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Oral squamous cell carcinoma (OSCC) is a common head-and-neck cancer with a
deficiency of early diagnosis and poor prognosis. To identify potential diagnostic and
prognostic markers of OSCC, we firstly used weighted gene co-expression network
analysis (WGCNA) to build a co-expression module from GSE42743. Next, we performed
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses on specified units from selected modules utilizing Database for Annotation,
Visualization, and Integrated Discovery (DAVID). Additionally, we identified and validate hub
genes of these specified modules from multiple datasets like GEPIA and TCGA. In total
16 co-expression modules were built by 17,238 genes of 74 tumor samples utilizing
WGCNA. Through pathway and functional enrichment analysis, the turquoise module was
most firmly relevant to the cell cycle, oocyte meiosis, and p53 signaling pathway. Hub
genes VRK1, NUP37, HMMR, SPC25, and RUVBL1 were identified to be related to oral
cancer at both molecular level and clinical levels. The expressions of these genes differed in
tumor tissues and normal tissues. Meanwhile, patients with high hub gene expression had
a poor prognosis clinically. To conclude, five hub genes were identified to be relevant to
oral cancer from the molecular level and the clinical level. Therefore, the detection of these
genes was of great significance. They can be regarded as diagnostic and prognostic
biomarkers for oral cancer. Also, they could shed light on the improvement of patients’
overall survival and prognosis, which needs further analysis in the future.
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INTRODUCTION

Oral cancer ranks among the top 15 most common cancers in the world, characterized by delayed
early diagnosis and a low five-year survival rate [1]. Oral cancer happens on the lip or oral cavity, and
90% of which is originated from squamous cells histologically. Tobacco [2], alcohol [3], betel quid [4]
and human papillomavirus (HPV) [5] are important carcinogenic factors [6]. According to global
cancer statistics 2018, the annual mortality rate of oral and lip cancer is about 177,384 and the annual
number of new cases reached 354,864 [7]. Additionally, a recent statistical report has indicated that
the incidence rate is higher in developed countries while the mortality is higher in developing
countries [8]. The reasons for the low five-year survival rate can be divided into two main parts.
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Firstly, subtle precancerous lesions, and low prevalence of early
screening result in delayed diagnosis. The disease has often
developed to Stage III or IV when patients present for
diagnosis [9, 10]. On the other hand, because of the lack of
specific biomarkers, there is no specific curative treatment for oral
cancer. Under the influence of a low early diagnosis rate and
nonspecific treatment, the five-year survival rate for patients with
oral cancer has not ameliorated, and has been stuck at 50%–55%
for the past several decades [1].

Weighted gene co-expression network analysis (WGCNA) has
been applied to effectively detect highly correlated gene clusters,
which can be used as a gene screening tool [11]. DAVID and
other databases are used to promote the analysis of genome-scale
datasets. The use of these genetic analysis tools and multiple
databases is conducive to the accurate screening of genes, to
identify specific biomarkers and prognosis-related genes of oral
cancer.

MATERIALS AND METHODS

Data Procession
The OSCC dataset of GSE42743 was obtained from NCBI Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/).
The GSE42743 was an expression profiling based on GPL570
platform (Affymetrix Human Genome U133 Plus 2.0 Array)
and included 103 samples consisting of 24 matched normal and
tumor samples from the same patient [12]. The R package affy
(under the R environment, version 3.6.1) was used to preprocess
the gene expression profiles. After RMA normalization and probe
annotation. We selected 74 tumor samples from the dataset with
17238 genes, the top 50% of genes with the greatest variance
changes are used to further establish the co-expression network.
After validation, the gene expression array was constructed into a
gene co-expression network using the R package WGCNA. First,
the adjacency matrixαij is constructed by the following formula to
calculate the connection strength between nodes:

αij � ∣∣∣∣(1 + cor(xi + yi))/2
∣∣∣∣β

where xi and xj were the expression levels of the gene i and the
gene j respectively. β stands for soft threshold. A suitable soft
threshold can ensure that the co-expression network conforms to
the scale-free network.

