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Rotational Diffusion of Soft Vesicles 
Filled by Chiral Active Particles
Jiamin Chen, Yunfeng Hua, Yangwei Jiang, Xiaolin Zhou & Linxi Zhang

We investigate the dynamics of two-dimensional soft vesicles filled with chiral active particles by 
employing the overdamped Langevin dynamics simulation. The unidirectional rotation is observed 
for soft vesicles, and the rotational angular velocity of vesicles depends mainly on the area fraction 
(ρ) and angular velocity (ω) of chiral active particles. There exists an optimal parameter for ω at which 
the rotational angular velocity of vesicle takes its maximal value. Meanwhile, at low concentration the 
continuity of curvature is destroyed seriously by chiral active particles, especially for large ω, and at high 
concentration the chiral active particles cover the vesicle almost uniformly. In addition, the center-of-
mass mean square displacement for vesicles is accompanied by oscillations at short timescales, and the 
oscillation period of diffusion for vesicles is consistent with the rotation period of chiral active particles. 
The diffusion coefficient of vesicle decreases monotonously with increasing the angular velocity ω of 
chiral active particles. Our investigation can provide a few designs for nanofabricated devices that can 
be driven in a unidirectional rotation by chiral active particles or could be used as drug-delivery agent.

Active matter is a rapidly growing subject which has been studied theoretically and experimentally over the past 
few years1–5. A great many biological and physical systems can be referred to as active matter systems, includ-
ing molecular motors6, swimming bacteria7,8, self-propelled colloids9–11, motile cells12,13, and macroscopic ani-
mals14,15. Previous works have demonstrated that active particles which perform spontaneous and sustained 
motion are fundamentally different from passive particles in thermal equilibrium systems. In other words, active 
matter systems move actively by gaining energy from an external source under non-equilibrium conditions. 
Hence, active particles with suitably designed constructions are able to convert energy into desired control of 
function, which have wide potential applications in a diversity of fields, such as drug delivery in medicine16,17. 
More details about microswimmers, propulsion mechanism and application prospects can be found in excellent 
review articles18,19.

In recent years, there are tremendous researches from experiments and computer simulations focused on the 
nanofabricated objects immersed in a bath of randomly swimming bacteria20–22, confirming that asymmetric 
environments can rectify the random motion of self-propelled particles and extract energy accordingly. That is, 
external confinement has a crucial impact on the motion of active particles. In addition, a great number of bio-
logical systems are confined in finite regions, leading to novel phenomena such as swarming23–25, swimming in a 
spiral vortex26, accumulating at walls27,28, and so on. Meanwhile, recent studies have also paid more attention to 
flexible boundaries enclosing active swimmers instead of rigid walls. For instance, the interesting case of active 
Brownian particles constrained within a deformable boundary has been deeply investigated, exhibiting obvious 
shape and displacement fluctuations in soft vesicles filled with active particles29,30.

