance and nPAD evaluation 

We performed 10-fold cross-validation on the training set (N = 482), 
and the brain age models showed a strong linear correlation and low 
MAE between chronological age and predicted age based on GM (ρ =
0.956, MAE = 4.34), WM (ρ = 0.944, MAE = 4.76), and multimodal 
features (ρ = 0.964, MAE = 3.99). The models also accurately predicted 
brain age in the independent test set (N = 70) using GM (ρ = 0.943, 
MAE = 4.69), WM (ρ = 0.967, MAE = 3.95), and multimodal features (ρ 
= 0.969, MAE = 3.97) (Fig. 2A-F). 

Correlation analysis of uncorrected PAD, cPAD, and nPAD against 
chronological age showed that nPAD was free of age-related bias, similar 
to cPAD. However, uncorrected PAD had a significant negative corre-
lation with chronological age in training and test sets (Table 1 & Fig. 2G- 
L). 

3.2. Comparison results of nPAD 

Table 2 summarizes the demographic characteristics of individuals 
with SZ and NC. ANCOVA revealed that all nPAD scores were signifi-
cantly different between SZ and NC (Table 3, Fig. 3A-C), comparable 
with the statistical results obtained from cPAD metrics (Table 3, Fig. 3D- 
F). The results indicated that the individuals with SZ had a significantly 
advanced brain aging that was approximately 1 SD deviated from the 
population norm in terms of GM and WM features. This also suggested 
that the nPAD measures can achieve satisfactory sensitivity of detecting 
aberrant brain aging in SZ as analogous to that of cPAD metrics. Paired t- 
test showed that there was no significant difference between nPAD-GM 
and nPAD-WM in both SZ (t(146) = 1.03, P = 0.304) and NC (t(129) =
-0.07, P = 0.948). Interestingly, a significantly positive correlation was 
found between nPAD-GM and nPAD-WM in SZ (ρ = 0.240, P = 0.004) 
but not in NC (ρ = -0.016, P = 0.858); these two correlation coefficients 
were statistically different (P = 0.033). Moreover, within the SZ group, 
we also compared the sex difference in nPAD measures. We found that 
nPAD-GM and nPAD-Multimodal in men with SZ (nPAD-GM: 1.402 
[1.772]; nPAD-Multimodal: 1.957 [2.121]) were significantly greater (P 
= 0.001 & P = 0.004) than those in women with SZ (nPAD-GM: 0.540 
[1.434]; nPAD-Multimodal: 0.843 [1.521]); however, there was no 
between-sex difference (P = 0.271) in nPAD-WM (men: 0.940 [1.917]; 
women: 0.614 [1.398]). In contrast, there was no sex difference in all 
nPAD measures in the NC group (nPAD-GM: men = 0.078 [1.126], 
women = 0.101 [1.195], P = 1.000; nPAD-WM: men = 0.072 [1.462], 
women = 0.128 [1.615], P = 0.919; nPAD-Multimodal: men = -0.111 
[1.149], women = 0.055 [1.301], P = 1.000). Notably, the P-values 
shown here were corrected for multiple comparisons. 

3.3. Regression analysis of nPAD with phenotypes 

To minimize the bias caused by outliers, we excluded individuals 
whose clinical factors and symptom scores exceeded three SDs (N = 10, 
6.8% of the samples). In the regression model of nPAD with clinical 
factors, the age of onset exhibited a significant negative correlation with 
nPAD-WM. In contrast, the duration of illness and antipsychotic dose did 
not show significant associations with any of the nPAD scores (Table 4). 
In the regression model of nPAD with symptom scores, negative symp-
toms had significantly positive associations with nPAD-WM and nPAD- 
Multimodal (Table 4). In the regression model of nPAD with FSIQ, 
only nPAD-WM was significantly associated with FSIQ, while there was 
a marginal correlation between nPAD-Multimodal and FSIQ (Table 4). 

