$\mu = 0.08 \text{ mm}^{-1}$

 $0.52 \times 0.43 \times 0.37 \text{ mm}$

32772 measured reflections

7567 independent reflections 5739 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.026$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-3-(4-Hexyloxyphenyl)-1-(3-hydroxyphenyl)prop-2-en-one

Zainab Ngaini,^a Siti Muhaini Haris Fadzillah,^a Norashikin Irdawaty Abd Rahman,^a Hasnain Hussain,^b Ibrahim Abdul Razak^c and Hoong-Kun Fun^c*‡

^aDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, ^bDepartment of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: arazaki@usm.my

Received 6 March 2009: accepted 23 March 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.043; wR factor = 0.131; data-to-parameter ratio = 34.1.

In the title compound, $C_{21}H_{24}O_3$, the enone unit is in the *s*-*cis* configuration. The dihedral angle between the benzene rings is 2.18 (4)°. In the crystal, molecules are linked by pairs of O-H...O intermolecular hydrogen bonds, forming inversion dimers. The crystal structure is also consolidated by $C-H\cdots\pi$ interactions.

Related literature

For general background to the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Won et al. (2005); Yayli et al. (2006). For related structures, see: Ng, Razak et al. (2006); Ng, Patil et al. (2006). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For bondlength data, see: Allen et al. (1987). For the stability of the temperature controller uded in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data	
$C_{21}H_{24}O_3$	a = 8.5918 (2) Å
$M_r = 324.40$	b = 17.1320 (3) Å
Monoclinic, $P2_1/n$	c = 12.4192 (2) Å

‡ Additional correspondence author, e-mail: hkfun@usm.my.

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\rm min} = 0.959, T_{\rm max} = 0.970$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ H atoms treated by a mixture of $wR(F^2) = 0.131$ independent and constrained S = 1.04refinement $\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$ 7567 reflections $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ 222 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H101 \cdots O2^{i}$ $C16 - H16A \cdots Cg1^{ii}$ $C20 - H20A \cdots Cg1^{iii}$	0.86 (2) 0.97 0.97	1.89 (2) 2.72 2.82	2.739 (1) 3.572 (1) 3.642 (1)	171 (2) 146 143

Symmetry codes: (i) -x - 1, -y, -z; (ii) -x, -y, -z + 1; (iii) -x + 1, -y, -z + 1. Cg1 is the centroid of C1-C6 ring.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312 and the Research University Golden Goose grant No. 1001/PFIZIK/811012. ZN and HH thank Universiti Malaysia Sarawak for the Geran Penyelidikan Dana Khas Inovasi, grant No. DI/01/2007(01). SMHF and NIAR thank the Malaysian Government and Universiti Malaysia Sarawak for providing scholarships for their postgraduate studies.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2200).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.

Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, 01228-01230.

Ng, S.-L., Razak, I. A., Fun, H.-K., Shettigar, V., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2175-o2177.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Won, S. J., Liu, C. T., Tsao, L. T., Weng, J. R., Ko, H. H., Wang, J. P. & Lin, C. N. (2005). Eur. J. Med. Chem. 40, 103–112.

Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745-753.

Yayli, N., Ucuncu, O., Yasar, A., Kucuk, M., Yayli, N., Akyuz, E. & Alpay-Karaoglu, S. (2006). Turk. J. Chem. 30, 505-514.

Acta Cryst. (2009). E65, o879-o880 [doi:10.1107/S1600536809010617]

(E)-3-(4-Hexyloxyphenyl)-1-(3-hydroxyphenyl)prop-2-en-one

Z. Ngaini, S. M. H. Fadzillah, N. I. A. Rahman, H. Hussain, I. A. Razak and H.-K. Fun

Comment

Chalcone is a common natural pigment and one of the important intermediate in the biosynthesis of flavonoid. Synthetic and naturally occurring chalcones have been extensively studied and developed as one of the pharmaceutically important molecules. Chalcone derivatives are reported to possess a broad spectrum of biological properties such as an anticancer (Bhat *et al.*, 2005) antimalarial (Xue *et al.*, 2004), anti-inflammatory (Won *et al.*, 2005), and antioxidant and antimicrobial activities (Yayli *et al.*, 2006).