As mentioned above, dynamics of self-propelled particles has captured the growing interest of various groups. 
In the models of self-propelled particles, it is assumed that the active particles possess uniaxial symmetry and that 
the direction of the self-propulsion is along the axis of symmetry of the particle. Thus active particles tend to ori-
ent along the active force and move in a straight line31. However, asymmetries in self-propulsion mechanism can 
generate a more complex behaviour, the direction of motion and that of the force are no longer aligned and the 
active particles tend to execute circular motion. Such chiral active particles have attracted mounting interest over 
the last few years19,31–35. Microscopy images show that non-tumbling E. coli bacteria swim in circular trajectories 
near planar glass surfaces34, indicating the motion of bacteria close to surfaces differs from the run-and-tumble 
motion in free solution. Active colloidal cell driven by gear-like spinners has also been observed35, which mainly 
focus on the shape control and compartmentalization of cells. Here, we choose spherical self-propelled and 
self-rotated particles without any special design as chiral active particles, and reveal more general organization 
principles of this class of active particles confined by a vesicle.
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Active particles use a wide variety of mechanisms to achieve self-propulsion in liquid environments, and 
swimming at the macroscopic scale heavily relies on the inertia of the surrounding fluid. Hydrodynamic interac-
tions between active particles and their detached vertical structures are the basis of higher swimming (or flying) 
efficiency2,26. In fact, short-range forces and noise dominate the interactions between swimming organisms, and 
the influence of hydrodynamic interactions is negligible36. Only for swimmers in close contact with a surface, the 
hydrodynamic effects become important, favouring long residences time along the walls. However, this effect is 
given also by self-propulsion36. Therefore, hydrodynamic interactions should not change the phenomenology 
qualitatively, and the active particles obey overdamped Langevin dynamics without the hydrodynamic interac-
tions2,29,37–42. That is, we employ the overdamped Langevin dynamics simulations to study the dynamical behav-
iours of soft vesicles filled by spherical self-propelled and self-rotated particles. And the aim of this work is to 
explore how the additional angular velocity of chiral active Brownian particles affects the dynamics of soft vesi-
cles. Owing to the presence of angular velocity for chiral active particles, active particles collide with the vesicle 
edge and consequently drive the vesicles into unidirectional rotation. The rotational angular velocity of vesicles 
depends mainly on the area fraction (ρ) as well as the angular velocity (ω) of chiral active particles. Meanwhile, 
the mean square displacement of the center of mass of vesicles filled with chiral active particles shows that the 
diffusion of vesicles is accompanied by the oscillation at short timescales, and its oscillation period is consistent 
with the rotation period of chiral active particles.

Model and Methods
Molecular dynamics simulations are employed to study the dynamical behaviors of vesicles filled with chiral 
active particles. Chiral active particles are modelled as Lennard-Jones (LJ) spheres with a bead diameter of σ. 
Each chiral active particle moves with a translational velocity V0 for self-propulsion and a counterclockwise angu-
lar velocity ω for self-rotation, performing a circular active Brownian motion. The overdamped dynamics is gov-
erned by Langevin equations for the position ri and the orientation θi of the polar axis ui  = (cosθi, sinθi) of the 
center of the i-th active particle inside the vesicle39–42

γ ξ= − ∇ +d r dt V u U D t/ (1/ ) 2 ( ) (1)i i i i
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0 0
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θ ω ξ= + θd dt D t/ 2 ( ) (2)i i
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where ri are the coordinates of particle, γ is the friction coefficient, V0 is the self-propulsion velocity of chiral 
active particles, and U is the configurational energy. D0 and Dθ denote the translational and rotational diffusion 
coefficients respectively. There exist the relations of γ = kBT/D0 and Dθ = 3D0/σ2 37–42. ξi

T(t) and ξi
R(t) are Gaussian 

white noise with zero mean and satisfy < ξiα
T(t)ξjβ

T(s) > = δijδαβδ(t-s) (α,β = x,y) and < ξi
R(t)ξj

R(s) > = δijδ(t-s), 
respectively43. Here < …. > donates an ensemble average over the distribution of the noise, and δ is the Dirac delta 
function.

To prevent overlap, a shifted and cut-off Lennard-Jones potential ULJ is used for chiral active particles as the 
configurational energy U in eqn (1)44,
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Where r is the distance between any two active particles inside the vesicle, and ε = kBT.
The soft vesicle is modelled as a flexible ring polymer chain composed by L monomers whose diameter and 

mass are the same with the chiral active particles29. Here L represents the vesicle perimeter (i.e. the length of con-
tour) in two-dimensional vesicle model. The equation of motion can also be described as eqn (1) with V0 = 0 for 
monomers of soft vesicles and the configurational potential energy consists of two parts:

= +U U U (4)LJ bond

The LJ potential is similar to eqn (3), and all neighboring monomers for vesicle interact with the bond 
potential44
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where ks is the spring constant, and ri,i+1 is the distance between two neighbouring monomers. The parameters 
are chosen as ks = 4000kBT/σ2, and r0 = σ.

