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C A N C E R

Plasma cells shape the mesenchymal identity  
of ovarian cancers through transfer of  
exosome-derived microRNAs
Zhengnan Yang1,2*, Wei Wang3*, Linjie Zhao4*, Xin Wang5, Ryan C. Gimple4, Lian Xu6, 
Yuan Wang2†, Jeremy N. Rich4†, Shengtao Zhou1†

Ovarian cancer represents a highly lethal disease that poses a substantial burden for females, with four main 
molecular subtypes carrying distinct clinical outcomes. Here, we demonstrated that plasma cells, a subset of 
antibody- producing B cells, were enriched in the mesenchymal subtype of high-grade serous ovarian cancers 
(HGSCs). Plasma cell abundance correlated with the density of mesenchymal cells in clinical specimens of HGSCs. 
Coculture of nonmesenchymal ovarian cancer cells and plasma cells induced a mesenchymal phenotype of 
tumor cells in vitro and in vivo. Phenotypic switch was mediated by the transfer of plasma cell–derived exosomes 
containing miR-330-3p into nonmesenchymal ovarian cancer cells. Exosome-derived miR-330-3p increased 
expression of junctional adhesion molecule B in a noncanonical fashion. Depletion of plasma cells by bortezomib 
reversed the mesenchymal characteristics of ovarian cancer and inhibited in vivo tumor growth. Collectively, our 
work suggests targeting plasma cells may be a novel approach for ovarian cancer therapy.

INTRODUCTION
Ovarian cancer ranks among the most lethal malignancies for women, 
displaying substantial heterogeneity in tumor biology and clinical 
outcome (1, 2). Genomic changes in cancer cells stratify patients 
into different subgroups with distinct prognosis and response to 
therapies (3). As cancer tissues are composed of both cancer cells 
and nonneoplastic cells (4, 5), the functions of these nonneoplastic 
cells are less well studied. The success of oncoimmunology has 
prompted the interrogation of infiltrating immune cells to predict 
clinical outcome and response to treatment (6).

Large-scale transcriptional profiling of patient specimens has led 
to the pioneering work of molecular subtyping for ovarian cancer 
(7). Later, it has become well recognized that ovarian cancer, pri-
marily high-grade serous ovarian cancer (HGSC), could be catego-
rized into four distinct transcriptional subtypes: immunoreactive, 
differentiated, proliferative, and mesenchymal subtypes, among which 
the mesenchymal subtype has a relatively poor overall survival, con-
firmed by RNA sequencing data for about 500 patients with serous 
ovarian cancer by The Cancer Genome Atlas (TCGA) network (3). 
However, rare reports could be found on whether different sub-
types of ovarian cancer exhibit distinct patterns of immune infiltra-
tion (8, 9), which is critical to the design of precision medicine for 
this deadly disease.

On the basis of this background, we hypothesized that deconvo-
lution of the transcriptomic signatures from whole-tumor speci-
mens can distinguish tumor and immune cell contributions and 
yield insights into subtype-specific immunologic responses in ovar-
ian cancer. A recently described gene expression deconvolution 
algorithm (CIBERSORT) estimates the relative proportions of 
22 distinct functional subsets of immune cells (10, 11). Using this 
method, we quantified the immune infiltration of the four subtypes 
of HGSC, the most common pathological subtype of ovarian can-
cer, and found a significant correlation with subtypes. In particular, 
using this integrated computational analysis together with further 
functional experiments, we identified an immune-associated cellu-
lar, molecular, and clinical network that highlights the defining role 
of plasma cells in the mesenchymal identity of HGSCs.

RESULTS
Plasma cells are enriched in the mesenchymal 
subtype of HGSCs
To investigate the subtype-specific immune infiltration pattern in 
ovarian cancer, we applied CIBERSORT to bulk gene expression 
profiles (GEPs) of ovarian cancer in the publicly available Bonome 
dataset (12) to infer the proportions of 22 subsets of immune cells in 
the four subtypes. The most prevalent immune cells were CD8+ 
T cells, plasma cells, M2 macrophages, and follicular helper T cells 
in the ovarian cancer microenvironment (Fig. 1A). For external val-
idation, we further interrogated the abundance of plasma cells in 
the mesenchymal-subtype HGSCs in two other training cohorts 
(both excluding non-HGSC patients): Mateescu dataset (13) and 
Tothill dataset (table S1) (7). It was found that the plasma cell abun-
dance was significantly higher in the mesenchymal subtype com-
pared with that in other three subtypes in both Mateescu dataset 
and Tothill dataset (Fig. 1B). Moreover, in both Bonome dataset and 
Mateescu dataset, the mesenchymal-subtype patients were prone to have 
higher plasma cell abundance compared with nonmesenchymal- 
subtype patients (fig. S1A). Further analysis indicated that M1 
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Fig. 1. Plasma cells enrich in mesenchymal-subtype ovarian cancer compared with other subtypes. (A) Computational biology analysis revealed the total content 
of different immune cells in ovarian cancer (Bonome dataset, n = 182). Tregs, regulatory T cells; NK, natural killer. (B) Plasma cell abundance in four different molecular 
subtypes of ovarian cancer in Mateescu’s cohort and Tothill’s cohort, as calculated by the CIBERSORT algorithm (Mateescu dataset, n = 79; Tothill dataset, n = 260). P values 
were calculated by the Wilcoxon rank sum tests. (C) Boxplot showing the abundance of the 22 subsets of immune cells for each subtype of ovarian cancer (Bonome data-
set). Data are presented as mean ± SEM. Kruskal-Wallis test, ***P < 0.001 and **P < 0.01. (D) Correlation analysis for ACTA2 with CD138 (left) and plasma cell abundance 
(right) in all patients and the mesenchymal-subtype patients, respectively. (E) Immunofluorescent staining of WT1, CD138, and -SMA in 40 independent clinical ovarian 
cancer specimens. Nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI) (blue). Scale bar, 50 m. Images were captured by confocal fluorescence microscopy, 
and the signal intensity as protein expression level was quantified by ImageJ software. Correlation analysis was performed for the expression of CD138 protein (or CD138+ 
cell number) and -SMA protein in ovarian cancer specimens. Coefficient of determination (R2) and statistical significance levels were determined by linear regression 
with linear model method. Shaded area indicates 95% confidence interval. Data are shown as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001.
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macrophages were enriched in the immunoreactive subtype (P < 0.001), 
CD8+ T cells in the differentiated subtype (the most abundant al-
though not significant), and plasma cells in the mesenchymal sub-
type of HGSCs (P < 0.001) (Fig. 1C).

As the mesenchymal subtype is associated with the worst prog-
nosis (14), we were particularly interested in the functional role of 
plasma cells in the maintenance of the mesenchymal identity of HGSCs. 
It was observed that in the Mateescu dataset, actin alpha 2 (ACTA2) 
expression, the gene that encodes –smooth muscle actin (-SMA), 
was significantly correlated with CD138 expression (P = 3 × 10−5, 
R2 = 0.45) and plasma cell abundance (P = 0.002, R2 = 0.34) in all 
molecular subtypes, while no significant correlation between ACTA2 
expression and CD138 expression as well as plasma cell abundance 
was observed in merely the mesenchymal subtype (Fig. 1D). Similar 
results were also noted in the Bonome dataset (fig. S1B and table 
S1). As direct clinical validation, we performed immunohistochemical 
labeling on a clinical ovarian cancer cohort (patient characteristics 
described in table S2) with -SMA, a marker for cancer-associated 
fibroblasts (15), CD138, a marker for human plasma cells, and Wilms’ 
tumor gene 1 (WT1), a marker to tumor cells (16, 17). Mesenchymal 
tumors displayed high levels of both -SMA and CD138 compared with 
nonmesenchymal tumors (Fig. 1E). The number of CD138+-infiltrated 
plasma cells positively correlated with the number of mesenchymal 
cells in 40 ovarian cancer patient samples using immunofluorescent 
analysis (Fig.  1E). The number of immunoglobulin κ constant 
(IGKC)–positive cells, another plasma cell marker, was also posi-
tively correlated with the number of mesenchymal cells in ovarian 
cancer patient samples using immunofluorescent analysis (fig. S1C). 
Further flow cytometry analysis combined with immunostaining 
assay also revealed that the abundance of plasma cells correlated 
with the expression of -SMA in fresh ovarian cancer patient sam-
ples (fig. S1, D and E). In 16 patients, the abundance of plasma cells 
varied significantly in the examined ovarian cancer tissues (fig. S1D), 
and plasma cell abundance was well correlated with ACTA2 gene 
expression (P = 0.0034, R2 = 0.46; fig. S1E). Gene set enrichment 
analysis (GSEA) in the TCGA ovarian cancer cohort confirmed that 
mesenchymal genes were highly enriched for ovarian cancer sam-
ples with high plasma cell abundance (fig. S1F). Thus, plasma cells 
are enriched in the mesenchymal subtype of HGSCs.