The synthesis of chalcone derivatives possessing alkyl chains of varying length has been synthesized in our lab and their antibacterial activities was tested against *E. coli* ATCC 8739. All the synthesized chalcone derivatives showed antimicrobial activity. In this paper, we report the structure of the title compound which is one of the chalcone derivatives mentioned above.

The bond lengths (Allen *et al.*, 1987) and angles observed in (I) show normal values. The least-square plane through the enone moiety (O2C7C8C9) makes dihedral angles of $5.32 (5)^{\circ}$ and $4.72 (5)^{\circ}$ with the C1—C6 and C10—C15 benzene rings, respectively. The dihedral angle between these benzene rings is $2.18 (4)^{\circ}$. The alkoxyl tail is coplanar with the attached ring with the torsion angle C16—O3—C13—C14 being -0.26 (11)°.

The O2—C7—C8—C9 torsion angle of 4.1 (1)° shows that the enone moiety is in the s-*cis* configuration. The short H5A···H8A (2.12 Å) contact results in the widening of C5—C6—C7 (123.22 (7)°) angle while the widening of C8—C9—C10 (128.33 (7)°) and C9—C10—C11 (124.01 (7)°) angles are the result of close H8A···H11A (2.32 Å) contact. Similar strain induced by short H14A···H16A (2.32 Å) and H14A···H16A (2.28 Å) has also widened the C14—C13—O3 (124.19 (7)°) angles. These observations are also mentioned in structures reported by Ng, Razak *et al.* (2006) and Ng, Patil *et al.* (2006).

In the crystal, O1-H1O1···O2(-x - 1,-y,-z) intermolecular hydrogen bonds involving the keto and the hydroxy O atoms form molecular dimers. The crystal structure is further stabilized by C—H··· π interactions.

Experimental

A mixture of 3-hydroxyacetophenone (1.23 g, 9 mmol) and 4-hexyloxybenzaldehyde (1.86 ml, 9 mmol) and KOH (1.82 g, 32.4 mmol) in 30 ml of methanol was heated at reflux for 12 h. The reaction was cooled to room temperature and acidified with cold diluted HCl (2 N). The resulting precipitate was filtered, washed and dried. The precipitate was dissolved in hexane–ethanol (7:1) mixture. After a few days of slow evaporation, colourless crystals were collected for X-ray analysis.

Refinement

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93-0.97 Å. The U_{iso} values were constrained to be $-1.5U_{equ}$ (methyl H atoms) and $-1.2U_{equ}$ (other H atoms). The rotating model group was

considered for the methyl group. In the case of O1, the hydrogen atom was located from a difference Fourier map and refined isotropically.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Intramolecular H-bonds are drawn as dashed lines.

Fig. 2. The packing viewed down the *a* axis showing the dimer formation. The symmetry code is given in Table 2.

(E)-3-(4-Hexyloxyphenyl)-1-(3-hydroxyphenyl)prop-2-en-one

$C_{21}H_{24}O_3$	$F_{000} = 696$
$M_r = 324.40$	$D_{\rm x} = 1.247 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 9979 reflections
<i>a</i> = 8.5918 (2) Å	$\theta = 2.8 - 39.2^{\circ}$
b = 17.1320 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 12.4192 (2) Å	T = 100 K
$\beta = 109.0830 \ (10)^{\circ}$	Block, colourless
V = 1727.58 (6) Å ³	$0.52\times0.43\times0.37~mm$
Z = 4	