3.4. Regional impact on advanced brain aging in SZ 

To identify the regions that uniquely contributed to the increased 
nPAD scores in SZ, we fitted multiple linear regression to nPAD mea-
sures and tested the significance of the group-by-image-feature inter-
action for each image feature. A significant interaction denoted that the 
relationship of the image feature with nPAD metrics was significantly 
distinct between SZ and NC, implying that this image feature might have 
a significant impact on the contribution to the advanced brain aging in 
SZ. In the GM features, 24 image features were identified to have sig-
nificant interactions. The features included cortical thickness in the 
bilateral precunei, middle temporal gyri, temporal poles, lateral orbi-
tofrontal gyri, superior parietal gyri, etc. (Table 5). Notably, all the 

Table 1 
Correlations of uncorrected PAD, cPAD, and nPAD with chronological age.  

PAD metrics GM WM Multimodal 

Training set    
Uncorrected 

PAD 
ρ = -0.342, P <
0.001 

ρ = -0.358, P <
0.001 

ρ = -0.287, P <
0.001 

cPAD ρ = -0.031, P =
0.495 

ρ = -0.055, P =
0.226 

ρ = -0.015, P =
0.742 

nPAD ρ = 0.026, P =
0.575 

ρ = -0.016, P =
0.726 

ρ = 0.013, P =
0.781 

Test set    
Uncorrected 

PAD 
ρ = -0.365, P =
0.002 

ρ = -0.397, P =
0.001 

ρ = -0.308, P =
0.009 

cPAD ρ = -0.096, P =
0.429 

ρ = -0.006, P =
0.960 

ρ = -0.017, P =
0.892 

nPAD ρ = -0.031, P =
0.800 

ρ = 0.054, P =
0.656 

ρ = 0.028, P =
0.819 

Abbreviations: cPAD = corrected predicted age difference (PAD); nPAD =
normalized PAD; GM = gray matter; WM = white matter. 

Table 2 
Demographic characteristics of participants in each group.  

Characteristics Individuals 
with SZ 

Normal 
Controls 

P- 
values 

N 147 130  – 
Age (y) 31.1 (8.3) 30.8 (8.5)  0.767 
Age range (y) [16,62] [16,62]  – 
Sex (%) 46.3% men 48.5% men  0.714 
Education (y) 14.3 (2.5) 15.9 (1.2)  <0.001 
Age at onset (y) 23.4 (6.9) –  – 
Disease duration (y) 7.5 (7.0) –  – 
PANSS- positive score 13.1 (5.1) –  – 
PANSS- negative score 15.8 (7.2) –  – 
PANSS- general score 28.2 (8.4) –  – 
Daily antipsychotic dose, mean 

CPZ-equivalent (mg) 
312.8 (269.8) –  – 

FSIQ score 93.8 (12.9) –  – 

Abbreviations: CPZ = chlorpromazine; FSIQ = full-scale intelligence quotient; 
PANSS = the Positive and Negative Syndrome Scale; SZ = schizophrenia. 

Table 3 
Comparisons of various PAD metrics based on different brain age models.  

Brain age metrics SZ (N =
147) 

NC (N =
130) 

F-values Corrected P- 
values 

nPAD-GM 0.939 
(1.651) 

0.090 
(1.158) 

F(1,274) =

11.68 
P = 0.002 

nPAD-WM 0.765 
(1.660) 

0.101 
(1.537) 

F(1,274) =

7.33 
P = 0.007 

nPAD-Multimodal 1.358 
(1.900) 

− 0.027 
(1.228) 

F(1,274) =

29.82 
P < 0.001  

cPAD-GM (years) 5.393 
(9.56) 

0.405 
(6.84) 

F(1,273) =

12.33 
P = 0.001 

cPAD-WM (years) 4.178 
(10.23) 

0.113 
(9.54) 

F(1,273) =

7.06 
P = 0.008 

cPAD-Multimodal 
(years) 

6.030 
(8.96) 

