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ABSTRACT
Zoledronic acid (ZOL), belonging to third generation bisphosphonate family, is 

a potent inhibitor of osteoclast-mediated bone resorption, widely used to effectively 
prevent osteolysis in breast cancer patients who develop bone metastases. Low doses 
of ZOL have been shown to exhibit a direct anticancer role, by inhibiting cell adhesion, 
invasion, cytoskeleton remodelling and proliferation in MCF-7 breast cancer cells. 
In order to identify the molecular mechanisms and signaling pathways underlying 
the anticancer activity exerted by ZOL, we analyzed for the first time the microRNA 
expression profile in breast cancer cells. A large-scale microarray analysis of 377 
miRNAs was performed on MCF7 cells treated with 10 μM ZOL for 24 h compared to 
untreated cells. Furthermore, the expression of specific ZOL-induced miRNAs was 
analyzed in MCF-7 and SkBr3 cells through Real-time PCR. Low-dose treatment with 
ZOL significantly altered expression of 54 miRNAs. Nine upregulated and twelve 
downregulated miRNAs have been identified after 24 h of treatment. Also, ZOL induced 
expression of 11 specific miRNAs and silenced expression of 22 miRNAs. MiRNA data 
analysis revealed the involvement of differentially expressed miRNAs in PI3K/Akt, 
MAPK, Wnt, TGF-β, Jak-STAT and mTOR signaling pathways, and regulation of actin 
cytoskeleton. Our results have been shown to be perfectly coherent with the recent 
findings reported in literature concerning changes in expression of some miRNAs 
involved in bone metastasis formation, progression, therapy resistance in breast 
cancer. In conclusion, this data supports the hypothesis that ZOL-induced modification 
of the miRNA expression profile contributes to the anticancer efficacy of this agent.

INTRODUCTION 

Breast cancer  (BC) is the most common cancer 
and the major cause of cancer death in women worldwide 
[1, 2]. The mortality associated to BC is correlated with 
bone metastasis in about 50% of patients, therefore, 
maintaining bone integrity is important for these 
patients [3]. Metastatic bone disease (MBD) is a painful 

complication characterized by elevated rates of localized 
osteolysis, which can lead to potentially debilitating 
skeletal-related events (SREs) such as pain, pathological 
fracture, hypercalcaemia and spinal cord compression  
[4, 5]. Interference in the complex interactions between 
tumor and bone cells in the bone microenvironment results 
in MBD. Cytokines and growth factors produced by tumor 
cells destroy the balanced process between osteoclastic 
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bone resorption and osteoblastic bone formation causing 
increased osteolysis. The alteration and disruption of the 
normal surrounding extracellular matrix (ECM), induced 
by matrix metalloproteinases (MMPs), determines the 
primary tumor cell invasion leading to development of bone 
metastasis [6, 7]. This event causes the extravasation of 
cancer cells reaching distant target organs including skeletal 
tissue, where they establish respective metastases [8].

Bisphosphonates (BP) are potent inhibitors of 
osteoclast-mediated bone resorption approved for the 
treatment of MBD from advanced cancers, including  
BC [9]. Zoledronic acid (ZOL) is a third generation 
nitrogen-containing BP (N-BP) (Figure 1A) used for 
treatment of BC patients with osteolytic lesions in order 
to significantly reduce the risk of skeletal complications. 
N-BPs inhibit farnesyl bisphosphate (FPP) synthase, 
whose activity is crucial in the mevalonate pathway, 
by preventing lipid prenylation of small GTPases, 
such as Ras, Rho and Rac, and, consequently, blocking 
downstream signaling pathways and inducing apoptosis 
of osteoclasts and tumor cells [10–13]. Recent data 
suggested that ZOL, alone or in combination with neo-
adjuvant chemotherapy, exerts direct or indirect anticancer 
effects on a variety of cancers, including BC [14–16]. 
In particular, the in vitro anticancer activity of ZOL is 
correlated to reduced migration, invasion, adhesion and 
proliferation and increased apoptosis of cancer cells 
[17–20]. ZOL also exhibits indirect anticancer activities, 
by inhibiting angiogenesis [21] and tumor-associated 
macrophage infiltration and promoting cytotoxicity of γδ 
T cells [22–24].