Data collection

Bruker APEXII CCD area-detector diffractometer	7567 independent reflections
Radiation source: sealed tube	5739 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 100 K	$\theta_{\text{max}} = 35.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -13 \rightarrow 13$
$T_{\min} = 0.959, T_{\max} = 0.970$	$k = -22 \rightarrow 27$
32772 measured reflections	$l = -18 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.131$	$w = 1/[\sigma^2(F_o^2) + (0.0658P)^2 + 0.3447P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.001$
7567 reflections	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
222 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.67033 (8)	-0.16211 (4)	-0.11538 (5)	0.02019 (13)
O2	-0.24091 (8)	0.00815 (4)	0.14823 (5)	0.01889 (12)
O3	0.57829 (7)	0.01121 (4)	0.74453 (5)	0.01808 (12)
C1	-0.43937 (9)	-0.11205 (4)	0.03753 (6)	0.01426 (13)
H1A	-0.4490	-0.0636	0.0023	0.017*
C2	-0.54671 (10)	-0.17174 (5)	-0.01437 (6)	0.01515 (14)
C3	-0.53013 (10)	-0.24523 (5)	0.03709 (7)	0.01738 (15)
H3A	-0.6009	-0.2856	0.0020	0.021*
C4	-0.40736 (10)	-0.25769 (5)	0.14089 (7)	0.01789 (15)
H4A	-0.3966	-0.3066	0.1751	0.021*
C5	-0.30007 (10)	-0.19778 (5)	0.19442 (7)	0.01605 (14)
H5A	-0.2183	-0.2066	0.2639	0.019*
C6	-0.31644 (9)	-0.12429 (4)	0.14274 (6)	0.01352 (13)
C7	-0.20986 (9)	-0.05615 (5)	0.19509 (6)	0.01364 (13)
C8	-0.06986 (10)	-0.06665 (5)	0.30060 (6)	0.01473 (13)
H8A	-0.0520	-0.1146	0.3376	0.018*
C9	0.03228 (10)	-0.00634 (5)	0.34327 (6)	0.01478 (14)
H9A	0.0084	0.0398	0.3016	0.018*
C10	0.17496 (9)	-0.00406 (5)	0.44610 (6)	0.01412 (13)
C11	0.22794 (10)	-0.06753 (5)	0.52147 (7)	0.01577 (14)
H11A	0.1714	-0.1147	0.5049	0.019*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C12	0.36209 (10)	-0.06102 (5)	0.61936 (7)	0.01651 (14)
H12A	0.3952	-0.1036	0.6679	0.020*
C13	0.44893 (9)	0.00985 (5)	0.64597 (6)	0.01485 (14)
C14	0.39946 (10)	0.07342 (5)	0.57204 (7)	0.01645 (14)
H14A	0.4560	0.1205	0.5886	0.020*
C15	0.26459 (10)	0.06536 (5)	0.47334 (7)	0.01590 (14)
H15A	0.2331	0.1076	0.4239	0.019*