− 0.576 
(5.92) 

F(1,273) =

31.16 
P < 0.001 

Abbreviations: SZ = schizophrenia; NC = normal controls; cPAD = corrected 
predicted age difference (PAD); nPAD = normalized PAD; GM = gray matter; 
WM = white matter. 
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identified GM features belonged to cortical thickness. In WM, the 
identified features included MD in the bilateral uncinate fasciculi, right 
arcuate fasciculus, right inferior longitudinal fasciculus, right fornix, left 
perpendicular fasciculus, and the corpus callosum to the parietal lobes, 
and GFA in the right frontostriatal circuit to the prefrontal cortex only 
(Table 5). To visualize the distribution of these distinct features, the 

effect size of the interaction term (i.e. Cohen’s f2) was color-coded in the 
corresponding brain regions (Fig. 4). One may notice that the order of 
the features shown in Fig. 4A & 4B is slightly different from that shown 
in Table 5. This is due to the fact that the ranking in Fig. 4 was merely 
based on the value of the effect size (i.e. Cohen’s f2), while the features 
listed in Table 5 were the features which showed significance after 

Fig. 3. Distribution plots of normalized predicted age difference (A, B, C) and beeswarm plots of corrected predicted age difference (D, E, F) in schizophrenia (SZ) 
and normal controls (NC) based on different brain age models. The horizontal and vertical lines in the beeswarm dots indicate median and interquartile range, 
respectively. Abbreviations: PAD = predicted age difference; GM = gray matter; WM = white matter. 

Table 4 
Regression models of nPAD with clinical factors, symptom scores, and full-scale intelligence quotient.   

nPAD-GM nPAD-WM nPAD-Multimodal  

Estimate SE Corrected 
P-values 

Estimate SE Corrected 
P-values 

Estimate SE Corrected 
P-values 

Models for clinical factors 
Duration of illness  0.0075  0.0225  1.000  − 0.0252  0.0208  0.687  − 0.0011  0.0262  0.967 
Onset age  − 0.0219  0.0250  0.383  ¡0.0731  0.0232  0.006*  − 0.0463  0.0291  0.228 
Antipsychotic dose  0.0007  0.0007  0.334  0.0010  0.0007  0.154  0.0012  0.0009  0.158 
Models for symptom severity 
Positive  0.0145  0.0379  0.703  0.0100  0.0346  0.774  0.0384  0.0439  0.383 
Negative  0.0327  0.0274  0.234  0.0761  0.0250  0.009*  0.0741  0.0317  0.042* 
General  − 0.0036  0.0254  0.886  − 0.0109  0.0232  1.000  − 0.0230  0.0294  1.000 
Models for full-scale intelligence quotient 
Full-scale intelligence quotient  − 0.0170  0.0132  0.203  ¡0.0303  0.0119  0.039*  − 0.0308  0.0150  0.086 

*: with statistical significance after adjusted by Benjamini-Hochberg correction. 
Note: Ten individuals (6.8% of the samples) whose clinical factors and symptom scores exceeded 3 SDs were excluded. 
Abbreviations: nPAD = normalized predicted age difference; GM = gray matter; WM = white matter; SE = standard error. 
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statistical testing and multiple comparison correction. 

4. Discussion 

To investigate brain aging in SZ, we applied normative modeling to 
the brain age paradigm and estimated a normative brain age metric 
nPAD, which highlighted an individual’s brain aging deviation from a 
population-based norm. In this study, we validated that the nPAD 
measures can attain satisfactory sensitivity of detecting aberrant brain 
aging in SZ comparable to the popular brain age metrics used in previous 
studies cPAD. The nPAD measures revealed multifaceted advanced brain 
aging in SZ. Particularly, nPAD-Multimodal best distinguished the in-
dividuals from normal controls, confirming the superior sensitivity of a 
multimodal image marker (Cole, 2020). Among the three measures, 

nPAD-WM revealed significant associations with the age of onset, 
negative symptom scores, and FSIQ. Moreover, GM and WM regions that 
distinctly contributed to advanced brain aging mainly involved specific 
prefrontal, temporal, and parietal areas, revealing the neuroanatomical 
underpinnings of brain aging in SZ. 