Using a microarray platform, we previously 
demonstrated that ZOL could modulate the expression 
of genes involved in metabolic processes, cytoskeletal 
and ECM organization, cell communication and cell 
proliferation pathways in MCF7 BC cell line. Therefore, 
ZOL has been shown to inhibit the invasiveness processes 
in cancer cells by modifying their capability to invade 
tumor microenvironment and thus turning off their 
metastatic potential [25]. We found also that low doses 
of ZOL block cellular proliferation, by inhibiting the 
phosphorylated state of AKT and MAPK proteins, and 
affect the cytoskeletal reorganization by up-regulating 
fibronectin-1 (FN1) and actin. Moreover, we observed that 
ZOL treatment promotes the TGF-b1/SMADs pathway 
and mediates the anti-angiogenic potential in MCF7 cells 
via up-regulation of the thrombospondin-1 (THBS1) 
expression [26]. 

MicroRNAs (miRNAs) are a group of non-coding 
regulatory small RNAs, 20–22 nucleotides in length, 
which have been shown to regulate several cellular 
processes such as proliferation, differentiation, apoptosis, 
cell metabolism and angiogenesis [27]. MiRNAs can 
inhibit gene expression by recognizing specific binding 
sites in the 3′ untranslated region (UTR) of target mRNA 

molecules [28], leading to their degradation, inhibition 
of their translation, or both [27, 29]. The dysregulated 
expression of miRNAs, observed in almost all human 
malignancies, is involved in several cancer processes, 
including cell cycle control, angiogenesis, metastasis, 
apoptosis, invasion, and resistance to hypoxia [30–33]. 
Different miRNA expression profiles were associated 
with specific BC pathologic characteristics, such as tumor 
stage, progesterone and estrogen receptor expression, 
vascular invasion and proliferation index [34]. Recent 
studies showed that several miRNAs are involved in 
bone metastases formation, by interfering with the crucial 
steps of cancer cell intravasation and tumor invasion, 
and targeting specific genes implicated in epithelial-
mesenchymal transition (EMT), survival, invasiveness, 
motility, osteomimicry and bone remodeling [35, 36]. 
Many miRNAs were identified as mediators of bone 
metastases acting as oncomiR (miR-17-92, miR-373,  
miR-520c) or anti-oncomiR (miR-7, miR-30, miR-34a, 
miR-143, miR-145, miR-335) in tumor invasion processes 
[37]. In a recent paper, Croset et al. [38] have grouped the 
main miRNAs involved in bone metastasis development 
into three following processes: bone remodeling (miR-33a 
and miR-326), osteomimicry (miR-30s family, miR-204, 
miR-211, miR-218 and miR-379) and EMT (Let-7 family, 
miR-7, miR-10b, miR-34a, miR-100, miR-143, miR-145,  
miR-200 family, miR-203 and miR-205). Specific miRNAs 
involved in regulation of BC bone metastases were 
found to be up-regulated (miR-10b, miR-21, miR-135a,  
miR-155, miR-221/222, miR-224, miR-373 and  
miR-520c) and down-regulated (miR-30s, miR-31,  
miR-34a, miR-125, miR-200, miR-203, miR-205,  
miR-206 and miR-342). Five miRNAs of the miRNA-30s 
family are specifically involved in BC cell dissemination 
to bone, by modulating expression of osteomimetic genes 
such as Runx2, connexin 43, integrin-β3, cadherin-11 and 
CTGF [39].

The data on miRNA expression profiles in human 
cancer demonstrates that miRNAs are promising 
predictive, prognostic and/or diagnostic markers [40, 41]. 
Specific cancer-related miRNA expression patterns could 
be very helpful to evaluate the efficacy of several drugs 
in the treatment or prevention of tumors and allow to 
elucidate underlying molecular mechanisms.

Considering the antitumoral activity of ZOL in 
BC and the important role of miRNAs in regulating 
different cellular networks, we analyzed the miRNA 
expression profile in MCF7 BC cell line after treatment 
with low doses of ZOL to better understand if and how 
the molecular mechanism by which ZOL mediates these 
effects involves miRNAs. Only one dose of ZOL was 
used, because in our previous work [26] three different 
concentrations (10, 50 and 100 μM) at three different 
time-points (24, 48 and 72 h) were tested, and the lower 
dose (10 μM) and the best time-point (24 h), sufficient to 
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induce an anti-proliferative effect on MCF-7 cells, were 
identified by in vitro cell viability assays (data not shown). 
We performed an expression study on a set of 377 human 
miRNAs and validated the expression of 11 specific  
ZOL-induced miRNAs in MCF-7 and SkBr3 BC cells. 
For the first time, we showed a panel of differentially 
expressed miRNAs in cells treated with ZOL compared to 
untreated cells and established, at the light of previous our 
results [26], the correlation between these miRNAs and 
cancer-related pathways.