The next step is to convert the adjacency matrix into a
topological matrix, TOM (topological overlap measure) is used
to describe the degree of association between genes. The formula
is as follows:

TOM � (∑ μ ≠ ijαiμαμj + αij)/(min(∑ μαiμ +∑ μαjμ) + 1

− αij)

Based on TOM difference, the genes with similar expression
patterns are classified into the same module by hierarchical
clustering function, and the minimum size of the gene tree
diagram was 30 genes. A Dynamic Tree Cut algorithm was

used to classify the genes and visualize the network. Finally,
the gene network of characteristic genes was visualized.

Identification of Clinical SignificantModules
The most representative gene in each module is called the module
eigengenes (MEs), which represents the overall level of gene
expression in the module and is the first principal component
in each module. In order to identify the clinical significant
module, we calculated the correlation between MEs and
clinical phenotypes. Gene significance (GS) was used to
measure the correlation between each gene and external
information. It is defined as the log10 transformation of the p
values (GS = lgP) in linear regression results of gene expression
and clinical phenotype. Moreover, module significance (MS) was
defined as the mean GS of all genes in a certain module. The
module with the highest MS is considered the most relevant to the
clinical trait.

Function Enrichment Analysis
To learn more about the biological functions of genes in key
modules. We used an online database for annotation,
visualization, and integrated discovery (DAVID, http://david.
abcc.ncifcrf.gov/) to accomplish Gene Ontology (GO). The
gene list of the key module was uploaded, and we found the
result of the biological process (BP) and KEGG pathway. A
p-value ≤0.05 was considered significant.

Hub Gene Identification and Validation
Gene connectivity was measured by the absolute value of the
Pearson correlation. Genes with high intra-module connectivity
were considered the central genes of the module and may have
important biological functions. Genes with correlation >0.8 were
selected for further verification. GEPIA (http://gepia.cancer-pku.
cn/) is a newly developed interactive web server for analyzing the
RNA sequencing expression data of 9,736 tumors and
8,587 normal samples from the TCGA and the GTEx projects,
using a standard processing pipeline [13]. It provides the patient
survival analysis of candidate genes, and the significant results
were picked out (log-rank p ≤ 0.05). In order to further verify the
selected genes, we downloaded the OSCCmRNA sequencing data
from The Cancer Genome Atlas Project database (TCGA, https://
cancergenome.nih.gov/) and standardized the data by TPM. The
Human Protein Atlas (http://www.proteinatlas.org) was also used
to verify the expression of selected genes at the translation level.

Pathway Enrichment Analysis
For further understanding of the pathway gene sets related to the
hub genes, Gene set enrichment analysis (GSEA) and GSVA
analysis were performed. GSEA was performed using GSEA
v4.1.0 software (http://www.gsea-msigdb.org/gsea/) [14, 15]
and the gene sets background was c2.cp.kegg.v7.2.symbols.gmt.
GSVA was conducted with the GSVA package [16]. The samples
were divided into two groups according to the median expression
of hub genes and R package Limma was used to calculate the
difference.
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GSCALite
The relation between the small molecule/drug sensitivity
(IC50) and the hub genes expression profile in HNSC cell
lines in CTRP was analyzed utilizing Webtool GSCALite
(http://bioinfo.life.hust.edu.cn/web/GSCALite/). Calculation
of correlation was performed by Spearman’s correlation
analysis. Moreover, the hub genes methylation level was
also identified in HNSC using GSCALite, the t test was
performed to define differences in methylation between
tumor and normal samples.

TIMER
We analyze the relation between the abundance of tumor
immune infiltrating cells and hub genes by TIMER (Tumor
Immune Estimation Resource) (https://cistrome.shinyapps.io/

timer/). Correlation analysis was performed using Spearman’s
correlation test.

RESULT

Data Collection and Sample Cluster
Selecting tumor samples in GSE42743, the data had a total of
74 samples and three phenotypes. Subsequently, cluster
analysis was performed on the samples and the outlier
GSM1049121 had been removed, then clustered the
samples with phenotypic information using Pearson
correlation (Figure 1). In order to ensure that the
established co-expression network conformed to the scale-
free network, we determined the soft threshold as β = 9 and

FIGURE 1 | Clustering dendrogram of samples and set of soft-thresholding power. (A) Sample clustering was conducted to detect outliers. The outliers
GSM1049121 were removed from this study; (B,C) Verification of selected soft threshold power. Analysis of scale independence and mean connectivity was performed
to attain the suitable for the scale-free topology.
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FIGURE 2 | Identification of tumor-related gene modules. (A) Cluster dendrogram obtained by hierarchical cluster analysis. Each module was corresponding
assigned to one color; (B)Heatmapwith barplot of correlation between modules and clinical traits of HNSC. The red color block represented positive correlation, and the
blue block represents negative correlation. The number above in the cell represents Spearman’s correlation and the number in brackets represents the p-value. The
black module was most related to the tumor progression. The barplot on Y-axis indicated the average gene significance with the TNM stage.