Normative modeling of neuroimaging data is an emerging approach 
to quantifying biological idiosyncrasy at an individual level with respect 
to a reference norm (Marquand et al., 2019). This approach has been 
widely used in multiple fields, such as the normative growth charts in 
bone densitometry (Van der Sluis et al., 2002). Here, we constructed 
normative models for brain age measures by applying GPR to a large 
sample of normal participants (n = 482) and applied the model to in-
dividuals with SZ, examining where each individual was located in the 
normal continuum (Marquand et al., 2016). To our knowledge, this is 
the first study introducing normative modeling to the brain age para-
digm. A regular PAD quantifies the difference between individuals’ 
brain-predicted age and their chronological age. However, the biolog-
ical interpretation of PAD might vary at different stages of chronological 
age. For instance, PAD of 5 years at the age of 30 might be biologically 
different from that at 60. The biological inference of this type of brain 
age metrics should have a reference group to compare the distance be-
tween normal and abnormal status. In contrast, nPAD is a normalized 
difference of brain-predicted age between an individual and his/her 
matched peers, so it is interpreted as an observed deviation of brain age 
from a population norm. This provides an individualized quantification 
of brain age with self-explanatory meaning to define the abnormality of 
brain aging from a statistical perspective. Furthermore, nPAD is free 
from linear and non-linear age-related bias (Supplementary Material 
S3). This implies that the nPAD metrics can handle the bias caused by a 
more complicated scenario (e.g. high-dimensional data with multiple 
interactions). Hence, nPAD would be more robust than regular PAD 
when compared across cohorts, allowing us to study the association of 
brain age metrics with age-related variables such as duration of illness. 
Moreover, the normalization procedure harmonizes prediction errors 
across different brain age models so that nPAD can be directly compared 
across modalities more reasonably. Also, the normalization in the nPAD 
estimation incorporates the marginal errors derived from the normative 
model so that the heteroscedasticity in the uncorrected PAD can be 
mitigated. By introducing the normative model, the nPAD metric is 
arguably a more generalizable marker to represent an individual’s brain 
aging status. In the present study, we adopted the group comparison 
design merely to validate nPAD, and did not fully demonstrate the hy-
pothetical superiority of nPAD. Besides the preliminary results shown in 
the present study, further research is required to validate the effective-
ness of individual inference based on the metrics. 

Regarding the investigation in SZ, we discovered that the men with 
SZ had apparently more advanced brain age compared to the women 
with SZ, particularly in GM features. It has been known that sex dif-
ferences generally exist in SZ in terms of etiology, age of onset, symp-
toms, and brain structures (Abel et al., 2010; Falkenburg and Tracy, 
2014; Li et al., 2016). Men with SZ tend to show an earlier age at onset 
and a higher propensity to negative symptoms (Falkenburg and Tracy, 
2014; Li et al., 2016). Previous review studies summarized that smaller 
medial temporal volumes, superior temporal gyrus, Heschl’s gyrus, 
prefrontal lobe, etc. were commonly observed in males with SZ, 
although findings were not wholly consistent (Abel et al., 2010; Men-
drek and Mancini-Marïe, 2016). With respect to the sex difference in 
brain age, one study reported that men with SZ had relatively advanced 
GM brain age (PAD = 3.37 years) than women with SZ (PAD = 1.07 
years) (Nenadić et al., 2017); however, another study claimed that there 
was no sex difference in GM brain age (Lee et al., 2021). Our results 
demonstrated that males with SZ had more advanced GM and multi-
modal brain age than females, supporting the sex difference of brain 
aging in SZ. 