RESULTS

MiRNA expression profile induced by ZOL 

Understanding mechanisms underlying miRNAs 
function in the cancer onset and progression provides 
an useful tool to develop different strategies able to use 
miRNAs as potential targets for cancer treatment. Since 
several experimental studies reported that miRNAs may 
be significant diagnostic and prognostic biomarkers 
in human tumors, alterations in miRNA expression 
patterns of different cancers can be associated to specific 
pathological aspects, disease outcome and treatment 
response. Nowadays, there is no evidence of dysregulated 
miRNAs in response to ZOL treatment, therefore it 
would be original and intriguing to identify the molecular 
mechanisms allowing their use in anticancer therapeutic 
strategies. In order to understand the effect of low-
dose ZOL treatment on miRNA expression profile we 
performed a large-scale analysis of 377 miRNAs on 
MCF7 cells treated with 10 μM ZOL for 24 h compared 
to untreated cells. 

Among 377 human miRNAs, about 40% of them 
(150) was not detected in MCF-7 cells. Analysis showed 
205 microRNAs expressed in MCF7 BC cells after 
treatment with 10 µM ZOL for 24 h (data not shown). This 
result suggests that only a part of the miRNA population 
is expressed in human MCF-7 BC cells. Accumulating 
evidence showed that several miRNAs are expressed 
in a tissue- or species specific manner and only a small 
amount of miRNAs is expressed in a specific tissue at a 
determined time [42]. Our result is consistent with this 
conclusion.

In order to highlight the significantly expressed 
miRNAs we established a cut off of fold change > 2 
for up-regulated miRNAs and < 0.3 for down-regulated 
miRNAs. Statistical analysis revealed 54 miRNAs 
differentially expressed in MCF7 cells treated with 10 μM 
ZOL compared to control cells (Figure 1B). Among these 
54 miRNAs, we identified 9 up-regulated miRNAs, 12 
down-regulated miRNAs, 11 miRNAs specifically induced 
by ZOL treatment and 22 silenced miRNAs in MCF7 cells 
treated with ZOL (Figure 1C). 

Functional analysis of miRNAs up- and down-
regulated by ZOL treatment 

In order to investigate the biological role of 
differentially expressed miRNAs in MCF7 cells treated 
with 10 μM ZOL, we used mirPath software. Nine up-
regulated and twelve down-regulated miRNAs with 
different expression fold changes in comparison to 
untreated cells were found (Figure S1). For statistical 
analysis only the intersection of targeted genes 
(hypothetical genes targeted by all selected miRNAs) was 
evaluated [43].

The obtained results showed the involvement of 
ZOL in PI3K-Akt signaling pathway, one of the most 
significant pathways in cancer biology. Statistical analysis 
showed that 6 ZOL-deregulated miRNAs, such as  
miR-142-3p, miR-483-5p, miR-486-5p, miR-502-5p,  
miR-627 and miR-96-5p, shared 60 genes involved 
in the PI3K-Akt signaling pathway (Table 1). The 
phosphorylation process of AKT and ERK1/2 can be 
inhibited by up to 75% and 36%, respectively, after 
24 h of ZOL treatment [44]. The extent of inhibition 
of phosphorylated-protein kinase B (p-AKT) and 
phosphorylated-mammalian target of rapamycin 
(p-mTOR) was responsible for  inhibitory effect of ZOL 
on cell growth [45]. Moreover, we showed that also low-
dose ZOL treatment (10 μM) reduces both MAPK and Akt 
activities, by which ZOL slows the cell proliferation and 
spread of cancer cells after they have colonized bone [26]. 

We identified other pathways such as lysine 
degradation (10 genes, 4 miRNAs), Wnt signaling 
(22 genes, 5 miRNAs), TGF-β signaling (11 genes, 4 
miRNAs), Jak-STAT signaling (24 genes, 5 miRNAs), 
regulation of actin cytoskeleton (36 genes, 3 miRNAs) and 
mTOR signaling (19 genes, 3 miRNAs) (Table 2).