FIGURE 3 | Function enrichment analysis. Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis
were conducted to identify significant biological processes; (A) Chord diagram of GO enrichment; (B) Bubble diagram of KEGG enrichment.
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FIGURE 4 | Overall survival and survival analysis of hub genes in HNSC. Kaplan–Meier analysis showed that patients with higher expression levels of hub genes
exhibited worse OS. (A) VRK1, (B) NUP37, (C) HMMR, (D) SPC25, (E) RUVBL1, the order of pictures below is the same.
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verified the average connectivity and correlation coefficient
(R2) of the selected soft threshold (Figure 1),
R2>0.9 indicated that the selected β value could build a
gene scale-free network. We used average-linkage

hierarchical clustering to cluster genes and set the
MEDissThres parameter to 0.25 to merge similar modules.
Finally, 16 gene modules were obtained, of which the turquoise
module was the most relevant to the tumor process (Figure 2).

FIGURE 5 | Diagram of mRNA expression level of hub genes in different stages on TCGA database. (A) VRK1, (B) NUP37, (C) HMMR, (D) SPC25, (E) RUVBL1.
Diagram of mRNA expression level of hub genes in normal and tumor tissues on TCGA database. (F) VRK1, (G) NUP37, (H) HMMR, (I) SPC25, (J) RUVBL1. *indicates
p < 0.05. The gene expression was remarkably up-regulated in cancer tissues.
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Gene Ontology and Pathway Enrichment
Analysis
We selected genes in the turquoise module and uploaded them to
DAVID for functional enrichment analysis. Select the BP
function group in Gene ontology, the 8 most significant
biological processes are shown in Figure 3A. The results show
that the turquoise modules were mainly enriched in the process of
cell division such as cell division, mitotic nuclear division, and
sister chromatid cohesion. We also performed a KEGG pathway
analysis on the turquoise module to investigate possible
pathways, pathways with p values > 0.05 are shown in
Figure 3B. As can be seen from the results, the turquoise
modules were mainly enriched in the cell cycle-related
pathways such as cell cycle, oocyte meiosis, and p53 signaling
pathway.

Identification and Validation of Hub Genes
Detailed gene lists of each module were provided in
Supplementary Table S1. The 94 genes with a
correlation >0.8 in the turquoise module were the hub genes
to be verified. We performed survival analysis on the GEPIA, and
results of p < 0.05 were considered statistically significant. Genes
with significant survival analysis results were considered to be the
hub genes. Figure 4 shows survival analysis results of hub genes.
They were VRK1, NUP37, HMMR, SPC25, and RUVBL1 and

patients with high expression had lower overall survival.
Furthermore, TCGA data showed the expression of these five
genes in tumor tissues was significantly higher than that in
normal tissues, and they were up-regulated in advanced tumor
tissues (Figure 5). In addition, based on The Human Protein
Atlas (HPA), the protein expression levels of these five genes were
significantly higher in tumor tissues than in normal tissues
(Supplementary Figure S1).

Pathway Enrichment Analysis
To further insight into the potential biological functions of hub
genes, GSEA and GSVA were performed for pathway
enrichment. Figure 6 shows the top three up-regulated
pathways of each hub gene (based on the p-value), all hub
genes were enriched in the cell cycle. Furthermore, HMMR
and VRK1 were enriched in mismatch repair. SPC25 and
VRK1 were enriched in DNA replication. NUP37 was
enriched in the P53 signaling pathway.