The vesicle moves in the x-y plane of 200σ × 200σ with periodic boundary conditions. The initial configura-
tion of the vesicle is a circle of radius R0 = (2sin(π/L))−1σ and the area fraction of chiral active particles for the 
initial vesicle is determined by ρ = Nσ2/(4R0

2)29. Here N is the number of chiral active particles within the vesicle, 
and for example, N = 1596 for L = 150 and ρ = 0.7. MD simulations are carried out by performing Langevin 
dynamics with the open source software, LAMMPS45. We nondimensionalize the equations of motion using 
σ and ε as basic units of length and energy, and τ0 = σ2/D0 as the unit of time. And the time step is set to be 
τ = 0.0001 τ0. Meanwhile, the parameters are chosen to be D0 = 0.01, Dθ = 0.03, γ = 100, and V0 = 0.5. We have 
performed the simulations with various vesicle perimeters of L = 50, 100, and 150, and various area fractions of 
active particles from ρ = 0.05 to 0.7. Moreover, the angular velocities of chiral active particles are selected from 



www.nature.com/scientificreports/

3Scientific Reports | 7: 15006  | DOI:10.1038/s41598-017-15095-0

ω = 0 to 1.0. The total simulation time for each run in our results is not less than 2 × 108τ. In addition, all the sim-
ulation snapshots are captured using the Visual Molecular Dynamics (VMD) package46.

Results and Discussion
Rotation of the vesicle.  In our simulation, the chiral active particles perform the counterclockwise motion 
with ω > 0. These active particles can resemble molecular motors, and the collision with the vesicle membrane 
results in the rotational motion of vesicle in the same direction. Figure 1 shows that the rotation angle β of the ves-
icle increases gradually with time t. Here L = 50. The straight back lines are linear fitting curves and the slopes of 
these lines are also given in Fig. 1. The inset figure gives the definition of the rotation angle βi(t) for i-th monomer 
of the vesicle at time t. The average rotation angle β(t) for the vesicle is defined as

∑β β=
=

t
L

t( ) 1 ( ),
(6)i

L

i
1

where βi(t) means the cumulative rotation angle of i-monomer at time t. Figure 1(a) presents the time evolution of 
the rotation angle β with various area fractions from ρ = 0 to 0.6 at a fixed angular velocity of chiral active particle 
of ω = 0.04. It shows a linearly dependence of the rotation angle β on time t, and the slope of line increases mono-
tonically with ρ increasing. However, there is an exception for the case of ρ = 0, in which the cumulative rotation 
angle oscillates slightly near zero under thermal interference of a vesicle without any chiral active particles which 
can drive the vesicle to rotate counterclockwise. Moreover, we also study the dependence of cumulative angular 
angle β on time t with various angular velocities of chiral active particles, and the results are shown in Fig. 1(b). 
When the angular velocity of particles increases from ω = 0.0 to 0.7, the slope of line increases first and then 
decreases. Similarly, the rotation angle oscillates slightly near zero for ω = 0.0. Vesicle rotates more quickly for 
ω = 0.04 (see Supplementary Videos S1, S2, and S3).

In order to investigate the effects of the angular velocity ω on the rotational behavior of vesicles in more detail, 
we calculate the average angular velocity ω’ of vesicles according to