Plasma cells secrete exosomes to induce a mesenchymal 
phenotype of ovarian cancer cells
The infiltration of plasma cells into mesenchymal tumors could be 
either a cause or an effect. In other words, plasma cells could con-
tribute to the acquisition of a mesenchymal signature or mesenchy-
mal tumor cells could attract plasma cells. To distinguish between 
these possibilities, we investigated whether plasma cells could di-
rectly induce nonmesenchymal ovarian cancer cells to undergo a 
phenotypic switch to a mesenchymal state. We isolated plasma cells 
from ovarian cancer patient blood samples (Fig. 2A) and then co-
cultured them with either the nonmesenchymal human ovarian 
cancer cell lines, COV318 and OVCAR-3, or the mesenchymal hu-
man ovarian cancer cell lines, SKOV-3 and COV504, which have 
been previously described (18, 19). Plasma cells induced a spindle- 
like morphology in nonmesenchymal human ovarian cancer cell 
lines including COV318 and OVCAR-3 cells while did not induce 
any changes in mesenchymal human ovarian cancer cell lines in-
cluding SKOV-3 and COV504 (Fig. 2B). We further stained differ-
ent ovarian cancer cells cocultured with plasma cells with phalloidin 

to visualize F-actin. It was also found that after coculture with plas-
ma cells, while the cell area of COV318 and OVCAR-3 cells did not 
change much, there was a significant increase in cell perimeter and 
elongation index and decrease in circularity of both cells compared 
with control. However, no significantly changes were observed in 
the mesenchymal cells including SKOV-3 and COV504 (Fig. 2B). 
Loss of the epithelial marker, E-cadherin, was confirmed by immuno-
blotting, while the mesenchymal marker vimentin increased in the 
two cell lines upon coculture with plasma cells (Fig.  2C). Plasma 
cells induced a loss of E-cadherin mRNA levels and gain in vimen-
tin, fibronectin, and Twist mRNA (fig. S2A). These results were 
confirmed by immunofluorescence (fig. S2B).

Our results suggest that plasma cells provide cell-to-cell signal-
ing to alter the state of tumor cells. To determine the components in 
the conditioned media of plasma cells that mediated this phenotyp-
ic switch in ovarian cancer, we considered a potential role for exo-
somes. It was found that after treatment with plasma cell exosomes, 
although the cell area of COV318 cells did not change much, there 
was a significant increase in cell perimeter and elongation index 
and decrease in circularity of COV318 cells compared with control. 
Similar changes were also observed in OVCAR-3 cells after treat-
ment with plasma cell exosomes (Fig. 2D). Furthermore, treatment 
with plasma cell exosomes led to decreased E-cadherin and in-
creased vimentin expression on both protein (Fig. 2E) and mRNA 
(Fig. 2F) levels in both COV318 and OVCAR-3 cells. COV318 and 
OVCAR-3 cells incubated with plasma cell–derived exosomes ex-
hibited enhanced migratory capacity measured by wound healing 
and Transwell chamber assays compared with control cells (fig. S2, 
C and D). These results support a role of plasma cell–derived exo-
somes in modulating ovarian tumor cell phenotypes.

Exosomal microRNA profiling identifies plasma cell–derived 
microRNA-330-3p (miR-330-3p) as a key regulator of  
ovarian cancer mesenchymal identity
To determine the downstream mechanisms by which plasma cell–
derived exosomes induce mesenchymal features in ovarian cancer 
cells, we cocultured PKH67-labeled primary plasma cells with ovarian 
cancer cell lines for 24 hours and observed the transfer of membrane 
vesicles from plasma cells to ovarian cancer cells (Fig. 3, A and B). 
To determine whether exosomes released from plasma cells medi-
ate cross-talk with ovarian cancer cells, we purified exosomes from 
the supernatant of plasma cells and excluded contamination by other 
vesicle types and protein aggregates. Purified exosomes were con-
firmed by their high expression of exosome markers CD63 and 
CD81 (Fig.  3C). Scanning electron microscopy of the exosomes 
showed typical rounded particles ranging from 50 to 200 nm in di-
ameter (Fig. 3D). These exosomes were further characterized using 
a NanoSight NS300 system (Fig. 3E). NanoSight analysis indicated 
the size distributions of exosome particles released by plasma cells, 
especially in extracellular vesicles (EVs) of ~110 nm in size (Fig. 3E). 
Exosome uptake was observed 1 hour after treatment, and exosomes 
accumulated in recipient cells over time, with transfer blocked, as 
expected, following incubation at 4°C or preincubation of exosomes 
with proteinase K (Fig. 3, F and G). Temperature dependence and 
involvement of specific proteins point toward an active exosome 
uptake mechanism in the interaction between plasma cells and 
ovarian cancer cells. These observations implicated exosomes re-
leased by plasma cells and internalized by ovarian cancer cells as a 
key driver of the mesenchymal identity of ovarian cancer.
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Fig. 2. Treatment of ovarian cancer cells with plasma cells induces a mesenchymal phenotype. (A) Plasma cells that are marked by CD138 antibody were isolated 
from ovarian cancer patient blood by magnetic bead sorting and quantitatively verified by flow cytometry. PE, phycoerythrin; FSC, forward scatter. (B) Phase-contrast 
micrographs of COV318, OVCAR-3, SKOV-3, and COV504 cells treated with control or cocultured with plasma cells (PC) for 48 hours. Scale bar, 100 m. Phalloidin staining 
was shown to quantify the difference between control or cocultured groups. The quantifications include cell area, perimeter, circularity, and elongation index (mean ± SEM 
of no less than 40 cells per group). n.s., not significant. (C) Western blotting analysis of epithelial-mesenchymal transition (EMT) markers in COV318 and OVCAR-3 cells 
cocultured with plasma cells compared with control for 48 hours. ImageJ software was used to quantify protein expression levels (n = 3 for each group). (D) Phalloidin 
staining of COV318 and OVCAR-3 cells was shown to quantify the difference between control and plasma cell exosome–treated groups for 48 hours. Scale bar, 100 m. 
The quantifications include cell area, perimeter, circularity, and elongation index (mean ± SEM of no less than 40 cells per group). (E) Western blotting analysis of EMT 
markers in COV318 and OVCAR-3 cells treated with plasma cell exosomes compared with control for 48 hours (n = 3 for each group). ImageJ software was used to quan-
tify protein expression levels. GAPDH, glyceraldehyde phosphate dehydrogenase. (F) mRNA levels of EMT markers in COV318 and OVCAR-3 cells treated with plasma cell 
exosomes compared with control for 48 hours (n = 3 for each group). In (B) to (F), statistical significance was determined by a two-tailed, unpaired Student’s t test. Data 
are shown as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 3. Plasma cell exosomal miR-330-3p could be transferred to ovarian cancer. (A) Schematic diagram of plasma cells and ovarian cancer cells cocultured in six-well 
plates. (B) Ovarian cancer cells were cocultured in the absence or presence of primary PKH67-labeled plasma cells (green). Nuclei were stained with DAPI (blue) (n = 3 for 
each group). Scale bar, 20 m. (C) Western blot analysis for CD63, CD81, and -actin in plasma cell exosomes (n = 3 for each group). (D) Electron micrograph of plasma cell 
exosomes shows the morphological size (50 to 200 nm). Scale bar, 100 nm. (E) Size distribution of exosomes was measured using NanoSight analysis. (F and G) Immuno-
fluorescent images of PKH67 abrogation in ovarian cancer cells with respective treatment. Scale bar, 20 m. Statistical chart was plotted (n = 3 for each group). (H) Scheme 
chart for small RNA sequencing in plasma cell exosomes in patients with ovarian cancer. tRNA, transfer RNA; rRNA, ribosomal RNA; snRNA, small nuclear RNA; snoRNA, 
small nucleolar RNA; piRNA, Piwi-interacting RNA.(I) Venn diagram for overlapped miRNAs identified in ovarian cancer plasma cell exosomes. (J) Heatmap for unsupervised 
hierarchical clustering of GSE73582 dataset using plasma cell exosome–specific miRNA panel as classifiers. (K) Cellular programs enriched by GSEA for plasma cell exosome–
specific miRNAs represented using Enrichment Map. (L) The univariate regression analyses of the identified top miRNAs associated with patient survival, OC179 (GSE73581), 
n = 179. CI, confidence interval. (M and N) Fluorescence diagram shows subcellular localization of miR-330-3p (yellow arrowheads) (n = 3 to 4 for each group). Scale bar, 
20 m. In (G), data are shown as mean ± SEM. All statistical significance was determined by a two-tailed, unpaired Student’s t test. *P < 0.05; **P < 0.01; ***P < 0.001.
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Exosomes transport a wide variety of payloads that are delivered 
to recipient cells. Therefore, we profiled specific RNAs shuttled via 
plasma cell–derived exosomes from three patients with ovarian 
cancer using small RNA sequencing analysis (Fig. 3H). A total of 
461 microRNAs (miRNAs) overlapped in the three ovarian carci-
noma patient–derived plasma cell exosomes (Fig. 3I). To determine 
whether the plasma cell exosome–specific miRNAs were clinically 
important, we derived a miRNA signature to classify patients with 
ovarian cancer. Using an unsupervised hierarchical clustering, we 
identified two clusters that formed the most robust classification 
from plasma cell exosome–specific miRNAs in an ovarian cancer 
dataset (Fig. 3J) (20). GSEA (21) coupled to Enrichment Map 
visualization identified RNA metabolism, angiogenesis, cell migra-
tion, and proliferation among the differentially enriched biological 
pathways between the two groups (Fig. 3K). Among the top miRNAs 
correlated with survival of patients with ovarian cancer, the hazard 
ratio (HR) of miR-330-3p ranked the highest using univariate re-
gression analysis (HR = 5.5) (Fig. 3L). To validate the expression 
pattern of miR-330-3p across different immune cell types and ovarian 
cancer cells in vitro, we measured the expression levels of miR-330-3p 
in human T cells, B cells, plasma cells, neutrophils, natural killer cells, 
dendritic cells, macrophages, and human COV318 ovarian cancer 
cells. miR-330-3p was uniquely overexpressed in plasma cells com-
pared with other immune cell types and COV318 ovarian cancer 
cells (fig. S7A). Thus, we investigated the functional importance of 
exosomal miR-330-3p derived from plasma cells.