The brain age measures derived from various imaging modalities 
reflect different aspects of neurophysiological mechanisms of brain 

Table 5 
The image features with significant interaction terms.  

Measures Anatomical regions Cohen’s 
f2 

Coefficients of 
interaction term 

Corrected P- 
values 

Gray Matter Features 
CT L precuneus  0.086  − 5.740  0.003 
CT R middle temporal 

gyrus  
0.080  − 3.966  0.008 

CT L superior temporal 
gyrus  

0.075  − 4.118  0.009 

CT L temporal pole  0.071  − 1.962  0.007 
CT R lateral 

orbitofrontal gyrus  
0.070  − 3.105  0.020 

CT R temporal pole  0.069  − 1.935  0.008 
CT L middle temporal 

gyrus  
0.069  − 3.275  0.018 

CT L superior parietal 
gyrus  

0.065  − 4.388  0.021 

CT R pars triangularis  0.061  − 3.845  0.020 
CT R inferior temporal 

gyrus  
0.061  − 2.910  0.021 

CT R pars orbitalis  0.059  − 2.444  0.025 
CT R superior frontal 

gyrus  
0.057  − 4.085  0.021 

CT L postcentral gyrus  0.057  − 3.932  0.013 
CT L cuneus  0.056  − 3.673  0.018 
CT R caudal middle 

frontal gyrus  
0.056  − 3.153  0.034 

CT L fusiform gyrus  0.054  − 3.108  0.033 
CT L pars opercularis  0.053  − 4.159  0.009 
CT R posterior cingulate 

gyrus  
0.052  − 3.817  0.031 

CT L lateral orbitofrontal 
gyrus  

0.051  − 3.150  0.028 

CT R rostral middle 
frontal gyrus  

0.049  − 3.998  0.032 

CT L supramarginal 
gyrus  

0.048  − 3.858  0.033 

CT R superior parietal 
gyrus  

0.047  − 4.040  0.037 

CT L pars orbitalis  0.046  − 2.455  0.035 
CT R precuneus  0.036  − 3.427  0.045 
White Matter Features 
MD R uncinate fasciculus  0.085  28.111  0.002 
MD R arcuate fasciculus  0.057  31.298  0.036 
MD R inferior 

longitudinal 
fasciculus  

0.051  22.917  0.039 

MD corpus callosum to 
parietal lobes  

0.042  7.026  0.047 

MD L uncinate fasciculus  0.040  17.717  0.048 
MD L perpendicular 

fasciculus  
0.033  14.504  0.045 

MD R fornix  0.030  2.541  0.043 
GFA R frontostriatal 

circuit to prefrontal 
cortex  

0.028  − 21.814  0.047 

Abbreviations: CT = cortical thickness; GFA = generalized fractional anisotropy; 
MD = mean diffusivity; L = left; R = right. 
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aging (Cole, 2020). We found that nPAD-GM was not correlated with 
nPAD-WM in NC, but it was correlated with nPAD-WM in SZ, implying 
that the disease-induced advanced brain aging processes in GM and WM 
might be correlated. Previous studies reported that impaired WM mes-
ostructure was correlated with GM reduction in multiple cortical and 
subcortical areas in SZ, suggesting a potential covariation of neuropa-
thology between GM and WM regions (Miyata et al., 2009). Neverthe-
less, further study addressing the biological correlation between 
modalities is warranted to confirm the relationship modulated by the 
disorder. 