Actin reorganization [26], cell cycle progression 
[46], apoptosis [47], angiogenesis [48], DNA repair 
[49, 50], NF-kB signaling [51] are elucidated pathways 
through which ZOL exerts its anticancer activity. Our 
analysis showed that miRNAs are possible molecular 
mediators of these effects. 

ZOL induces expression of specific miRNAs

A further series of studies was conducted on the 
miRNAs expression profile data in order to identify 
any pathway of particular interest. Array data showed 
that ZOL treatment induces expression of 11 miRNAs 
in MCF7 cells. In order to validate miRNA expression, 
quantitative Real-Time PCR was performed on another 
pair of independent samples from MCF7 and SkBr3 
cells using TaqMan miRNA assays. Data confirmed that  
11 miRNAs were specifically expressed in both MCF7 and 
SkBr3 cells treated with 10 μM ZOL for 24 h compared to 
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untreated cells (Figure 2A). Seven miRNAs were mainly 
expressed: let-7f, miR-142-5p, miR-302a-3p, miR-326, 
miR-449b-5p, miR-516b-5p and miR-570-5p (Table S1).  
Untreated cells showed undetermined values of Ct for 
all 11 miRNAs. To understand the biological role of 
these miRNAs we created heat maps of miRNAs versus 
pathways using miRPath v2.0. 

The integrated analysis was performed on 7 
miRNAs induced after ZOL treatment. This analysis 
indicated that miRNAs showing high expression levels 
were included in the following three pathways: PI3K/Akt 
signaling (hsa04151), MAPK signaling (hsa 04010) and 
regulation of actin cytoskeleton (hsa 04010) (Figure 2B).  
In particular, we found 5 miRNAs, among the 7 most 
representative miRNAs, implicated in the regulation of 
PI3K/Akt signaling pathway, suppressing the expression of 
87 hypothetical genes; 5 miRNAs inhibiting 55 potential 
targets were involved in MAPK signaling cascade; and 

the pathway of actin cytoskeleton regulation was shared 
by 3 miRNAs modulating 40 potential candidate genes.  
In addition, the ubiquitin-mediated proteolysis (25 genes, 2 
miRNAs), mTOR (16 genes, 3 miRNAs), Erb (20 genes, 3  
miRNAs), and TGF-β (16 genes, 2 miRNAs) signaling 
pathways and focal adhesion molecules (25 genes, 2 
miRNAs) were statistically relevant (Table 3). 

ZOL silences the expression of specific miRNAs

Our results showed that miRNA expression pattern 
of MCF-7 BC cells was distinctly different between 
untreated and treated cells with 10 μM ZOL for 24 h. 

Microarray data indicated that 22 miRNAs were 
specifically detected in untreated MCF-7 cells, but not in 
cells exposed to 10 μM ZOL for 24 h (Table S2). These 
results were confirmed in independent samples from 
both MCF7 and SkBr3 cells by means of quantitative  

Figure 1: MiRNA expression profile induced by ZOL. (A) Chemical structure of zoledronic acid. (B) Heat map of differentially 
expressed miRNAs by ZOL in breast cancer cells. The heat map was generated from microarray data reflecting expression values in 
MCF-7 cells treated with 10 μM ZOL for 24 h in comparison to untreated cells (control). Only up-regulated miRNAs with fold change > 2  
and down-regulated miRNAs with fold change < 0.3 were considered (P < 0.05). Each row represents the expression levels for a single 
miRNA tested for two different experimental conditions. Each column shows the expression levels for the miRNAs tested for a single 
experimental condition. The absolute expression value of each miRNA is derived from the mean of two biological replicates. The color 
scale bar on the top represents signal intensity variations ranging from green (poorly expressed or unexpressed miRNAs) to red (highly 
expressed miRNAs). Black boxes indicate intermediate expression values. (C) Pie chart representation of the 54 differentially expressed 
miRNAs obtained by miRNAs expression profile: 9 up-regulated miRNAs, 12 down-regulated miRNAs, 11 miRNAs induced by ZOL and 
22 silenced miRNAs in MCF7 treated with ZOL.
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Real-Time PCR analyses (data not shown). In order to 
elucidate the biological role of these silenced miRNAs, we 
created a miRNAs versus pathway heat map (Figure 3). 