C16	0.66971 (10)	0.08312 (5)	0.77343 (7)	0.01598 (14)
H16A	0.5981	0.1248	0.7818	0.019*
H16B	0.7137	0.0975	0.7135	0.019*
C17	0.80851 (10)	0.07101 (5)	0.88414 (7)	0.01625 (14)
H17A	0.8812	0.0303	0.8742	0.019*
H17B	0.7636	0.0540	0.9425	0.019*
C18	0.90687 (10)	0.14613 (5)	0.92278 (7)	0.01651 (14)
H18A	0.9536	0.1620	0.8649	0.020*
H18B	0.8326	0.1871	0.9295	0.020*
C19	1.04510 (10)	0.13787 (5)	1.03599 (7)	0.01726 (14)
H19A	1.1188	0.0966	1.0296	0.021*
H19B	0.9984	0.1227	1.0942	0.021*
C20	1.14369 (11)	0.21270 (5)	1.07309 (8)	0.02270 (17)
H20A	1.1893	0.2283	1.0145	0.027*
H20B	1.0704	0.2538	1.0806	0.027*
C21	1.28308 (13)	0.20366 (7)	1.18553 (9)	0.0326 (2)
H21A	1.3478	0.2505	1.2015	0.049*
H21B	1.3514	0.1604	1.1805	0.049*
H21C	1.2379	0.1943	1.2456	0.049*
H101	-0.6888 (18)	-0.1130 (9)	-0.1279 (12)	0.042 (4)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0200 (3)	0.0164 (3)	0.0173 (3)	0.0002 (2)	-0.0033 (2)	-0.0017 (2)
O2	0.0204 (3)	0.0150 (3)	0.0177 (3)	-0.0006 (2)	0.0015 (2)	0.0025 (2)
O3	0.0152 (3)	0.0188 (3)	0.0162 (3)	-0.0034 (2)	-0.0005 (2)	-0.0007 (2)
C1	0.0138 (3)	0.0135 (3)	0.0142 (3)	0.0008 (2)	0.0029 (3)	0.0001 (2)
C2	0.0138 (3)	0.0162 (3)	0.0137 (3)	0.0009 (3)	0.0020 (2)	-0.0016 (2)
C3	0.0171 (3)	0.0145 (3)	0.0187 (3)	-0.0014 (3)	0.0033 (3)	-0.0015 (3)
C4	0.0192 (4)	0.0138 (3)	0.0190 (3)	0.0003 (3)	0.0038 (3)	0.0017 (3)
C5	0.0165 (3)	0.0155 (3)	0.0144 (3)	0.0008 (3)	0.0026 (3)	0.0010 (3)
C6	0.0125 (3)	0.0143 (3)	0.0131 (3)	0.0005 (2)	0.0034 (2)	-0.0006 (2)
C7	0.0129 (3)	0.0151 (3)	0.0127 (3)	0.0001 (2)	0.0037 (2)	-0.0003 (2)
C8	0.0134 (3)	0.0156 (3)	0.0137 (3)	0.0003 (2)	0.0025 (2)	0.0006 (2)
C9	0.0136 (3)	0.0161 (3)	0.0139 (3)	0.0004 (3)	0.0036 (2)	-0.0008 (2)
C10	0.0128 (3)	0.0156 (3)	0.0136 (3)	-0.0009 (2)	0.0039 (2)	-0.0013 (2)
C11	0.0146 (3)	0.0153 (3)	0.0164 (3)	-0.0019 (3)	0.0037 (3)	-0.0007 (3)
C12	0.0155 (3)	0.0164 (3)	0.0161 (3)	-0.0008 (3)	0.0030 (3)	0.0009 (3)
C13	0.0123 (3)	0.0179 (3)	0.0136 (3)	-0.0004 (3)	0.0032 (2)	-0.0014 (2)
C14	0.0157 (3)	0.0156 (3)	0.0168 (3)	-0.0025 (3)	0.0035 (3)	-0.0013 (3)