Figure 1.  Rotation angle of the vesicle. Cumulative rotation angle β of a soft vesicle as a function of time t for 
various area fractions of active particles (ρ) with an angular velocity of ω = 0.04 (a) and for various angular 
velocities (ω) with an area fraction of ρ = 0.6 (b). The inset figure is a schematic illustration of the rotation angle 
βi(t0) of i-th monomer at time t0, and the straight black lines are linear fitting curves.
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where < … > represents an ensemble average over more than 500 runs. The results with two different vesicle 
perimeters of L = 50 and 100 are given in Fig. 2(a) and (b). We observe sharp increase in the rotation angular 
velocity ω’ above ω = 0.04. Importantly, this angular velocity for chiral active particles with ω = 0.04 is almost the 
same for various area fractions of ρ = 0.2, 0.4 and 0.6, as well as for different vesicle perimeters of L = 50, and 100. 
Here, we define the optimum value of ωop at which ω’ reaches its maximum value. Figure 2(c) shows that the 
optimum value of ωop always appears about ωop ≈ 0.04, which seems to be independent of the area fraction ρ and 
the vesicle perimeter L. In order to explain the novel non-monotonic behaviour of ω’ in Fig. 2(a) and (b), we cal-
culate the average number < NS > of chiral active particles stacked to the vesicle membrane, and the results are 
shown in Fig. 3(a). Obviously, few chiral active particles can be stacked to the membrane for larger angular veloc-
ity (ω). Actually, trajectories for chiral active particles are circular, and the radius of circular trajectory depends on 
mainly angular velocity of active particles ω40. The larger the angular velocity ω is, the smaller the radius of circu-
lar trajectory is40. Since the occurrence of collision with the membrane is rare for chiral active particles with large 
ω, the rotation of the vesicle is very slow for large ω, especially at a lower area fraction of ρ = 0.2. We also measure 
the average tangential force < Fτ > per monomer of the membrane with different angular velocities for various 
area fractions and various vesicle perimeters respectively, and the results are given in Fig. 3(b) and (c). The inset 
figure shows that the tangential force originates from the fact that the collision angle α between the active parti-
cles and the membrane isn’t always equal to π/2. In fact, α is inclined to be less than π/2 because of the counter-
clockwise rotation for chiral active particles. The curves of < Fτ > in Fig. 3(b) are in good agreement with that of 
ω’ in Fig. 2(a), and they have the same optimum angular velocity (ωop ≈ 0.04). Therefore, the average tangential 
force < Fτ > plays an important role in the appearance of optimum angular velocity. By means of the schematic 
illustrations in Fig. 4, we can know clearly that the rotation of soft vesicle relies mainly on the angular velocity of 
chiral active particles. Three cases of ω ≈ 0, 0.04, and 1.0 are considered in Fig. 4. At a very low angular velocity of 
ω ≈ 0, the motion of active particles is dominated by the translational motion, leading to the disorganized colli-
sions between the active particles and the membrane, see Fig. 4(a). Although the probability of collisions with the 
membrane is large enough for active particles, the rotation angular velocity ω’ of the vesicle is close to zero 
because some tangential forces are counterclockwise (i.e., τF1 and τF 4) while the others are clockwise (i.e., τF2 and 

τF3). And the counterclockwise tangential forces are often offset by the clockwise ones, leading to a very small 
value of total tangential forces for the vesicle. In fact, if the active particles only consist of propelling force, the 

Figure 2.  Rotation velocity of the vesicle. Average angular velocity of soft vesicle (ω’) as a function of rotational 
angular velocity of chiral active particles (ω) for three area fractions of ρ = 0.2, 0.4, and 0.6 with two vesicle 
perimeters of L = 50 (a) and L = 100(b). And (c) the optimum value of angular velocity (ωop) for chiral active 
particles as a function of area fraction ρ for three vesicle perimeters of L = 50, 100, and 150.
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irreversible chaotic motion of active particles can be rectified only by asymmetric boundary47. For self-propelled 
active particles, the asymmetry boundary is a basic ingredient, as observed in many other thermal ratchet mech-
anisms48, and self-starting micromotors with asymmetric boundary can be observed in a bacterial bath47. 
However, at a moderate angular velocity of ω = 0.04, there exists the higher collision probability with the mem-
brane for chiral active particles because the radius of circular trajectory for chiral active particles is very large and 
the chiral active particles usually are aggregated near the membrane, as shown in Fig. 3(a). Importantly, the colli-
sions between the chiral active particles and the membrane lead to counterclockwise tangential forces (see 