If miR-330-3p functions in ovarian carcinoma cells, then its sub-
cellular location in ovarian cells upon transfer from plasma cell 
exosomes would be expected to determine its function. After trans-
fection of both COV318 and OVCAR-3 cells with Cy3-labeled miR-
330-3p, Cy3-miR-330-3p was detected in the nucleus of the two cell lines. 
No signal of a control miRNA, Cy3-miR-29a, was detected in the 
nucleus of the two cell lines (Fig. 3, M and N). We further evaluated 
the functional role of plasma cell exosome–containing miR-330-3p 
in shaping the mesenchymal identity of ovarian cancer cells. It was 
demonstrated that in COV318 cells transfected with miR-330-3p 
mimic, while the cell area of COV318 cells did not significantly 
change, there was a remarkable increase in cell perimeter and elon-
gation index and decrease in circularity of COV318 cells compared 
with control. Similar changes were also observed in OVCAR-3 cells 
after transfection with miR-330-3p mimic (fig. S3A). We further 
found that in both COV318 and OVCAR-3 cells treated with plas-
ma cell exosomes and miR-330-3p inhibitor, the cell area did not 
remarkably change. However, it was noted that there were a notable 
decrease in cell perimeter and elongation index and increase in cir-
cularity of both ovarian cancer cells compared with cells treated 
with plasma cell exosomes and control inhibitor (fig. S3B). Epithelial- 
mesenchymal transition (EMT) markers E-cadherin and vimentin 
were examined in COV318 cells treated with control plasma cell 
exosomes, control inhibitor–transfected plasma cell exosomes and 
miR-330-3p inhibitor–transfected plasma cell exosomes. Inhibition of 
miR-330-3p within plasma cell–derived exosomes induced up- 
regulation of E-cadherin and down-regulation of vimentin in COV318 
and OVCAR-3 cells (fig. S3C). On the mRNA levels, we also noted 
similar changes in both cells (fig. S3D). Immunofluorescent analysis 
further supported the EMT-inducing role of exosome-contained miR- 
330-3p for ovarian cancer cells, demonstrating increased E-cadherin and 
decreased fibronectin, and vimentin following inhibition of miR-
330-3p while treated with plasma cell exosomes (fig. S3E). Supporting 

a key role for miR-330-3p in mediating plasma cell–induced EMT, 
miR-330-3p inhibitor–transfected plasma cell exosomes do not 
promote ovarian cancer cell migration compared with control plas-
ma cell exosomes, measured by wound healing (fig. S3F) and Tran-
swell chamber migration (fig. S3G). These data suggest that exosomal 
miR-330-3p derived from plasma cells could enter the nuclei of 
ovarian cancer cells and induce a mesenchymal program.

miR-330-3p enhances junctional adhesion molecule  
2 transcription via enhancer-induced gene  
activation mechanisms
Our preliminary analysis showed that the predicted canonical tar-
gets of miR-330-3p did not have any correlation with the prognosis 
of patients with ovarian cancer (fig. S4A). As previous reports have 
demonstrated that nuclear miRNAs could enhance gene expression 
through noncanonical mechanisms (22, 23), we next investigated 
the potential up-regulated target genes of nuclear miR-330-3p es-
sential for the mesenchymal identity of ovarian cancer. A computa-
tional biology strategy was used to identify the commonly changed 
gene expression based on the two criteria: (i) genes up-regulated in 
the mesenchymal-subtype ovarian cancer tissues compared with 
the nonmesenchymal-subtype tissues in the TCGA dataset and (ii) 
genes up-regulated in both OVCAR-3 and COV318 cells after miR-
330-3p mimic transfection compared with control (Fig. 4A). Among 
the six overlapping genes, junctional adhesion molecule 2 (JAM2) 
was the most significantly correlated with the prognosis of patients 
with ovarian cancer (fig. S4B); thus, we further characterized the 
functional role of JAM2 in ovarian cancer (Fig. 4B). JAM2 mRNA 
levels were decreased in COV318 and OVCAR-3 cells cocultured 
with miR-330-3p inhibitor–transfected plasma cells compared with 
control inhibitor–transfected plasma cells (Fig. 4C). Inhibition of 
miR-330-3p within plasma cells decreased JAM2 expression in both 
ovarian cancer cell lines compared to treatment with a nontargeting 
inhibitor (Fig. 4D). Conversely, exosomes derived from miR-330-
3p mimic–transfected plasma cells induced up-regulation of JAM2 
expression and a promesenchymal mRNA program in COV318 
and OVCAR-3 cells (Fig. 4E). Likewise, JAM2 protein levels trend-
ed higher in COV318 and OVCAR-3 cells treated with exosomes 
derived from miR-330-3p mimic–transfected plasma cells compared 
with control (Fig. 4F). E-cadherin protein levels were decreased in 
COV318 and OVCAR-3 cells treated with exosomes derived from 
miR-330-3p mimic–transfected plasma cells compared with con-
trol, while protein levels of vimentin were significantly increased in 
the experimental group (Fig. 4F). Migration of both COV318 and 
OVCAR-3 cells was enhanced by treatment with exosomes derived 
from plasma cells transfected with a miR-330-3p mimic compared 
with control, as revealed by wound healing analysis (Fig. 4G).

We next examined the functional role of miR-330-3p/JAM2 in 
driving the mesenchymal phenotype and invasion of ovarian cancer 
cells in  vitro. In miR-330-3p mimic–transfected ovarian cancer 
cells, treatment with JAM2 small interfering RNA (siRNA) induced 
up-regulation of E-cadherin and down-regulation of vimentin and 
JAM2 in both COV318 and OVCAR-3 cells compared with a non-
targeting control (Fig.  4H). On the mRNA level, treatment with 
JAM2 siRNA reduced JAM2 expression in both COV318 and 
OVCAR-3 cells, compared with nontargeting controls (Fig. 4I). JAM2 
knockdown impaired migration of both COV318 and OVCAR-3 
ovarian cancer cells, as measured by both Transwell chamber anal-
ysis (Fig. 4J) and wound healing analysis (Fig. 4K). Therefore, the 
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Fig. 4. miR-330-3p targets junctional adhesion molecule 2 for the maintenance of mesenchymal identity of ovarian cancer. (A) Venn diagram showing the most 
possible up-regulated genes targeted by plasma cell exosome–containing mir-330-3p. (B) Univariate regression analysis of the six overlapped target genes associated 
with ovarian cancer patient survival (Bonome dataset, n = 182). (C) mRNA level of JAM2 in COV318 and OVCAR-3 cells with respective treatment (n = 3 to 4 for each group). 
(D) Western blotting analysis of JAM2 protein levels in COV318 and OVCAR-3 cells with respective treatment (n = 3 for each group). (E) mRNA levels of JAM2 and EMT 
markers in miR-330-3p mimic–transfected or control COV318 and OVCAR-3 cells (n = 3 to 4 for each group). (F) Western blotting analysis of JAM2 and EMT markers in 
miR-330-3p mimic–transfected or control COV318 and OVCAR-3 cells (n = 3 for each group). (G) Wound healing analysis to assess the migration ability of COV318 and 
OVCAR-3 cells with respective treatment (n = 3 to 5 for each group). (H) Western blotting analysis of JAM2 and EMT markers in COV318 and OVCAR-3 cells with respective 
treatment (n = 3 for each group). si, small interfering. (I) mRNA levels of JAM2 in COV318 and OVCAR-3 cells with respective treatment (n = 3 to 4 for each group). (J) Transwell 
chamber analysis to assess the migration ability of COV318 and OVCAR-3 cells with respective treatment (n = 3 to 5 for each group). (K) Wound healing analysis to assess 
the migration ability of COV318 and OVCAR-3 cells with respective treatment (n = 3 to 5 for each group). Data are shown as mean ± SEM. All statistical significance was 
determined by a two-tailed, unpaired Student’s t test. *P < 0.05; **P < 0.01; ***P < 0.001.
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miR-330-3p/JAM2 axis might be involved in the maintenance of 
the mesenchymal identity of ovarian cancer in vitro.