C15	0.0160(3)	0.0148(3)	0.0156(3)	-0.0006(3)	0.0033(3)	0.0004(3)
C16	0.0135(3)	0.0175(3)	0.0160(3)	-0.0000(3)	0.0035(3)	-0.0019(3)
C17	0.0133(3)	0.0190(3)	0.0100(3)	-0.0021(3)	0.0025(3)	-0.0004(3)
C18	0.0133(3)	0.0170(3)	0.0150(3)	-0.0003(3)	0.0023(3)	-0.0003(3)
C19	0.01152(3)	0.0172(3)	0.0101(3) 0.0153(3)	-0.0007(3)	0.0029(3)	-0.0003(3)
C20	0.0132(3)	0.0199 (4)	0.0135(3) 0.0235(4)	-0.0007(3)	0.0020(3)	-0.0005(3)
C20	0.0204(4)	0.0177 (4)	0.0233(4)	-0.0072(4)	-0.0012(3)	-0.0104(4)
C21	0.0271 (3)	0.0418 (0)	0.0223 (4)	0.0072 (4)	0.0010 (4)	0.0104 (4)
Geometric param	neters (Å, °)					
01 - C2		1 3631 (9)	(C12—C13	1	4067 (11)
01—H101		0.861 (16)	(C12—H12A	0	9300
02-07		1 2336 (9)	(C13-C14	1	3980 (11)
03-C13		1 3581 (9)	(C14—C15	1	3912 (11)
03—C16		1 4419 (10)	(C14—H14A	0	9300
C1-C2		1 3867 (11)	(C15—H15A	0.	9300
C1 - C6		1 4016 (11)	(C16—C17	1	5111 (11)
C1—H1A		0.9300	(C16—H16A	0	9700
$C^2 - C^3$		1 3980 (11)	(C16—H16B	0.	9700
$C_2 = C_3$		1 3895 (11)	(C17 - C18	1	5282 (11)
C3—H3A		0.9300	(C17—H17A	0	9700
C4—C5		1 3944 (11)	(C17—H17B	0.	9700
C4—H4A		0.9300	(C18-C19	1	5217 (11)
C5-C6		1 3993 (11)	(718—H18A	0	9700
С5—Н5А		0.9300	(C18—H18B	0.	9700
C6—C7		1 4949 (11)	(C_{19} C_{20}	1	5225 (12)
C7-C8		1 4717 (11)	(C19—H19A	0	9700
C8—C9		1 3470 (11)	(C19—H19B	0.	9700
C8—H8A		0.9300	(C_{20} C_{21}	1	5214 (13)
C9—C10		1.4531 (11)	(C20—H20A	0.	9700
С9—Н9А		0.9300	(C20—H20B	0.	9700
C10-C15		1.3971 (11)	(C21—H21A	0.	9600
C10-C11		1.4096 (11)	(C21—H21B	0.	9600
C11—C12		1.3794 (11)	(C_{21} H21C	0.	9600
C11—H11A		0.9300				
C2-O1-H101		109.0 (10)	(C15—C14—H14A	12	20.4
C13—O3—C16		117.24 (6)	(C13—C14—H14A	12	20.4
C2—C1—C6		120.45 (7)	(C14—C15—C10	12	22.15 (7)
C2—C1—H1A		119.8	(C14—C15—H15A	11	8.9
C6—C1—H1A		119.8	(С10—С15—Н15А	11	8.9
O1—C2—C1		122.56 (7)	(D3—C16—C17	10	08.23 (6)
O1—C2—C3		117.51 (7)	(D3—C16—H16A	11	0.1
C1—C2—C3		119.92 (7)	(С17—С16—Н16А	11	0.1
C4—C3—C2		119.70 (7)	(D3—C16—H16B	11	0.1
С4—С3—Н3А		120.1	(С17—С16—Н16В	11	0.1
С2—С3—НЗА		120.1	H	H16A—C16—H16B	10	08.4
C3—C4—C5		120.81 (7)	(C16—C17—C18	11	1.16 (7)
C3—C4—H4A		119.6	(С16—С17—Н17А	10)9.4
С5—С4—Н4А		119.6	(С18—С17—Н17А	10)9.4