The integrated analysis was performed on  
miR-129-3p, miR-130a, miR-133b, miR-150, miR-22, 
miR-372, miR-373, miR-381, miR-485, miR-504, miR-
509-5p, miR-515-3p, miR-515-5p, miR-519e, miR-
548c-5p, miR-548d-3p and miR-758. In this analysis we 
have not considered miR-124, miR-187, miR-337-5p,  
miR-487a and miR-518d-5p because they have not been 
shown to share potential gene targets. The results showed 
that 10 miRNAs could modulate 95 gene targets involved 
in MAPK signaling cascade and 9 miRNAs could regulate 
genes involved in PI3K/Akt signaling pathway (Table 4).  
The p38-mitogen-activated protein kinase (MAPK) 
pathway is involved in the mechanism of the antitumor 
effect of ZOL according to our previous results [26]. 
ZOL mediated growth inhibition of BC cells in a dose- 

and time-dependent manner [26], regulated by changes in 
expression and/or membrane localization of Ras, Rap1, 
and phosphorylated MAPK [52]. Moreover, we found that 
10 miRNAs, modulating 72 potential gene targets, were 
implicated in the regulation of endocytosis, and 35 genes 
involved in TGF-β signaling pathway could be modulated 
by 6 miRNAs. In addition, statistically relevant pathways 
were: Wnt signaling (58 genes, 9 miRNAs), ubiquitin-
mediated proteolysis (49 genes, 8 miRNAs) and regulation 
of actin cytoskeleton (74 genes, 8 miRNAs) (Table 4).

DISCUSSION

Nowadays, although clinicians have several 
treatment options (chemotherapy, hormone therapy, and 
targeted therapy), BC is still responsible for a significant 
percentage of cancer deaths in women [53, 54]. ZOL 
showed anti-tumoral and anti-metastatic activity during 

Table 1: Hypothetical gene targets of 6 miRNAs deregulated by ZOL in MCF7
PI3K/Akt signaling pathway

PRLR BCL2 PIK3R1 PIK3CA
PDGFRA CDKN1B JAK3 CREB3L1

IFNA4 PPP2R5D PIK3CG FOXO3
ITGB8 GNB1 FGF9 IFNA7
NRAS COL6A6 IRS1 FN1

PPP2R3A KRAS RAC1 IFNA17
YWHAE CDK6 IFNA16 FGF23
THBS2 IL7R FGF18 MTOR
PIK3R2 GHR LAMC1 ITGA6
PIK3R5 IKBKB IGF1 TNN

YWHAG BRCA1 BCL2L1 PTEN
CREB1 ITGAV PDGFC MAPK1
GNG12 GNB2 CREB3L2 IFNA10
GNB3 JAK2 IFNA14 FGF7

PIK3AP1 EIF4E PDGFD GRB2

The table represents 60 supposed targets of 6 differentially expressed miRNAs in MCF7 cells after low-dose ZOL treatment. 
The list was generated by DIANA-miRPath v2.0. p < 0.005.

Table 2: Cellular pathways modulated by 21 differentially expressed miRNAs in MCF7 cells 
treated with ZOL

Pathway miRNAs Genes
PI3K /Akt signaling pathway 6 60
Lysine degradation 4 10
Wnt signaling pathway 5 22
TGF-β signaling pathway 4 11
Jak-STAT signaling pathway 5 24
Regulation of actin cytoskeleton 3 36
mTOR signaling pathway 3 19

The pathways were obtained using DIANA-miRPath v2.0. The first column describes the pathway, the middle column reports 
the number of miRNAs involved in the same pathway and the last column the number of target genes. p < 0.005.
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cancer progression in preclinical and clinical studies [55]. 
Several clinical trials analyzed the effects of ZOL on 
overall survival of BC patients [56, 57]. The mechanism 
by which ZOL explicates its antitumor properties has 
already been studied, and its inhibitory effect on tumor 
angiogenesis has been demonstrated. It has been reported 
that proliferation, migration and invasion are inhibited 
by ZOL in order to promote apoptosis and reduce the 
adhesion to bone of malignant cells [26, 58, 59].