Figure 3.  Average tangential force on membrane. (a) Average number of chiral active particles < NS > stacked 
to the vesicle, and average tangential force < Fτ > per monomer of the vesicle exerted by chiral active particles as 
a function of angular velocity (ω) for various area fractions (ρ) with L = 50 (b) and for various vesicle perimeters 
(L) with ρ = 0.3 (c). The inset figure shows that the tangential (Fτ) and normal forces (Fn) rely on the collision 
angle α between the chiral active particles and the monomers of the vesicle.

Figure 4.  Schematic illustrations for the origin of unidirectional rotation. The rotation of soft vesicle is driven 
by the collisions between the chiral active particles and the membrane. Typical three cases of ω ≈ 0 (a), 0.04 (b) 
and 1.0(c) are considered, and Fig. 4(b) displays that the total counterclockwise force is large enough to drive the 
vesicle to rotate counterclockwise quickly because the tangential forces (Fτ) produced by the collisions are more 
likely to be counterclockwise. While the counterclockwise tangential forces are often offset by the clockwise 
ones in Fig. 4(a) and the collisions with the membrane for chiral active particles occur rarely in Fig. 4(c).
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Fig. 4(b)), and the total counterclockwise force is large enough to drive the vesicle to rotate counterclockwise 
quickly. Synchronization plays a role in the appearance of optimum angular velocity because the maximum value 
for average tangential force < Fτ > or rotation angular velocity ω’ only exists for high collision synchronization 
and high collision probability. As for the case of ω = 1.0, since the radius of circular trajectory for chiral active 
particles is fairly small, the collisions with the membrane occur rarely. Consequently, although the collision also 
produces the counterclockwise tangential force (see Fig. 4(c)), the total counterclockwise tangential force for the 
vesicle is very small, resulting in the low angular velocity for vesicle. The real origin of the unidirectional rotation 
of the vesicle is the circular motion of active chiral particles. The counterclockwise circular motion biases the 
collision angle between the active particles and vesicle and hence induces the unidirectional rotation of the 
vesicle.

Shape properties.  To analyze the deformation of vesicle shape, we quantify the asphericity of vesicle (Δ)49, 
which is given by

( )
( ) (8)

1 2
2

1 2
2

λ λ
λ λ

∆ =
−
+

where λ1 and λ2 are two eigenvalues of the gyration tensor. The value Δ = 0 corresponds to a circle and Δ = 1 to 
a rod29,49. We display the asphericity Δ of vesicle as a function of area fraction ρ of active particles with different 
vesicle perimeters (L) and different angular velocities (ω) in Fig. 5(a). The asphericity Δ decreases monotoni-
cally with ρ increasing from 0.05 to 0.7, especially for ω = 0 and L = 50, which is in accordance with the work 
of Paoluzzi et al.29. Four detailed configurations of vesicle are also shown in Fig. 5(a). At a low area fraction 
of ρ = 0.05 with ω = 0, the active particles without angular velocity make the vesicle like an ellipse with a large 
asphericity of Δ = 0.08, however, the asphericity Δ decreases abruptly to Δ = 0.028 for chiral active particles with 
ω = 1.0. Of course, the difference of the asphericity Δ in ω = 0 and 1.0 almost disappears for a high area fraction 
of ρ = 0.7. We also calculate the asphericity Δ of vesicles with different angular velocities ω and the results are 
shown in Fig. 5(b). The asphericity Δ also presents a monotonic decreasing trend with ω increasing from 0 to 1.0. 
In order to know the deformation of vesicle membrane clearly at the low area fraction, we measure the interior 
angle ϕ and the results are shown in Fig. 6(a). Apparently, the fluctuation of interior angles around the average 