Our results of advanced GM aging replicate the previous findings 
which reported that GM brain age in SZ was 3 to 5 years older than that 
in normal controls (Koutsouleris et al., 2014; Nenadić et al., 2017; 
Schnack et al., 2016). Based on the nPAD estimation, the discrepancy of 
5 years is approximately one SD above the mean of the reference 

population. Among the GM features, we identified 24 GM features that 
had distinct contributions to nPAD-GM in SZ, including the bilateral 
precunei, middle temporal gyri, temporal poles, lateral orbitofrontal 
gyri, and superior parietal gyri, etc. (Table 5). The identified features 
were all the cortical thickness measures, implying an important role of 
cortical thickness in driving GM aging in SZ. When referring to the 
normal relationship between neuroanatomical features and brain age, 
the results of the interaction terms indicate that the increase in GM brain 
age relates to reduced cortical thickness in SZ in these regions. Among 
them, the alteration of the left precuneus was most evident. The pre-
cuneus is involved in neuropsychological processes causing impaired 
social perception and poor insight which are known to be affected in SZ 
(Cooke et al., 2008). One study demonstrated that the effect of promi-
nent susceptibility genes for SZ was related to the topological changes of 
the precuneus (Wei et al., 2015). In addition, reduced superior and 

Fig. 4. Bar charts of regional importance and illustration of corresponding brain maps in schizophrenia. The bar charts show the regions of the top 20 important 
features contributing to the normalized PAD scores of gray matter (A) and white matter (B). The color spectrum of effect size (Cohen’s f2) encodes the importance of 
feature contribution in the brain maps of volume, thickness, generalized fractional anisotropy (GFA), and mean diffusivity (MD). To best contrast the regional 
difference within a certain feature type, the color scale is different across feature types. For abbreviations of anatomical regions, please see Supplementary eTable. 
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middle temporal gyri in SZ were also reported in multiple studies (Van 
Erp et al., 2018; van Haren et al., 2011), especially in individuals with 
poor outcomes (van Haren et al., 2011). Similarly, the aberrant topo-
logical feature of the temporal pole was shown in a large-scale study in 
SZ (Van Erp et al., 2018), and this was corroborated by longitudinal 
findings showing abnormality at disease onset and progressive aberra-
tion afterward (Lee et al., 2016). Moreover, altered lateral orbitofrontal 
gyrus and pars opercularis were also noted in SZ (Walton et al., 2018). 
Taken together, the GM features that most distinctly contributed to 
advanced brain aging in SZ are consistent with the impaired cortical loci 
typically found in SZ. 

Besides GM, we found advanced WM aging in SZ, consistent with the 
study discovering abnormal WM aging in SZ (Cetin-Karayumak et al., 
2019). Notably, we identified 8 WM features that exhibited distinct 
contributions to brain aging in SZ. The features included MD in the 
bilateral uncinate fasciculi, right arcuate fasciculus, right inferior lon-
gitudinal fasciculus, right fornix, left perpendicular fasciculus, and the 
corpus callosum to the parietal lobes, and GFA in the right frontostriatal 
circuit to the prefrontal cortex (Table 5). The results of the interaction 
suggest that the increase in WM brain age corresponded to increased MD 
and decreased GFA in SZ in the identified tract bundles compared with 
normal behavior. Among them, the right uncinate fasciculus was the 
most significant contributor to advanced WM aging. Disruptions in 
structural connectivity between frontal and temporal lobes have been 
implicated in SZ symptoms, including impaired visual attention and 
verbal abstraction (Kubicki et al., 2002). Individuals with SZ showed 
impaired WM mesostructure in bilateral uncinate fasciculi, and the tract 
mesostructure was associated with sensorimotor dexterity, emotion, and 
clinical remission (Huang et al., 2018; Jung et al., 2020; Singh et al., 
2016). Another tract bundle connecting the frontal and temporal lobes, 
the right arcuate fasciculus, was altered in individuals with SZ and their 
unaffected siblings (Wu et al., 2015b). Our findings indicate that the 
fronto-temporal tract bundles commonly reported in SZ are key con-
tributors to aberrant WM aging. Besides, other long-range fibers such as 
the inferior longitudinal fasciculus and corpus callosum should also be 
considered as potential markers of WM aging in SZ. 