The main aim of our study was to investigate the 
molecular mechanisms by which ZOL exerts its anti-
tumoral effects in BC cells focusing our attention on 

miRNAs. Based on the TaqMan Low density array 
analysis, we identified 54 differentially expressed 
miRNAs in human MCF-7 BC cells after treatment with 
10 μM ZOL for 24 h with different abundance for each 
miRNA. Most of these miRNAs has not been reported or 
investigated in BC cells. Our analyses showed that low-
dose ZOL treatment affected the expression levels of 
some miRNAs in MCF-7 cells. In order to identify the 
cellular pathways modulated by deregulated miRNAs we 
performed an integrated analysis using mirPath software. 
MiRNAs versus pathway heat map showed that, among 
the 21 deregulated miRNAs, 6 miRNAs shared 60 genes 

Figure 2: ZOL induces the expression of 11 specific miRNAs. (A) Validation of miRNA array data by quantitative  
real-time PCR analysis. The mean Ct values of let-7f, miR-142-5p, miR-184, miR-211, miR-302a-3p, miR-326, miR-411, miR-449b-5p,  
miR-516b-5p, miR-519c-3p and miR-570-5p were determined in MCF-7 and SkBr3 cells treated with 10 μM ZOL for 24 h. RNU48 was 
used as endogenous control. Data are presented as Ct values ± SDs. Untreated cells showed undetermined values of Ct for all 11 miRNAs; 
(B) miRNAs versus pathways heat map (clustering based on significance levels). Darker colors represent lower significance values. The 
dendrograms placed on both axes depict hierarchical clustering results for miRNAs and pathways, respectively. On the miRNA axis, we can 
identify clustered miRNAs by exhibiting similar pathway targeting patterns. An analogous clustering can be observed also on the pathway 
axis. Hierarchical clustering was realized using DIANA-miRPath v2.0.
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Table 3: Cellular pathways modulated by specific miRNAs induced by ZOL in MCF7 and  
SkBr3 cells

Pathway miRNAs Genes

PI3K /Akt signaling pathway 5 87
MAPK signaling pathway 5 55
Regulation of actin cytoskeleton 3 40
Ubiquitin mediated proteolysis 2 25

mTOR signaling pathway 3 16

Erb signaling pathway 3 20

Focal adhesion 2 25
TGF-β signaling pathway 2 16

The pathways were obtained using DIANA-miRPath v2.0. The first column reports the pathway, the middle column shows 
the number of miRNAs involved in the same pathway and the last column reports the number of the target genes. p < 0.005.

Figure 3: ZOL silences the expression of 22 miRNAs in breast cancer cells. MiRNAs versus pathways heat map (clustering 
based on significance levels). Darker colors represent lower significance values. The dendrograms placed on both axes depict hierarchical 
clustering results for miRNAs and pathways, respectively. On the miRNA axis, we can identify clustered miRNAs by exhibiting similar 
pathway targeting patterns. An analogous clustering can be observed also on the pathway axis. Hierarchical clustering was realized using 
DIANA-miRPath v2.0.
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involved in the PI3K-Akt signaling pathway. Lysine 
degradation, Wnt signaling, TGF-β signaling, Jak-STAT 
signaling, regulation of actin cytoskeleton and mTOR 
signaling were other significantly relevant pathways 
identified by statistical analysis. We also found that  
10 μM ZOL treatment for 24h induced expression of 11 
specific miRNAs in MCF7 and SkBr3 cells. We focused 
our attention on 7 miRNAs which were more expressed 
than others: let-7f, miR-142-5p, miR-302a-3p, miR-326, 
miR-449b-5p, miR-516b-5p and miR-570-5p.

The integrated analysis indicated that miRNAs 
showing high expression levels were involved in PI3K/
Akt signaling, MAPK cascade, regulation of actin 
cytoskeleton, ubiquitin-mediated proteolysis, mTOR, 
TGF-β and  Erb signaling pathways, and focal adhesion 
molecules.

In contrast, 22 miRNAs were expressed in untreated 
MCF7 and SkBr3 cells only, indicating that low-dose ZOL 
treatment silences these miRNAs, probably regulating 
transcriptional activation factors. Integrated analysis 
showed that 17 miRNAs could modulate genes involved 
in MAPK, PI3K/Akt, TGF-β and Wnt signaling pathways, 
ubiquitin-mediated proteolysis, and regulation of actin 
cytoskeleton. Overall, miRNAs regulated by low doses 
of ZOL could modulate genes involved in cancer-related 
pathways.