Figure 5.  Asphericity of the vesicle. (a) Asphericity Δ of vesicle membrane as a function of area fraction ρ 
of active particles for two angular velocities ω and two vesicle perimeters L, and (b) asphericity Δ of vesicle 
membrane as a function of angular velocity ω of active particles for three area fractions of ρ = 0.2, 0.4, and 
0.6 with L = 50. The inset figures show the configurations of the vesicles with different densities and different 
angular velocities.
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value is slight for ω = 0, however, it is violent for ω = 1.0. There exists a large deformation for vesicle filled with 
self-propelled active particles (ω = 0), and since all active particles are gathered near to the vesicle edge, the 
interior angle ϕ changes continuously, which is different from the case of ω = 1.0. In fact, the oscillations of the 
interior angle Ф can be quantified by the standard deviation ΔФ, which is defined as

∑φ φ φΔ = < − >=( )L
1 ( )

(9)i
L

i1
2

where φ  is the average interior angle. Figure 6(b) shows clearly that the oscillations of the interior angle Ф are 
violent for larger angular velocity ω and lower area fraction ρ according to the large values of ΔФ. In fact, the 
small value of ΔФ means that the oscillation of the interior angle Ф is weak. For example, ΔФ = 0.78 for ω = 1.0 
and ρ = 0.05, while it decreases to ΔФ = 0.04 for ω = 0 and ρ = 0.7. For chiral active particles with a large angular 
velocity, the radius of circular trajectory is small enough, the collisions with the membrane for chiral active par-
ticles occur rarely. Once the collisions occur, the chiral active particles can drive against the membrane seriously, 
and this leads to a sharp oscillation for Φ at ω = 1.0. Of course, the oscillation disappears gradually when the area 
fraction of active particles increases. The shape of membrane can also be characterized by the probability distri-
bution of the local curvatures as well, as shown in Fig. 7. Note that the abscissa stands for reduced local curvature 
κ/κ0, and probability distributions P(κ) are normalized. Here, κ0 represents the curvature of initial circular con-
figuration, and κ is the local curvature29. The reduced local curvatures follow Gaussian distributions centered near 
κ/κ0 ≈ 1 with decreasing widths, as the area fraction ρ increases gradually. The chiral active particles are distrib-
uted homogeneously for ω = 1.0, and they slowly stretch the membrane with increasing ρ. Combining with 
Fig. 5(a), we observe that the membrane becomes smoother as Δ tends to zero. And the concentration of curva-
tures is a generic consequence of the approaching to circle for vesicle, which means that local curvatures get closer 
to the same value of κ0.

Figure 8(a) shows the quantity (Rg–R0)/Rg as a function of the actual area fraction ρR0
2/Rg

2 with different vesi-
cle perimeters. For active particles with ω = 0.0, (Rg–R0)/Rg scale linearly with the packing fraction, especially for 
L = 100. Deviations of the (Rg–R0)/Rg from the linear regime are visible at high area fraction ρ due to the excluded 
volume effects50,51. However, for vesicles filled with chiral active particles, most of the quantities (Rg–R0)/Rg are 
less than zero at the low packing fractions. In fact, (Rg–R0)/Rg is proportional to the average pressure exerted 

Figure 6.  Fluctuation of interior angles for vesicle. (a) The interior angle φ of vesicle membrane for two 
angular velocities with ρ = 0.05, and (b) standard deviations ΔФ as a function of area fraction ρ for two angular 
velocities of ω = 0.0 and 1.0. Here L = 100.
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by the active particles29,50,51. We also measure the average pressure < Pn > exerted by the active particles on the 
membrane, and the results are shown in Fig. 8(b). For ω = 0, there exist large pressures exerted by the active par-
ticles, especially for higher area fractions. However, for ω = 1.0, the average pressure is very small, and it is close 
to zero for low area fractions owing to low contact probabilities between active particles and the membrane. And 
this leads to a decrease of Rg and produces a negative value of (Rg–R0)/Rg for ω = 1.0, see the inset of Fig. 8(b). 
Therefore, the area fraction (ρ) and angular velocity (ω) of chiral active particles can affect the shape of vesicle 
seriously.