Considered as a neurodevelopmental disorder, SZ often manifests 
before the full maturation of WM (Duchatel et al., 2019). We found that 
some of the affected tracts, such as the fornix and inferior longitudinal 
fasciculus, mature in early adulthood (Lebel et al., 2012); this coincides 
with the time of peak risk for SZ (Di Biase et al., 2020; Ellison-Wright 
and Bullmore, 2009). It has been hypothesized that developmental 
timing might confer increased susceptibility to disruption of particular 
tracts (Di Biase et al., 2020). A stall in WM maturation may trigger 
psychosis (Carletti et al., 2012; Kochunov and Hong, 2014), and this 
would lead to an observed onset-related decline in WM mesostructure 
(Carletti et al., 2012). In our results, nPAD-WM was negatively corre-
lated with the onset age, indicating that earlier onset age corresponds to 
more advanced WM brain age, which suggests that the earlier the impact 
on brain maturation, the older the brain appears. 

From the perspective of brain-behavior relationships, different 
symptom dimensions of SZ might manifest various impairments in 
certain structure dimensions. Previous studies reported that brain age 
based on GM features might be associated with negative symptoms 
(Koutsouleris et al., 2014), PANSS total score (Schnack et al., 2016), and 
global functioning (Schnack et al., 2016). In our results, nPAD-WM and 
nPAD-Multimodal were correlated with the negative symptom sub-
scales. Significant impairment of WM mesostructure in SZ has been re-
ported in widespread tract bundles involving the uncinate fasciculi 
(Kubicki et al., 2002), inferior longitudinal fasciculi (Clark et al., 2011), 
corpus callosum (Nakamura et al., 2012), and other fiber bundles (Bopp 
et al., 2017), and the impairment was found to be correlated with the 
severity of negative symptoms (Bijanki et al., 2015; Bopp et al., 2017) 
and cognitive deficits (Castro-de-Araujo et al., 2018; Liu et al., 2013). 
Consistently, our results indicate that advanced WM brain age in SZ 
implicates worse cognitive functioning and negative symptoms. 

However, it should be noted that different symptoms and cognitive 
impairment might arise or disappear in association with acute exacer-
bations in SZ and fluctuate in severity in chronic individuals (Bopp et al., 
2017), leading to heterogeneity in biological correlation with brain 
structures. Regarding the time course of brain aging in SZ, a large- 
sample longitudinal study reported that aberrant brain aging in SZ 
progressed fast shortly after the disease onset within 5 years (Schnack 
et al., 2016), suggesting that accelerated brain aging in SZ existed. 
However, in a much longer scope, SZ might have relatively stable brain 
aging following acute psychosis (Schnack et al., 2016; Shahab et al., 
2019), and this speculation is compatible with our null results of the 
association between illness duration and brain age. 

The study has limitations. Our preliminary findings were derived 
from the cross-sectional design and await validation with a longitudinal 
study. Although no correlation was found between antipsychotic dosage 
and brain age indices, the medication effect might be overlooked by a 
brief estimate of the mean CPZ-equivalent (Fusar-Poli et al., 2013). 
Further research with more detailed medication records is warranted to 
investigate the medication effect on brain aging in SZ. Regarding the 
control for image artifacts such as susceptibility-induced distortion and 
motion artifact, although we adopted quality assurance procedures 
including prospective screening, retrospective analysis, and a two-step 
registration-based framework to ensure that the artifacts would not 
significantly affect the image quality, further study is warranted to 
investigate the impact of artifacts on brain age estimation. 

In conclusion, we incorporate normative modeling into the brain age 
paradigm and introduce nPAD to detect advanced brain aging in SZ. 
Being free of age-related bias, nPAD allows us to explore the relation-
ships between brain age and other age-related phenotypes more reliably. 
It also allows us to assess the status of brain aging across different 
models of modalities and different stages in the lifespan. Therefore, the 
proposed nPAD metrics may be a potential imaging marker for quanti-
fying brain aging status, which is useful to investigate brain-phenotype 
relationships and reflect deviant trajectories of the brain in psychiatric 
or neurological diseases. 
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