We further explored the noncanonical mechanisms underlying 
nuclear miR-330-3p–mediated overexpression of JAM2. miRNAs 
often negatively regulate mRNAs in the cytoplasm by binding to the 
3′ untranslated region (3′UTR) of target genes to degrade mRNA or 
inhibit translation (24). However, miRNAs are also present in the 
nucleus, which can activate gene expression by binding to enhancer 
elements (23, 25). Given the nuclear localization of miR-330-3p, we 
investigated its potential regulatory mechanisms for JAM2 expres-
sion. We noticed that the sequence of miR-330-3p and the human 
JAM2 promoter region shared a remarkable complementary match 
(fig. S4C). To investigate whether sequence-specific interactions be-
tween miR-330-3p and the JAM2 promoter are required to up- 
regulate promoter activity, we introduced mutation or deletion into 
the synthetic miR-330-3p mimic. Mutation or deletion in the syn-
thetic miR-330-3p mimic abrogated promoter activity enhancement 
for JAM2 validated by immunoblot (fig. S4D) and quantitative 
polymerase chain reaction (qPCR) analysis (fig. S4E). We further 
investigated whether miR-330-3p could bind with the specific pro-
moter region of JAM2 (fig. S4F). It was verified that elevated RNA 
polymerase II (Pol II) occupancy by chromatin immunoprecipitation 
(ChIP)–qPCR analysis on the JAM2 promoter was observed when 
ovarian cancer cells were transfected with miR-330-3p mimic, 
whereas no significant difference was observed in the RNA Pol II 
occupancy when transfected with mutated or deleted miR-330-3p 
mimic compared with control (fig. S4G). We also treated COV318 
and OVCAR-3 cells transfected with miR-330-3p mimic with JQ1, a 
small-molecule bromodomain inhibitor that abolishes bromodomain- 
containing protein 4 binding (26), which decreased JAM2 expres-
sion levels. In contrast, JAM2 expression levels were essentially 
unchanged in COV318 and OVCAR-3 cell lines treated with JQ1 
and control mimic (fig. S4H). These results prove the computational 
prediction and suggest that miR-330-3p binds to the JAM2 promoter 
in a highly sequence-specific manner.

miR-330-3p/JAM2 axis is vital for the mesenchymal identity 
of ovarian cancer in vivo
To determine the functional importance of the miR-330-3p/JAM2 
axis in plasma cell–ovarian cancer cell interactions, we examined the 
effects of the mesenchymal identity of ovarian cancer in both ovarian 
cancer subcutaneous and peritoneal metastasis mouse models. Sub-
cutaneous tumors derived from the murine epithelial ovarian cancer 
cell line ID8 following treatment with plasma cell–derived exosomes 
were significantly larger and displayed more rapid growth (Fig. 5, 
A and B) and more peritoneal metastasis (Fig. 5C) compared with 
the control group. ID8 cells subcutaneously implanted together 
with plasma cell–derived exosomes led to decreased expression of 
E-cadherin and increased expression of Ki67 and vimentin by 
immunohistochemistry, consistent with a molecular signature for 
mesenchymal identity and cellular proliferation (fig. S5A). To fur-
ther characterize the indispensability of plasma cells in driving the 
mesenchymal phenotype transition of ovarian cancer, we treated 
subcutaneous ID8 ovarian cancer cells with bortezomib (BTZ), a 
well-established plasma cell–depleting agent (27–29). We first vali-
dated the inhibition specificity of BTZ for plasma cells. BTZ treat-
ment reduced plasma cell infiltration in the tumor, as expected, 
while no significant changes were noted in the contents of other im-
mune cells, including B cells, T cells, or myeloid-derived suppressor 

cells (MDSCs) (fig. S6, A to D). Moreover, it was found that while 
BTZ induced apoptosis of a small fraction of ID8 ovarian cancer 
cells, it caused massive apoptosis in plasma cells, indicating that 
plasma cells are far more sensitive to BTZ treatment compared with 
ovarian cancer cells, and BTZ is a relatively specific plasma cell– 
depletion agent (fig. S6E). In vivo, we observed that BTZ treatment 
decreased the size and growth rate of subcutaneous tumors com-
pared with the control group (Fig. 5, D and E) and inhibited perito-
neal metastasis (Fig. 5F). ID8 cells treated with BTZ displayed 
elevated expression of E-cadherin and reduced expression of Ki67 
and vimentin (fig. S5B). In contrast, ID8 cells treated locally with 
anti-CD3 (T cell depletion), anti-CD19 (B cell depletion), or anti–
granulocyte receptor-1 (MDSC depletion) antibodies displayed no 
significant alterations of in  vivo growth or alterations of EMT 
markers. Collectively, these results support a critical role of plasma 
cells in epithelial ovarian cancer cell growth in vivo.

We next characterized the vital role of miR-330-3p/JAM2 axis 
in vivo. It was demonstrated that ID8 cells inoculated with plasma 
cells transfected with miR-330-3p inhibitor displayed reduced tu-
mor growth (Fig. 5, G and H) and decreased peritoneal metastasis 
(Fig.  5I) compared with ID8 cells inoculated with plasma cells 
transfected with control inhibitor. Treatment of ID8 cells with miR-
330-3p inhibitor–treated plasma cells elevated expression of E- 
cadherin and reduced expression of Ki67 and vimentin (fig. S5C). 
Conversely, ID8 cells transfected with miR-330-3p mimic grew 
larger tumors (Fig. 5, J and K) and developed more peritoneal me-
tastasis (Fig. 5L) than the control group. Treatment of ID8 cells with 
miR-330-3p mimic reduced expression of E-cadherin and increased 
expression of Ki67 and vimentin (fig. S5D). To demonstrate speci-
ficity of the effects of miR-330-3p, we performed rescue experi-
ments to elucidate the functional importance of miR-330-3p/JAM2 
axis (fig. S5, E and F). Tumors formed by ID8 cells transfected with 
miR-330-3p mimic were smaller after JAM2 knockdown (Fig. 5, 
M and N) and had weaker peritoneal metastasis capacity (Fig. 5O) 
compared with control. Tumors formed by ID8 cells transfected 
with miR-330-3p mimic showed increased expression of E-cadherin 
and decreased expression Ki67 and vimentin after JAM2 knock-
down compared with control (fig. S5G). Therefore, in vivo epithelial 
ovarian tumor growth is accelerated by miR-330-3p/JAM2 induced 
by plasma cell infiltration.

miR-330-3p/JAM2 axis in the cross-talk between plasma cells 
and ovarian cancer cells informs prognosis
To explore the clinical importance of the miR-330-3p/JAM2 axis in 
the cross-talk between plasma cells and HGSC cells, we examined 
whether the plasma cell gene signature curated from the CIBER-
SORT algorithm informed ovarian cancer patient prognosis. Using 
the Tothill ovarian cancer dataset, patients were categorized on the 
basis of transcriptional profiles into two subgroups: plasma cell–
high and plasma cell–low groups (Fig. 6, A and B). The overall sur-
vival for plasma cell–high patients with HGSC was significantly 
worse than plasma cell–low patients in the Tothill dataset (GSE9891) 
(P = 0.036; Fig. 6C). Similar results were also observed in the Mateescu 
dataset (P = 0.02; Fig. 6D), although in the subset of the mesenchymal 
subtype, no significant difference was observed between plasma 
cell–high and plasma cell–low patients with HGSC (P = 0.71; Fig. 6D). 
As miRNAs contained in plasma cell exosomes classify patients 
with ovarian cancer into two clusters, we explored whether 
these two subgroups have different prognoses. Progression-free 
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Fig. 5. The importance of miR-330-3p/JAM2 axis for the mesenchymal identity of ovarian cancer in vivo. (A, D, G, J, and M) A total of 5 × 106 ID8 cells with respective 
treatment were subcutaneously injected into C57 mice together with plasma cell–derived exosomes and control (n = 6 for each group). Growth curve was plotted. 
(B, E, H, K, and N) Tumor weight and volume of ID8 cells in each group were measured at indicated time. (C, F, I, L, and O) In vivo bioluminescent imaging of tumor growth 
in each group was performed in mice 30 days after injection (n = 3 to 5 for each group). Data are shown as mean ± SEM. In (A), (D), (G), (J), and (M), P value out of two-way 
repeated measures analysis of variance (ANOVA). Otherwise, statistical significance was determined by a two-tailed, unpaired Student’s t test. *P < 0.05; **P < 0.01. 
***P < 0.001. DMSO, dimethyl sulfoxide; sh, small hairpin.
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Fig. 6. Clinical significance of miR-330-3p/JAM2 axis in the cross-talk between plasma cells and ovarian cancer cells. (A) Unsupervised classification of plasma gene 
signature shows the optimal classification using two clusters (left), as supported by the gap statistic (right). (B) Heatmap for unsupervised hierarchical clustering of the 
Tothill dataset using plasma cell gene signature as classifiers. (C) Survival difference between the plasma cell–high subgroup and the plasma cell–low subgroup in the 
Tothill dataset. OS, overall survival. (D) Survival difference between the plasma cell–high subgroup and the plasma cell–low subgroup in all patients and the mesenchymal- 
subtype patients in the Mateescu dataset. (E) Differential progression-free survival (PFS) between plasma cell exosome–specific miRNA signature–high group and plasma 
cell exosome–specific miRNA signature–low group of patients with ovarian cancer in OC133 and OC179 datasets. (F) Differential overall survival and progression survival 
between miR-330-3p–high group and miR-330-3p–low group of patients with ovarian cancer in the OC179 dataset. (G) Expression levels of miR-330-3p in patients with 
ovarian cancer with relapse and without relapse. (H) Expression levels of miR-330-3p in patients with ovarian cancer with distinct differentiation grades. (I) Differential 
overall survival between JAM2-high group and JAM2-low group of patients with ovarian cancer in the Tothill, Bonome, and TCGA datasets. Data are shown as 
mean ± SEM. In (C), (D), (E), (F), and (I), survival difference was calculated by log-rank test; in (G) and (H), P value was calculated using the two-tailed Student’s t test. 
**P < 0.01.
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survival of plasma cell exosome miRNA signature–high patients was 
worse than plasma cell exosome miRNA signature–low patients in 
both the OC133 dataset (P = 0.02; Fig. 6E) and the OC179 dataset 
(P = 0.004; Fig. 6E). These findings support the clinical significance of 
plasma cells and plasma cell exosomal miRNAs in patients with HGSC.