Figure 7.  Local curvature of the vesicle. Probability distributions of the reduced local curvatures P(κ) for 
various area fractions of chiral active particles with an angular velocity of ω = 1.0 and L = 50.

Figure 8.  Average pressure on membrane. (a) The ratio of (Rg–R0)/Rg and (b) average pressure < Pn > exerted 
by chiral active particles on the vesicle as a function of (ρR0

2/Rg
2) for different angular velocities and different 

vesicle perimeters. The inset figure shows that the small pressure leads to the negative values of (Rg–R0)/Rg for 
the vesicle.
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Diffusion of the vesicle.  Dynamical behaviors of vesicles are investigated through calculating the mean 
square displacement (MSD) of the center of mass of vesicles filled with chiral active particles, which is given 
by52,53.

= − + −g t x t x y t y( ) ( ( ) (0)) ( ( ) (0)) (10)cm cm cm cm3
2 2

where xcm(t) and ycm(t) are the coordinates of the center of mass of vesicles filled with chiral active particles. Soft 
vesicles perform a random walk under the action of collision arising from chiral active particles. Since active 
particles and monomers of vesicle have the same size and mobility, the velocity of the center of mass vcm is given 
by29
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where vi  and vn  are the velocities of an active particle and a membrane monomer, and μ is the mobility. The 
center of vesicle moves as a body of reduced mobility μ/(N + L) under the action of the total force on the active 
particles. The corresponding velocity-velocity correlation function is given by29

∑μ
< • > =

+
< • >v t v

N L
f f( ) (0)

( ) (12)
cm cm

i j

N

i j

2

2
,

   

For chiral active particles with an angular velocity of ω, forces are uncorrelated and the corresponding 
force-force correlation function is
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If ω = 0, eqn (13) becomes the Paoluzzi’s results29. Here, we also neglect the translational noise for the direct 
comparisons with the theoretical results in our simulation. The mean square displacement (MSD) of the center of 
mass of vesicles is calculated by a double time integration of eqn (13)29
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Comparing with the theoretical results given by eqn (14), we find there exists some deviations from our simu-
lation results at long timescale, especially for large ω. However, our simulation results show that the mean square 
displacement g3(t) follows the expression very well,

ω ϕ ϕ= + + −− θ⌊ ⌋t D t A e tg ( ) 4 cos( ) cos (18)eff
D t

3 0 0

The values of A and cosϕ0 are given by eqns (15) and (17), and Deff is the fitting parameter. The fitting values 
of Deff are also given in Fig. 9. In fact, Deff is the effective diffusion coefficient over the classical value9. For ω = 0, 
a vesicle displays a superdiffusive motion at short timescales, while it recovers a normal diffusion at long times-
cale54. For ω ≠ 0, the diffusion of a vesicle is accompanied by oscillations at short timescales, and the oscillation 
period is consistent with the rotation period of chiral active particles, see the inset figure in Fig. 9. Meanwhile, 
the amplitude of oscillation decreases with time t, and the rotation motions of chiral active particles lead to the 
oscillation diffusion of vesicles. Moreover, the diffusion slows down significantly with the additional angular 
velocity for chiral active particles by about two orders, especially for a high area fraction of ρ = 0.7, see Fig. 9(b).