Additionally, a comparison between the microRNA 
expression profile described in our work and that obtained 
in other recent papers concerning the involvement of 
miRNAs in bone metastasis formation showed that low-
dose ZOL treatment up-regulates three miRNAs opposing 
to metastasis development (miR-143, miR-145 and miR-
204), induces specific expression of miR-211 (suppressor 
of osteoclast function), and specifically suppresses 
the expression of miR-373 (metastasis promoter). 
Furthermore, our data showed a ZOL-induced down-
regulation of the miR-96 expression, whose up-regulation, 
conversely, has been shown to increase cell proliferation 
in human BC via direct targeting of FOXO3a [60].  

In addition, our analyses revealed a specific ZOL-mediated 
induction of expression of miR-302a and miR-326, that 
is perfectly coherent with the recent findings from Liang 
and collaborators demonstrating the involvement of 
these miRNAs in invasion and metastasis, and therapy 
resistance, respectively, in BC [61, 62]. Indeed, the 
restoration of the miR-302a expression has been shown to 
inhibit the invasive ability and metastasis both in vitro and 
in vivo by down-regulation of CXCR4 expression [61], 
whereas the ectopic expression of miR-326 sensitized 
multidrug-resistant BC cells to chemotherapy by down-
regulation of MRP-1 expression [62]. Lastly, since Pandey 
et al. [63] recently reported that high expression levels of 
miR-22 are associated with progression, metastasis and 
poor prognosis in BC patients, our results showing the 
ZOL-mediated silencing of miR-22 expression support the 
already known role of ZOL as effective anticancer agent. 

Designing therapies targeting the metastasis 
development mechanisms could prevent the escape of BC 
cells from a primary tumor and inhibit bone metastasis 
formation. The current study demonstrates that aberration 
of specific miRNAs after ZOL treatment may be effector 
of the anti-tumoral activity of ZOL in BC cells. 

The microRNA expression profile obtained in 
this work is correlated with cancer-related biological 
pathways, such as PI3K/Akt, MAPK, TGF-β signaling 
and actin cytoskeletal remodeling. This data is in 
agreement with that reported in our previous work [26], 
where we confirmed, using the same ZOL concentration, 
the phosphorylation inhibition of the AKT and MAPK 
proteins. The obtained results are indicative of the 
mechanisms by which ZOL is able to inhibit cellular 
proliferation [26]. Also, we found that ZOL plays an 
inhibitory role in BC cell invasion through cytoskeletal 
remodeling. The molecular mechanism underlying this 
effect is the activation of TGF-β1/Smad signaling pathway 
and downstream activity of FN1 and β-actin. In future, 
investigating the molecular regulatory mechanism of drug-
specific miRNAs will allow a better understanding of the 

Table 4: Cellular pathways modulated by silenced miRNAs in MCF7 and SkBr3 cells treated  
with ZOL

Pathway miRNAs Genes
MAPK signaling pathway 10 95
PI3K-Akt signaling pathway  9 106
Endocytosis 10 72
TGF-β signaling pathway 6 35
Wnt signaling pathway 9 58
Ubiquitin mediated proteolysis  8 49
Regulation of actin cytoskeleton 8 74

The pathways were obtained using DIANA-miRPath v2.0. The first column reports the pathway, the middle column shows 
the number of miRNAs involved in the same pathway and the last column reports the number of the target genes. p < 0.005.
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action mechanism of ZOL and the detection of novel 
potential targets useful for the development of possible 
new therapeutic strategies. 

MATERIALS AND METHODS

Cell culture

Human BC cell lines, MCF-7 and SkBr3, purchased 
from the American Type Culture Collection (Rockville, 
MD, USA) were grown in Dulbecco’s modified Eagle’s 
medium Gibco DMEM:F12 (Invitrogen, Carlsbad, 
CA,USA) containing 10% fetal bovine serum (FBS) and 
1% Penicillin/Streptomycin (P/S) (Gibco). Cells were 
incubated at 37°C in a humidified atmosphere of 5% of 
CO2. Eighty per cent confluent cultures were stimulated 
with ZOL 10 μM for 24 h. ZOL was kindly provided by 
Novartis Pharma AG. 