We further assessed whether miR-330-3p and its target, JAM2, 
inform the prognosis of patients with ovarian cancer. The overall 
survival (P = 0.017) and the progression-free survival (P = 0.0062) 
of miR-330-3p–high patients were significantly worse than those of 
miR-330-3p–low patients in the OC179 dataset (Fig. 6F). In addi-
tion, miR-330-3p expression was higher in patients with ovarian 
cancer with relapse compared with those without relapse (Fig. 6G) 
and higher in poorly differentiated and undifferentiated ovarian car-
cinoma patients compared with well-differentiated patients (Fig. 6H). 
Expression of miR-330-3p was also higher in the mesenchymal sub-
type of ovarian cancer compared with nonmesenchymal subtypes 
(fig. S7B). We next explored whether miR-330-3p was also differen-
tially expressed in subgroups of ovarian cancer samples with differ-
ent immune cell–subtype infiltrates. miR-330-3p expression levels 
were elevated in plasma cell–enriched (P = 0.03) and  T cell– 
enriched (P = 0.01) ovarian cancer samples compared with plasma 
cell–rare and  T cell–rare ovarian cancer samples, while no signif-
icant difference was observed on the basis of enrichment for other 
immune components (fig. S8). Overall survival was consistently 
worse in JAM2-high patients compared with JAM2-low patients in 
the Tothill dataset (P = 0.0017), Bonome dataset (P = 0.014), and 
TCGA dataset (P = 0.0051) (Fig. 6I). These results demonstrate that 
the miR-330-3p/JAM2 axis is associated with poor ovarian cancer 
patient prognosis.

DISCUSSION
On the basis of the deconvolution of bulk gene expression data of 
ovarian cancer, we unraveled distinct patterns of immune infiltra-
tion between tumors. Our comprehensive analysis of the immune 
microenvironment in ovarian cancer revealed subtype-specific im-
mune infiltration patterns that might shed light on new immuno-
therapeutic strategies for this deadly disease. In particular, the 
mesenchymal-subtype ovarian cancer is characteristically enriched 
with plasma cell infiltration, which is prognostically important.

The prognostic roles of B cell/plasma cell infiltration in different 
types of cancer appear to be context dependent. Plasma cell recruit-
ment to the tumor microenvironment was associated with better 
prognosis (30), whereas other studies showed that B cell infiltration 
was correlated with poorer prognosis (31). Berntsson et  al. (30) 
found that a higher density of plasma cells correlated significantly 
with an improved overall survival in patients with colorectal cancer. 
However, the clinical significance of B cells and plasma cells in 
ovarian cancer remains obscure. Lundgren and colleagues (32) re-
ported that high CD20 and CD138 expression levels correlated sig-
nificantly with high tumor grade and high CD138 expression were 
associated with a significantly reduced overall survival as well as 
ovarian cancer–specific survival. However, another group showed 
that plasma cells were associated with the most robust, prognosti-
cally favorable CD8+ tumor-infiltrating lymphocyte responses in 
HGSCs (33). To clarify the exact role of plasma cells in ovarian can-
cer, we performed integrated analysis in large-scale HGSC gene 
expression data and found that plasma cell infiltration is enriched 
in the mesenchymal subtype, among which the prognosis was the 

worst. Further clinical sample validation indicated that plasma cell 
abundance was correlated with the content of mesenchymal cells, 
giving additional support to the possible functional role of plasma 
cells in shaping the mesenchymal phenotype of HGSCs.

Exosomes are small membrane vesicles formed by the inward 
budding of late endosomes (34). They are released into the extracel-
lular environment upon fusion with the plasma membrane under 
both physiological and pathological conditions. Exosomes contain 
a variety of functional proteins, mRNAs, and miRNAs that facilitate 
these structures to operate as signaling platforms for short-range or 
long-range delivery of information to other cells (35). Exosomes 
constitute an important component of the tumor microenviron-
ment that serves as a messenger between different cells. Existing 
literature has characterized the importance of exosomes in remod-
eling the tumor niche and maintained the hallmarks of ovarian can-
cer. Zhou et al. (36) demonstrated that exosomes released from 
tumor-associated macrophages transfer miRNAs that induce a 
T regulatory/T helper 17 cell imbalance in epithelial ovarian cancer. 
Dorayappan et al. (37) found that hypoxic ovarian cancer cell– derived 
exosomes were potent in augmenting metastasis/chemotherapy 
resistance in ovarian cancer and may serve as a novel mechanism 
for tumor metastasis and chemoresistance and an effective inter-
vention for improving clinical outcomes. In this study, we found 
that plasma cells secreted exosomes to shape the mesenchymal iden-
tity of HGSCs both in vitro and in vivo. Small RNA sequencing re-
vealed that these exosomes secreted by plasma cells in the tumor 
microenvironment contained miR-330-3p that was transmitted to 
the ovarian cancer cells to induce the mesenchymal phenotype. 
Thus, exosomes might be an important messenger between plasma 
cells and HGSCs and essential for the mesenchymal phenotype.

miR-330-3p has been implicated as a critical factor in tumor de-
velopment and progression, but whether it acts as a tumor suppres-
sor or an oncogene is still controversial. Yao et al. (38) reported that 
miR-330-3p inhibits the proliferation of melanoma cells by nega-
tively regulating the expression of Targeting protein for Xklp2, which 
was pro-proliferative in melanoma cells. However, another group 
demonstrated that miR-330-3p was overexpressed in non–small 
cell lung cancer tissues and brain metastasis tissues (39). Currently, 
the functional role of miR-330-3p in ovarian cancer has not been 
elucidated. Our study showed that miR-330-3p derived from plas-
ma cell exosomes functions as a key driving force in determining 
the mesenchymal identity of ovarian cancer and could serve as a 
strong poor prognosis indicator for patients with ovarian cancer. It 
is traditionally considered that miRNAs usually negatively regulate 
gene expression by binding to the 3′UTR of target genes to degrade 
mRNA or inhibit translation (40). However, recent evidence shows 
that apart from functioning in the cytoplasm, miRNAs are also present 
in the nucleus, acting unconventionally to activate gene tran-
scription by targeting enhancers (23, 25). While we did not find any 
correlation between canonical miR-330-3p targets and ovarian can-
cer patient prognosis, we observed that after transmitted from the 
plasma cells, miR-330-3p could enter the nucleus of ovarian cancer 
cells and directly interact with the promoter region of JAM2, en-
hancing its gene expression in a noncanonical fashion. Overex-
pressed JAM2 is important for the mesenchymal identity of HGSCs. 
Our study gave further support to the notion that miRNAs could 
activate gene transcription apart from inducing gene repression. In 
addition, the noncanonical miR-330-3p/JAM2 axis newly identified 
by our study offers new therapeutic vulnerabilities for HGSCs. 
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JAM2 is a member of JAM, which are a family of adhesion mole-
cules belonging to the immunoglobulin superfamily that localize to 
the tight junctions. JAM protein family members are type 1 trans-
membrane glycoproteins consisting of two immunoglobulin-like 
domains, one transmembrane domain, and one cytoplasmic tail. 
Jam proteins function through either homo- or heterodimerization 
with Jam family members or other proteins, such as integrins (41). 
Previous report showed that JAM2high hematopoietic stem cells are 
characterized by enhanced potential for T lymphopoiesis (42). In 
the cancer context, while not frequently reported, JAM2 was demon-
strated to promote invasiveness of melanoma (43) and breast can-
cer (44). We presented that the noncanonical miR-330-3p/JAM2 
axis maintains the mesenchymal phenotype of HGSCs and that dis-
ruption of this axis could potently impair ovarian cancer growth 
and invasiveness both in vitro and in vivo. Thus, this novel nonca-
nonical miR-330-3p/JAM2 axis could potentially serve as an effi-
cient therapeutic target for HGSCs.