C4—C5—C6	119.47 (7)	C16—C17—H17B	109.4
С4—С5—Н5А	120.3	C18—C17—H17B	109.4
С6—С5—Н5А	120.3	H17A—C17—H17B	108.0
C5—C6—C1	119.63 (7)	C19—C18—C17	113.34 (7)
C5—C6—C7	123.22 (7)	C19—C18—H18A	108.9
C1—C6—C7	117.14 (7)	C17—C18—H18A	108.9
O2—C7—C8	121.13 (7)	C19—C18—H18B	108.9
O2—C7—C6	119.01 (7)	C17—C18—H18B	108.9
C8—C7—C6	119.86 (7)	H18A—C18—H18B	107.7
C9—C8—C7	119.62 (7)	C18—C19—C20	112.97 (7)
С9—С8—Н8А	120.2	C18—C19—H19A	109.0
С7—С8—Н8А	120.2	C20—C19—H19A	109.0
C8 - C9 - C10	128 33 (7)	C18—C19—H19B	109.0
С8—С9—Н9А	115.8	C20—C19—H19B	109.0
C10-C9-H9A	115.8	H19A—C19—H19B	107.8
C15-C10-C11	117 59 (7)	$C_{21} - C_{20} - C_{19}$	112.66 (8)
C15-C10-C9	118 39 (7)	$C_{21} - C_{20} - H_{20A}$	109.1
$C_{11} - C_{10} - C_{9}$	124 01 (7)	C19 - C20 - H20A	109.1
C_{12} C_{11} C_{10} C_{10}	121.01(7) 121.22(7)	C_{21} C_{20} H_{20R}	109.1
C12—C11—H11A	119.4	$C_{19} - C_{20} - H_{20B}$	109.1
C10-C11-H11A	119.1	$H_{20A} = C_{20} = H_{20B}$	107.8
$C_{11} - C_{12} - C_{13}$	120.19(7)	$C_{20} = C_{21} = H_{21} \Lambda$	107.5
$C_{11} = C_{12} = C_{13}$	110.0	C_{20} C_{21} H_{21R}	109.5
C13 - C12 - H12A	119.9	$H_{21} = C_{21} = H_{21} B$	109.5
C13 - C12 - I112A	124 19 (7)	C_{20} C_{21} $H_{21}C$	109.5
03 - 013 - 012	124.19(7) 116.20(7)	$H_{21} = C_{21} = H_{21}C$	109.5
$C_{14} = C_{13} = C_{12}$	110.20(7)	$\frac{1121}{1121} + \frac{1121}{1121} + \frac{1121}{1121$	109.5
C15 - C14 - C13	119.01(7) 119.22(7)	11210-021-11210	107.5
	119.22 (7)	C8 C0 C10 C11	1.52 (12)
$C_0 = C_1 = C_2 = O_1$	1/8.55 (/)	$C_{8} = C_{9} = C_{10} = C_{11}$	-1.52(13)
$c_0 = c_1 = c_2 = c_3$	-1.49(11)	C13 - C10 - C11 - C12	0.84 (11)
01 - 02 - 03 - 04	-1/9.16(7)	C_{9} C_{10} C_{11} C_{12} C_{12}	-1/8.31(/)
C1 - C2 - C3 - C4	0.88 (12)	C10-C11-C12-C13	0.14(12)
$C_2 = C_3 = C_4 = C_5$	-0.11 (12)	C16 - 03 - C13 - C14	-0.26 (11)
$C_3 - C_4 - C_5 - C_6$	-0.05 (12)	C16 - O3 - C13 - C12	179.73 (7)
C4—C5—C6—C1	-0.54 (11)	C11 - C12 - C13 - O3	179.37 (7)
C4—C5—C6—C7	1/8.46 (/)	C11 - C12 - C13 - C14	-0.64 (12)
$C_2 = C_1 = C_6 = C_5$	1.32 (11)	03-013-014-015	-1/9.8/(/)
$C_2 = C_1 = C_6 = C_7$	-177.75 (7)	C12—C13—C14—C15	0.13 (12)
C5—C6—C7—O2	-174.30 (7)	C13—C14—C15—C10	0.89 (12)
C1—C6—C7—O2	4.73 (10)	C11—C10—C15—C14	-1.37 (11)
C5-C6-C'/-C8	6.05 (11)	C9—C10—C15—C14	177.83 (7)
C1—C6—C7—C8	-174.92 (7)	C13—O3—C16—C17	-178.97 (6)
02	-4.05 (11)	03-C16-C17-C18	-177.65 (6)
C6—C7—C8—C9	175.59 (7)	C16—C17—C18—C19	178.18 (6)
C7—C8—C9—C10	179.11 (7)	C17—C18—C19—C20	179.31 (7)
C8—C9—C10—C15	179.34 (8)	C18-C19-C20-C21	-179.22 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$	
O1—H101···O2 ⁱ	0.86 (2)	1.89 (2)	2.739 (1)	171 (2)	
C16—H16A…Cg1 ⁱⁱ	0.97	2.72	3.572 (1)	146	
C20—H20A…Cg1 ⁱⁱⁱ	0.97	2.82	3.642 (1)	143	
Symmetry codes: (i) $-x-1$, $-y$, $-z$; (ii) $-x$, $-y$, $-z+1$; (iii) $-x+1$, $-y$, $-z+1$.					