MiRNA expression profile analysis

Total cellular RNA and miRNAs has been isolated 
using the miRNeasy Mini Kit (Qiagen Inc, Valencia, CA).  
The quality of the samples have been controlled through 
RNA 6000 Nano Assay (Agilent Techologies, Palo 
Alto, CA, USA) using 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA) and quantified through 
the spectrophotometer NanoDrop ND-1000 (CELBIO). To 
study miRNA expression profile, we used  TaqMan® Low 
Density Array A Human MicroRNA v2.0 (Life 
Technologies, Carlsbad, California, U.S.). The arrays were 
performed in accordance to manufacturer’s protocols as 
previously described [64]. Briefly, 600 ng of miRNA-
enriched total RNA were reverse transcribed using 
Megaplex™ RT Primers Human Pool A (Life Technologies, 
Carlsbad, California, U.S.) according to manufacturer’s 
instructions. Conditions for the reverse transcription 
reaction were as follows: 16°C for 2 minutes, 42°C for 
1 minute, 50°C for 1 second for 40 cycles, 85°C for  
5 minutes then hold at 4°C. Obtained cDNA was diluted, 
mixed with TaqMan Gene Expression Master Mix, and 
loaded into each of the eight fill ports on the TaqMan® 
Human MicroRNA Array A (Life Technologies, Carlsbad, 
California, U.S.). The TaqMan Human MicroRNA Array is 
a 384-well microfluidics card containing 377 primer-probe 
sets for individual miRNAs as well as three carefully 
selected candidate endogenous small nucleolar RNAs 
control assay and one negative control assay. The array 
was centrifuged at 1,200 rpm twice for 1 minute each, then 
run on ABI-PRISM 7900 HT Sequence Detection System 
(Applied Biosystems). Two biological replicates were 
performed for each experimental condition. The data were 
quantified using the SDS 2.4 software and normalized 
using the RNU48 as endogenous control. The cycle 
threshold (Ct) value, which was calculated relatively to 

the endogenous control, was used for our analysis (∆Ct). 
The 2−∆∆CT (delta-delta-Ct algorithm) method was used 
to calculate the relative changes in miRNA expression. 
A miRNA was defined differentially expressed when 
estimated P-value was < 0.05.

Quantitative real-time PCR

Ten nanograms of total RNA from another 
independent experiment were reverse transcribed using 
Taqman MicroRNA Reverse Transcription Kit (Life 
Technologies, Carlsbad, California, U.S.) according 
to manufacturer’s instructions. The obtained cDNA 
was amplified using the following Taqman MicroRNA 
assays: hsa-let-7f-5p, hsa-miR-142-5p, hsa-miR-184, 
hsa-miR-211, hsa-miR-302a, hsa-miR-326, hsa-miR-411, 
hsa-miR-449b, hsa-miR-516b, hsa-miR-519c-3p and hsa-
miR-570 (Life Technologies, Carlsbad, California, U.S.). 
To normalize quantitative Real-Time PCR reactions, 
parallel reactions were run on each sample for RNU48 
snRNA. The reactions were performed in triplicate and 
changes in the target miRNA content relative to RNU6B 
were determined using the comparative Ct method to 
calculate changes in Ct, and, ultimately, fold and percent 
change. An average Ct value for each RNA was obtained 
for replicate reactions.

MiRNA data analysis

Hierarchical cluster and heat map analyses were 
performed using the MultiExperiment Viewer (MeV 
v4.8) program of TM4 Microarray Software Suite. Heat 
maps of miRNAs versus pathways were generated using 
miRPath v2.0 database as previously described [43, 65].  
DIANA-miRPath v2.0 is based on a new relational 
schema, specifically designed to accommodate this as 
well as future miRPath updates. MiRNA and pathway 
related information was obtained from miRBase 18 [66] 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
v58.1 [67]. Hierarchical clustering of targeted pathways 
and miRNAs was realized using DIANA-miRPath v2.0. 
The software created a clustering of the selected miRNAs 
based on their influence on molecular pathways [65].

Statistical analysis

Filtering criteria able to select reliably quantifiable 
miRNAs were used (cut off < 35 Ct). Undetermined 
values of Ct were estimated as 40 Ct (the last cycle 
of the reactions). Heat maps were constructed using 
z-transformed relative gene ∆Ct values, so that 
measurements were scaled to obtain gene-wise zero mean 
and unit variance. Data are represented as mean ± S.D 
(standard deviation). Statistical analyses were performed 
by Student’s t-test. Values of P < 0.05 were considered to 
be statistically significant.
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