Collectively, our study used integrated systems biology analysis 
and found specific immune infiltration patterns among different 
molecular subtypes of HGSCs. We found that enrichment of plas-
ma cells is a specific feature of the mesenchymal-subtype HGSCs. 
Further in vivo and in vitro experiments unraveled an exosome- 
derived miR-330-3p/JAM2 axis that mediated induction of core EMT 
programs in ovarian cancer, which extrinsically controlled ovarian 
cancer metastasis and affected patient outcome. Therefore, thera-
peutic targeting the plasma cell–ovarian cancer cell interactions by 
blocking the noncanonical exosomal miR-330-3p/JAM2 axis might 
be an efficient treatment option for patients with HGSC.

METHODS
Reagents, cell culture, and cell transfection
The antibodies used in this study are listed as follows: For flow cy-
tometry: phycoerythrin (PE) anti-human CD138 (1:20; Invitrogen, 
12-1389-41), PE anti-mouse CD138 (1:50; BD Pharmingen, 561070), 
Peridinin-Chlorophyll-Protein Complex (PerCP)/Cy5.5 anti-mouse 
CD45 (1:400; BioLegend, 103132), PE anti-mouse CD45 (1:50; BD 
Pharmingen, 561087), allophycocyamin (APC) anti-mouse/human 
CD11b (1:400; BioLegend, 101212), APC anti-mouse/human CD45R/
B220 (1:400; BioLegend, 103211), PE anti-mouse Gr-1 (1:50; BD 
Pharmingen, 561084); and for immunofluorescent staining and 
Western blot: CD138 (1:200; BioLegend, 352302), CD81 (1:500; 
Invitrogen, #10630D), CD63 (1:500; Invitrogen, #10628D), -SMA 
(1:1000; Novus, NB300-978SS), IGKC (1:200; Bioss Antibodies, bs-
3800R), E-cadherin (1:1000; Abcam, ab76055), vimentin (1:1000; Abcam, 
ab8978), fibronectin (1:200; MXB-bio, RAB-0071), JAM2 (1:1000; 
Abcam, ab139645), Ki67 (1:200; ZSGB-BIO, ZA-0502), and WT1 (1:1000; 
Abcam, ab89901). Secondary antibodies used include Alexa Fluor 488 
goat anti-rabbit (1:1000; Invitrogen, A-11008), Alexa Fluor 555 goat 
anti-rabbit (1:1000; Invitrogen, A-21428), Alexa Fluor 555 goat anti- 
mouse (1:1000; Invitrogen, 1837985), Alexa Fluor 488 goat anti- 
mouse (1:1000; Invitrogen, A11001), Alexa Fluor 488 donkey 
anti-goat (1:1000; Invitrogen, A-11055), Alexa Fluor 555 donkey 
anti-mouse (1:1000; Invitrogen, A-31570), Alexa Fluor 647 goat anti- 
rabbit (1:1000; Invitrogen, A-21244), peroxidase-labeled affinity- 
purified goat anti-mouse (1:5000; KPL, 0741806), and peroxidase-labeled 
affinity-purified goat anti-rabbit (1:5000; KPL, 0741506).

All cell lines were maintained at 37°C and 5% CO2. The human 
ovarian cancer cell lines OVCAR-3, COV318, and SKOV-3 were 

cultured in RPMI 1640 containing 10% fetal bovine serum (FBS) 
and penicillin-streptomycin (100 U/ml) (both from Gibco-BRL, 
Grand Island, NY, USA). The human ovarian cancer cell line 
COV504 was cultured in Dulbecco’s modified Eagle medium (DMEM) 
containing 10% FBS and penicillin-streptomycin (100 U/ml) (both 
from Gibco-BRL, Grand Island, NY, USA). The mouse ovarian can-
cer cell line ID8 was cultured in DMEM supplemented with 10% 
FBS, 2 mM  l-glutamine, 1 mM sodium pyruvate, and penicillin- 
streptomycin (100 U/ml) (both from Gibco-BRL, Grand Island, NY, 
USA). ID8 cells were transduced with a lentiviral vector containing 
a luciferase reporter (GenBank no: MF693179.1) together with the 
puromycin resistance gene (ID8-Luc) for establishment of perito-
neal metastasis model. Primary lymphocytes and plasma cells were 
cultured in RPMI 1640/DMEM containing 10% FBS and penicillin- 
streptomycin (100 U/ml) no more than 6 days. Cell lines were tested 
for authenticity in 2019 using short tandem repeat genotyping. 
They were also tested negative for mycoplasma.

In each plasma cell–tumor cell coculture experiment, plasma 
cells (1 × 106) and ovarian cancer cells (1 × 105) were cocultured in 
six-well plates for 48 hours. In exosome-involving experiments, 5 × 
104 ovarian cancer cells were treated with culture medium with 
concentrations of about 6.0 × 105 exosomes/ml for each group for 
48 hours. A total of 6.0 × 105 exosomes derived from about 200 ml 
of 1 × 106 plasma cell culture media. The number was calculated on 
the basis of 3.0 × 102 particles (30 to 200 nm) each 100 l of plasma 
cell culture media directly from NanoSight result. For cell transfec-
tion experiment, siRNA, miRNA mimic, and miRNA inhibitor 
were transfected into cells using Lipofectamine RNAiMAX (Invit-
rogen) according to the manufacturer’s instructions; small hairpin 
RNAs (shRNAs) were transfected into cells using Lipofectamine 
3000 (Invitrogen) according to the manufacturer’s instructions.

For cell transfection experiment, siRNA, miRNA mimic, and 
miRNA inhibitor manufactured by RiboBio (Guangzhou, China) 
were transfected into cells using Lipofectamine RNAiMAX (Invit-
rogen) according to the manufacturer’s instructions. Transfection 
efficiency was guaranteed by fluorescent probe cotransfected. In all 
experiments involving siRNA, miRNA mimic, and miRNA, the 
concentrations were 50 to 60 nM equally in both experimental and 
control groups. As for shRNA lentiviral or pLenti-CBh-3FLAG-luc2- 
tCMV-mNeonGreen-F2A-Puro (ID8 luciferase reporter lentivirus) 
infection experiment, the virus titer used was based on the following 
formula: virus (l) = cell number × multiplicity of infection/virus 
(stock solution) titer × 103. Final concentration of polybrene (5 g/ml) 
was used to facilitate infection. In 72 hours, puromycin (4 g/ml) 
was added to culture medium for cell screening. The screening pro-
cess lasted for 2 weeks, and culture medium was replaced with pu-
romycin (4 g/ml) every day.

Other important reagents are as follows: PKH67 (Sigma-Aldrich), 
Matrigel (Corning, 356234), phalloidin (Abcam, ab176753), and 
RNA Pol II (5 g per test; BioLegend, 920102). The reagent BTZ was 
purchased from Sigma-Aldrich.

Quantification of cell morphology
Ovarian cells in each experiment were fixed with 4% paraformalde-
hyde and stained with fluorescein isothiocyanate–phalloidin (Abcam) 
and 4′,6-diamidino-2-phenylindole. Individual cells were manually 
outlined using Adobe Photoshop CS6 software. Area, perimeter, 
circularity, and elongation index were quantified for no less than 
40 cells per substrate using ImageJ software. Circularity was defined 
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as 4(cell area)/(cell perimeter)2. Elongation index was defined as 
(cell perimeter)2/(4(cell area)) as reported previously (45).

Public datasets
We used four different mRNA datasets comprising together a total 
of 989 patients for this study, including TCGA cohort (n = 483) (3), 
Bonome cohort (GSE26712, n = 185) (12), Tothill cohort (GSE9891, 
n = 242) (7), and Mateescu cohort (GSE26193, n = 79) (13). Only 
patients with HGSC in these datasets were included in our analysis. 
In addition, two independent miRNA datasets were analyzed in this 
study, among which the OV179 cohort includes 179 patients with 
ovarian cancer (GSE73581) (20) and the OV133 cohort comprises 
133 patients with ovarian cancer (GSE73582) (20). TCGA data was 
downloaded from Firebrowse (http://firebrowse.org/) (46). For the 
other cohorts, gene expression data together with clinical profiles 
were downloaded from Gene Expression Omnibus (GEO) directly 
in their processed form using R package GEOquery (version 1.0.7) 
(47). For each dataset, the expression profiles were collapsed from 
probe sets to genes, followed by z-normalization across all samples. 
Only patients with complete survival information were used for 
survival analyses. The molecular subtyping information for the 
Bonome, Tothill, TCGA, and Mateescu datasets were retrieved 
from the study of Verhaak et al. (48).

Profiling of infiltrating immune cells
To dissect immune cell infiltration heterogeneity, we used CIBERSORT 
(10), a popular algorithm for characterizing cell composition from 
bulk-tumor GEPs. More specifically, normalized gene expression 
datasets were uploaded to the CIBERSORT web portal (http://cibersort.
stanford.edu/) for analysis, using the default signature matrix at 1000 
permutations. For each sample, CIBERSORT inferred the relative 
proportions of 22 types of infiltrating immune cells (all P values of 
<0.05), where P values were empirically calculated using Monte 
Carlo sampling indicating the statistical confidence for de-
convolution of bulk tumor GEPs into a mixture of cell type– 
specific GEPs.