A comparison between D and Deff is made in Fig. 10. In general, the effects of angular velocity ω for chiral 
active particles on D and Deff are obvious. However, Deff is in good agreement with the theoretical results of D for 
ω < 0.2. In fact, for ω = 0, eqn (18) becomes a following expression
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= + −− θt Dt A eg ( ) 4 ( 1) (19)
D t

3

which is in agreement with the Paoluzzi’s results29. Both D and Deff decrease abruptly with the angular velocity 
ω increasing for ω < 0.2, and slowly for ω > 0.7, especially for ρ = 0.7. Since trajectories for chiral active particles 

Figure 9.  Diffusion of the vesicle. Mean square displacement g3(t) of the center of mass of vesicle for different 
angular velocities with two area fractions of ρ = 0.3 (a) and 0.7 (b). Here L = 50. Solid lines are fitting curves 
based on eqn (18) with the parameter of Deff = 0.020 for ω = 0(red line), Deff = 1.53 × 10−4 for ω = 0.5(pink line), 
and Deff = 1.06 × 10−4 for ω = 1.0 (black line) in Fig. 9(a), and Deff = 0.014 for ω = 0(red line), Deff = 9.54 × 10−5 
for ω = 0.5(pink line), and Deff = 5.59 × 10−5 for ω = 1.0(black line) in Fig. 9(b). The inset figure shows that the 
oscillation period of the curve is consistent with the rotation period of chiral active particles, and the amplitude 
of oscillation decreases gradually with time t.

Figure 10.  Diffusion coefficient. Both D and Deff as a function of angular velocity ω for two area fractions of 
ρ = 0.3 and 0.7. Here D is given by eqn (16), Deff is the fitting value, and L = 50.
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are circular, the radius of circular trajectory mainly depends on angular velocity ω of chiral active particles40. If 
the angular velocity ω is large enough, the radius of circular trajectory is very small, and the chiral active particles 
diffuse very slowly. If ω→∞, the chiral active particle only rotates around its center position, and D (or Deff) is 
close to 0. Of course, the corresponding force-force correlation function of eqn (13) may be only an approximate 
expression for large ω, which yields the smaller value for theoretical results of D than that of Deff. Therefore, the 
effects of angular velocity ω for chiral active particles on the diffusion behaviors are serious.

Concluding Remarks.  We have investigated numerically the dynamical behaviors of vesicles filled with chi-
ral active particles using 2D Langevin dynamics simulations. In fact, the behavior of vesicles filled with chiral 
active particles bears some resemblance with the directed migration of Eukaryotic cells, as observed in would 
healing assays or in the presence of chemotactic cues55–57. For instance, random walk has been used to model 
the migration of endothelial cells during tumour-induced angiogenesis (growth of new blood vessels)58,59. When 
active particles touches the membrane, although all interactions between active particles and monomers of the 
membrane are center to center, the collision angle α between the active particles and the monomers of the mem-
brane isn’t always equal to π/2 because of the counterclockwise rotation for chiral active particles. Accordingly, 
there exists net tangential forces for monomers of vesicle, and the rotating movement for vesicle occurs. 
Meanwhile, rotational angular velocity of vesicle depends mainly on the angular velocity (ω) and area fraction (ρ) 
of chiral active particles, and there exists an optimal parameter for ω at which the rotational angular velocity of 
vesicle takes its maximal value. Our results highlight that asymmetric environments can produce a spontaneous 
and directional rotation of vesicles filled with chiral active particles. Moreover, the shape of vesicle also relies on 
the area fraction (ρ) and angular velocity (ω) of chiral active particles as well as the vesicle perimeter (L). At low 
concentration the continuity of curvature is destroyed seriously for chiral active particles with large ω, and at high 
concentration the chiral active particles cover the vesicle almost uniformly, resulting in fairly homogeneous cur-
vature and nearly circular vesicle shape. The center-of-mass mean square displacement for vesicle is accompanied 
by oscillations at short timescales, and the oscillation period of diffusion is consistent with the rotation period of 
chiral active particles. Meanwhile, the diffusion slows down significantly with the additional angular velocity for 
chiral active particles by about two orders, especially for high concentration. Our investigation can provide a few 
designs for nanofabricated devices with asymmetric environments that can be driven in a unidirectional rotation 
by chiral active particles.
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