Identification of plasma cell gene signature subgroups
The z-score normalized microarray data from the Tothill cohort was 
used. Plasma signature genes were retrieved from CIBERSORT. Next, 
we clustered these samples using hierarchical clustering with ag-
glomerative average linkage. Consensus clustering (48) was applied to 
assess the clustering stability, with 1000 iterations and a 0.98 subsampling 
ratio. To determine the optimal cluster number, we computed the 
gap statistic (49) for k = 1 to 10, and a peak was found at k = 2.

Identification of plasma cell exosomal miRNA gene 
signature subgroups
The OV133 cohort was first normalized followed by z-score trans-
formation. The overlapped miRNAs among OV133, OV179, and plas-
ma cell exosome small RNA sequencing data were selected. The k means 
clustering algorithm (51) was used to classify the OV133 samples 
into two groups. To build a classifier, the overlapped miRNAs were used 
to train a classifier by prediction analysis for microarrays (PAMs) 
(52). We classified the OV179 cohort using the PAM classifier.

Gene set enrichment analysis
GSEA (21) was performed using GSEA software (www.broadinstitute.
org/gsea) with 1000 permutations. Phenotype used for the 

analysis was log2 fold change between GEPs of samples with high 
and low plasma cell abundance (mean-dichotomized). Gene sets 
used were obtained from MSigDB (Molecular Signatures Database; 
C2 and C5 databases, version 6). False discovery rate–adjusted 
P < 0.05 was used to select statistically significant gene sets.

RNA sequencing and data analysis
Whole-transcriptome sequencing libraries were constructed as de-
scribed previously (50) and were sequenced on the Illumina HiSeq 
platform (Novogene, China). Briefly, a total amount of 3 g of RNA 
per sample was used as input material for the RNA sample prepara-
tions. Sequencing libraries were generated using the NEBNext 
UltraTM RNA Library Prep Kit for Illumina (New England Biolabs, 
USA) following the manufacturer’s recommendations, and index codes 
were added to attribute sequences to each sample. Briefly, mRNA was 
purified from total RNA using poly-T oligo–attached magnetic beads. 
Fragmentation was carried out using divalent cations under elevated 
temperature in NEBNext First Strand Synthesis Reaction Buffer 
(5×). First-strand complementary DNA (cDNA) was synthesized 
using random hexamer primer and M-MuLV Reverse Transcriptase 
[ribonuclease H− (RNase H−)]. Second-strand cDNA synthesis was 
subsequently performed using DNA Pol I and RNase H. Remaining 
overhangs were converted into blunt ends via exonuclease/polymerase 
activities. After adenylation of 3′ ends of DNA fragments, NEBNext 
Adaptor with hairpin loop structure were ligated to prepare for hy-
bridization. To select cDNA fragments of preferentially 250 to 
300 base pairs (bp) in length, the library fragments were purified 
with the AMPure XP system (Beckman Coulter, Beverly, USA). 
Then, 3 l of USER Enzyme (New England Biolabs, USA) was used 
with size-selected, adapter-ligated cDNA at 37°C for 15 min followed 
by 5 min at 95°C before PCR. Then, PCR was performed with Phusion 
High-Fidelity DNA Polymerase, Universal PCR primers, and Index 
(X) Primer. Last, PCR products were purified (AMPure XP system), 
and library quality was assessed on the Agilent Bioanalyzer 2100 
system. The clustering of the index-coded samples was performed 
on a cBot Cluster Generation System using TruSeq PE Cluster Kit 
v3-cBot-HS (Illumia) according to the manufacturer’s instructions. 
After cluster generation, the library preparations were sequenced on an 
Illumina HiSeq platform, and 125/150-bp paired-end reads were 
generated (51). Here, a total of 6-gauge clean reads were generated 
from whole-transcriptome sequencing for each group. For quality con-
trol: Raw data of Fastq format were first processed through in-house 
perl scripts. In this step, clean data were obtained by removing 
reads containing adapter and low-quality reads from raw data. 
Meanwhile, Q20, Q30, and GC content, the clean data were calcu-
lated (52). All the downstream analyses were based on the clean 
data with high quality. For reads mapping to the reference ge-
nome: Reference genome and gene model annotation files were 
downloaded from genome website directly. Index of the reference 
genome was built using STAR, and paired-end clean reads were 
aligned to the reference genome GRCh38 using STAR (v2.5.1b) 
(53). STAR used the method of Maximal Mappable Prefix, which 
can generate a precise mapping result for junction reads. Quantifi-
cation of gene expression level: HTSeq v0.6.0 was used to count the 
reads numbers mapped to each gene. Then, FPKM of each gene was 
calculated on the basis of the length of the gene and reads count 
mapped to this gene. FPKM, expected number of fragments per ki-
lobase of transcript sequence per millions base pairs sequenced, 
considers the effect of sequencing depth and gene length for the 

http://firebrowse.org/
http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
http://www.broadinstitute.org/gsea
http://www.broadinstitute.org/gsea


Yang et al., Sci. Adv. 2021; 7 : eabb0737     24 February 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

14 of 17

read count at the same time and is currently the most commonly 
used method for estimating gene expression levels.

Patients and clinical specimens
The tumor specimens of patients with ovarian cancer were collected 
from West China Second Hospital, Sichuan University. The freshly 
resected tumor samples of patients with ovarian cancer for flow cy-
tometry analysis were also obtained from West China Second Hos-
pital, Sichuan University. All of these samples were examined by 
experienced pathologists who confirmed the diagnosis of disease 
samples. Blood samples used for isolation of plasma cells derived 
from three patients with HGSC. Exosomes subjected to miRNA 
sequencing were also obtained from plasma cells isolated from 
these patients with HGSC. We combined the exosomes for further 
functional validation experiments. This study was approved by the 
Institutional Ethics Committee of Sichuan University. Informed 
consents were obtained from all patients before analysis.

Cell sorting method
Plasma cell–sorting progress was divided into two steps: First, total 
lymphocytes were isolated from patient blood using a lymphocyte 
separation kit (DKW-KLSH-0400), which was based on the density 
gradient centrifugation method; second, plasma cells were isolated 
using magnetic separation (CD138 MicroBeads: MACS, 130-051-301) 
from the lymphocytes obtained in the former step. The concentra-
tion of CD138 MicroBeads used was 20 l of beads/1 × 107 cells per 
40 l of buffer. Other immune cells were sorted and enriched as 
described previously using magnetic separation as well (49).

Immunoblotting, immunohistochemistry, 
and immunofluorescent assays
Immunoblotting was performed as previously described (34, 50). 
Briefly, for immunoblotting, whole-cell lysates of ovarian cancer 
cells were prepared using radioimmunoprecipitation assay lysis 
buffer (C1053), 1 mM phenylmethylsulfonyl fluoride (P0100), and 
1 mM EDTA. Protein lysates were resolved on SDS–polyacrylamide 
gel electrophoresis (P0012A) and blotted on Amersham Hybond P 
0.45 polyvinylidene difluoride. Membranes were blocked for 1 hour 
in tris-buffered saline (TBS) containing 0.1% (v/v) Tween 20 with 
20% (w/v) nonfat dry milk powder (blocking solution). Primary an-
tibodies were incubated at 4°C in blocking solution. Secondary 
peroxidase-labeled affinity-purified antibodies (KPL) were diluted 
1:5000 in blocking solution and incubated for 1 hour at room tem-
perature. Membranes were washed in 0.1% TBS–Tween 20, and im-
mune complexes were detected using the Pierce ECL Western 
Blotting Substrate (Thermo Fisher Scientific, 32106).

For immunohistochemistry analysis, 4-m-thick paraffin sec-
tions were deparaffinized and rehydrated, and antigens were re-
trieved in antigen unmasking solution, citric acid based (Vector 
Laboratories, H-3300), using a pressure boiler for 10 min under a 
slightly boiling state. Slides were treated with a 3% solution of 
hydrogen peroxidase in methanol to block the endogenous peroxi-
dase activity and then washed in a phosphate buffer solution before 
immunoperoxidase staining. Slides were then incubated at 5% goat 
serum blocked for 2  hours and then 4°C overnight with primary 
antibody. Tissue sections were then washed three times with phosphate- 
buffered saline (PBS) and next incubated with biotinylated antibody 
immunoglobulin and then stained with streptavidin labeled with per-
oxidase; the signal was developed by using 3,3′-diaminobenzine 

chromogen as substrate. After chromogen development, slides were 
counterstained with hematoxylin, washed, dehydrated with alcohol, 
and mounted with coverslips using a permanent mounting medium 
(Absin, abs9177).

For immunofluorescent analysis, before antibody incubation, 
4-m-thick paraffin section samples were deparaffinized and rehy-
drated, and antigens were retrieved in antigen unmasking solution, 
citric acid based (Vector Laboratories H-3300), using a pressure 
boiler for 10 min under a slightly boiling state. For formaldehyde- 
fixated cell climbing tablet samples, PBST (0.3% Triton X-100 with 
PBS) incubation was processed for 30 min, and then, the paraffin 
section samples or cell climbing tablet samples were incubated at 5% 
goat serum for 2 hours and then 4°C overnight with primary anti-
body, then washed three times, and next incubated with secondary 
antibody. Last, samples were washed and mounted with coverslips 
with a permanent mounting medium. Photos were required by using 
an Olympus IX73 fluorescence microscope and a Leica SP5 confocal 
fluorescence microscope. We have defined those clinical specimens 
with a mean optic density of -SMA over 0.05 as the mesenchymal 
subtype and otherwise as the nonmesenchymal subtype.

Flow cytometry analysis
Quantification of different immune cells was performed using a BD 
FACSAria III and a BD LSRFortessa as described previously (54). 
Antibody combination strategies for different kinds of immune 
cells could directly be seen in the figures. The antibody concentra-
tions were used according to the manufacturer’s instructions.

Quantitative polymerase chain reaction
The mRNA levels of each gene were measured via qPCR. Following 
procedures previously described (50), RNA was isolated using a 
total RNA isolation kit, including an on-column deoxyribonuclease 
treatment (Norgen). cDNA synthesis was carried out using the 
SuperScript III Reverse Transcriptase Kit using a mixture of oligo(dT) 
and random hexamers for priming (Life Technologies). qPCR was 
conducted with Fast SYBR Green Master Mix (Applied Biosystems), and 
fluorescence was monitored using a 7900HT Fast real-time instrument 
(Applied Biosystems). Data were analyzed using the Ct method. 
The endogenous control transcripts were used for normalization. Statis-
tical significance was determined using a one-tailed Student’s t test. The 
sequences of the primers used for all qPCR assays are in table S3.

Transwell chamber and wound healing analysis
Transwell 24-well chambers (Corning) were applied for in vitro cell 
migration assay as described previously (55). Ten contiguous fields 
of each sample were assessed to obtain a representative number of 
cells that had migrated across the membrane. The cell number was 
calculated by Countstar Automated Cell Counter machine and 
adjusted by diluting with cell culture medium. As for the wound 
healing analysis, wounds were scratched in confluent cells using a 
pipette tip, and the cells were then rinsed with medium to remove 
free-floating cells and debris. Serum-free medium was subsequently 
added, and culture plates were incubated at 37°C for 2 days. Wound 
healing was observed at 0 and 24 hours within the scrape line, and 
representative scrape lines for each cell line were photographed.

Mice subcutaneous and peritoneal metastatic tumor model
The C57 mice used for subcutaneous tumor inoculation were ob-
tained from Beijing Vital River Laboratory Animal Technology Co. 
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Ltd. Animal studies were reviewed and approved by the Institution-
al Ethics Committee of Sichuan University. For subcutaneous model, 
mice were injected with ID8 cells subcutaneously, and tumors were 
allowed to establish for 40 days. For the peritoneal metastatic tumor 
model, ID8-luc cells were intraperitoneally injected, and mice 
were examined for Luc expression using d-luciferin (100 mg/kg; 
Invitrogen, Life Technologies). Images were captured with the 
PerkinElmer IVIS Lumina III instrument to assess tumor develop-
ment every week. Image analyses were carried out with Living 
Image Software–IVIS Lumina Series software.

Exosome extraction and treatment
Exosomes were purified by differential centrifugation processes as 
described previously (56). Plasma cell culture media were subse-
quently subjected to sequential centrifugation steps at 300g for 
10 min and 2000g for 10 min. This resulting supernatant was then 
subjected to ultracentrifugation (Thermo Fisher Scientific Sorvall 
WX 100+) sequentially for 30 and 70 min. The first 30 min was to 
remove cell debris, and a pellet was recovered after 70 min of the 
resulting supernatant subjected to ultracentrifugation. The pellet was 
resuspended in PBS and subsequently ultracentrifuged at 100,000g 
for another 70 min. Purified exosomes were then analyzed and used 
for experimental procedures. For in vitro experiments, tumor cells 
were treated with exosomes (10 g/ml).

Electron microscopy and NanoSight analysis
Exosomes were examined with a transmission electron microscope 
after isolation and loading. The samples were dropped in the carbon 
support membrane with a copper net and placed for 20 min. Then, 
excess liquid was absorbed using filter paper. The carbon support 
membrane was then dripped with 2% phosphotungstic acid and laid 
up for 5 min. Excess liquid was absorbed using filter paper, and 
sample was visualized with a Tecnai G2 transmission electron micro-
scope. A NanoSight NS300 instrument equipped with NTA 3.0 analyti-
cal software was used to quantify the size distribution of exosomes.

miRNA sequencing
Total RNA from exosomes was then subjected to miRNA sequenc-
ing. Library preparation and miRNA sequencing were performed 
by RiboBio (Guangzhou, China). Only small RNAs ranging from 18 to 
30 nt were used for library preparation. PCR amplification products 
were sequenced using the Illumina HiSeq 2500 platform. The 3′ adapt-
ers were removed by Cutadapt (54). The adapter-trimmed reads were 
remapped to human genome hg38 using Burrows-Wheeler Aligner 
(BWA) aligner (51). miRBase version 21 (57) (www.mirbase.org/) 
was used for annotation.

Chromatin immunoprecipitation
For ChIP assay, formaldehyde was added to cell culture medium to 
a final concentration of 1%. After 10 min of incubation at room 
temperature, glycine was added to a concentration of 125 mM to 
stop cross-linking reaction. Cells were quickly washed with cold 
PBS in a culture dish twice and then added to 1 ml of PBS mixed 
with protease inhibitors. Then, they were pelleted by centrifugation 
at 800g for 5 min at 4°C. Cell pellet was resuspended in 1 ml of lysis 
buffer A [50 mM Hepes-KOH (pH7.5), 140 mM NaCl, 1 mM EDTA, 
10% glycerol, 0.5% NP-40, and 0.25% Triton X-100] with protease 
inhibitors and then was rotated modestly for 10 min at 4°C. Then, they 
were pelleted by centrifugation at 800g for 5 min at 4°C. Resulting 

nuclear pellet was resuspended in 300 l of lysis buffer B [10 mM 
tris-HCl (pH 8.0), 100 mM NaCl, 1 mM EDTA (pH 8.0), and 0.1% 
Na-deoxycholate] with protease inhibitors, which was next put on 
ice for 30 min. Resulting suspension was sonicated in ultrasound to 
achieve DNA fragments of 200 to 500 bp. Ultrasonic product (25 l) 
was saved as an input, whereas another 250 l was added to 555 l 
of dilution buffer [0.01% SDS, 1.1% Triton X-100,1.2 mM EDTA, 
16.7 mM tris-HCl (pH 8.1), and 167 mM NaCl] with protease in-
hibitors combined with 50 l of magnetic beads coupled anti-mouse 
immunoglobulin G. The mixture was rotated modestly for 30 min 
at 4°C. Then, Magnetic Separation Rack was used to absorb mag-
netic beads for 2 min. The suspension was then equally divided into 
IP (Immunoprecipitation) group and negative group, and the original 
magnetic beads were discarded. Add 5 g of antibody into the IP group 
tube rotated for a night at 4°C. The next day, 50 l of magnetic beads was 
added into two group tubes that next rotated for 1 hour at 4°C. Magnetic 
Separation Rack was used to absorb magnetic beads for 2 min. The 
suspension was discarded, and the beads were washed with the follow-
ing solution of 500 l, respectively, each time rotated for 5 min at 4°C: (i) 
Low salt [0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM tris-HCl 
(pH 8.1), and 150 mM NaCl], wash once; (ii) high salt [0.1% SDS, 1% 
Triton X-100, 2 mM EDTA, 20 mM tris-HCl (pH 8.1), and 500 mM 
NaCl], wash once; (iii) LiCl [0.25 M LiCl, 1% NP-40, 1% deoxycholate, 
1 mM EDTA, and 10 mM tris-HCl (pH8.1)]; and (iv) TE [10 mM 
tris-HCl and 1 mM EDTA (pH 8.0)], wash twice.

Then, when it comes to the elution procedure, the One-Day 
Chromatin Immunoprecipitation Kit (Millipore) was performed 
according to the manufacturer’s instructions. The final step adopted 
a standard phenol/chloroform/isoamyl alcohol procedure to pu-
rify DNA.

Statistical analysis
Kaplan-Meier curves were generated to show survival significance 
calculated on the basis of log-rank tests. Continuous variables were 
presented as mean and SEM. Wilcoxon rank sum tests were used 
for comparisons of different groups in all public cohorts. Two-sided 
Student’s t tests were used to assess differences in all experiments. 
For any test, a P value of <0.05 was considered to be significant. 
Statistical significance is shown as *P  <  0.05, **P  <  0.01, and 
***P < 0.001. Statistical analyses were performed using R (version 
3.4.3, www.r-project.org).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/9/eabb0737/DC1

View/request a protocol for this paper from Bio-protocol.
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