Moreover, GSVA was used to investigate the potential
biological process and signaling pathways. Figure 7 shows that
high HMMR, SPC25, and VRK1 expressions were enriched in
E2F targets and G2M checkpoint pathways. As for NUP37 and
RUVBL1, the first two enriched pathways for high expression
groups are MYC targets V1 and E2F targets. For low expression
groups, KARS signaling DN’s enriched most in HMMR and
VRK1, and apical junction enriched most in SPC25. Low

FIGURE 6 | Gene set enrichment analysis (GSEA) of hub genes. The top three functional gene sets enriched in HNSC were listed. (A) The top three pathways are
enriched in high VRK1 patients. (B) The top three pathways are enriched in high NUP37 patients. (C) The top three pathways are enriched in high HMMR patients. (D)
The top three pathways are enriched in high SPC25 patients. (E) The top three pathways are enriched in high RUVBL1 patients.
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NUP37 and RUVBL1 expression was enriched in inflammatory
response.

GSCALite
As is shown in the bubble heatmap (Supplementary Figure S2),
the expression of VRK1 was negatively correlated with IC50 of
most drugs in OSCC, indicating that VRK1 is sensitive to most
drugs and can be used as a potential therapeutic target.
RUVBL1 is negatively correlated with IC50 of half of the
drugs and can also be used as a reliable therapeutic target.

Moreover, SPC25 only shows negatively correlated with
neopeltolide and methotrexate. Most notably, methotrexate is
sensitive to all three hub genes (VRK1, RUVBL1, and SPC25).
However, NUP37 may be resistant to BRD−K30019337. Hub
genes’ response to drugs has great value for targeted drug design
and clinical therapy. Supplementary Figure S3 shows the
methylation level of five hub genes. In detail, VRK1 and
SPC25 were significantly lower in the tumor sample, but
differences in NUP37, RUVBL1, and HMMR did not reach
statistical significance.

FIGURE 7 | Gene set variation analysis (GSVA) of hub genes showed differentially expressed pathways of each hub gene. (A) The differential pathways between
high VRK1 and low VRK1 patients. (B) The differential pathways between high NUP37 and low NUP37 patients. (C) The differential pathways between high HMMR and
low HMMR patients. (D) The differential pathways between high SPC25 and low SPC25 patients. (E) The differential pathways between high RUVBL1 and low
RUVBL1 patients.
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TIMER
As is shown in Figure 8, the high expression of HMMR, SPC25,
and VRK1 was correlated with increased infiltration of CD4+cells
and dendritic cells. The infiltration level of CD8+cells was
negatively associated with NUP37 and RUVBL1. Notably,
NUP37 and RUVBL1 also exhibited the downregulated
tendency in increased infiltration of all immune cells.

DISCUSSION

Because of the low examination rate and poor diagnosis rate in
the early stages of OSCC, the prognosis of oral cancer has not
improved with the progress of treatment. Thus, identifying

effective biomarkers correlating with the development of
OSCC can greatly help in the screening strategies and targeted
therapy for OSCC. In the present study, the mRNA expression
data were downloaded from GEO, and a co-expression network
was constructed through WGCNA. Subsequently, the turquoise
module was identified to be most significantly associated with the
OSCC stages and smoking. Function enrichment analysis of
turquoise module was performed by DAVID database, and
validation of the hub genes in the turquoise module was
performed based on TCGA database at the transcriptional
level. Moreover, by performing survival analyses, it was
demonstrated that oral cancer patients with high expression
levels of hub genes have a poor prognosis utilizing GEPIA.
More convincingly, immunohistochemistry also verified the

FIGURE 8 | Relationship between the expression level of hub genes and infiltration level of various immune cells analyzed by TIMER. The spearman’s correlation
between the expression level of (A) VRK1, (B)NUP37, (C)HMMR, (D) SPC25, and (E) RUVBL1 and five immune cells (CD4+ T Cell, CD8+ T cell, Macrophage, B cell, and
Dendritic Cell).
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results based on HPA. In conclusion, we finally identified five
genes most associated with tumor progression and prognosis:
VRK1, NUP37, HMMR, SPC25, and RUVBL1.

Lohavanichbutr et al reported a 13 genes signature in HPV-
negative OSCC patients in 2013 and confirmed that the 13 genes
signature showed better accuracy in predicting prognosis than the
TNM stage through ROC analysis [12]. However, the potential of
the signature of the 13 genes has not been explored from the
aspects of biological function, immune infiltration, and drug
sensitivity. Considering the convenience of clinical application,
our research focuses on finding a single gene biomarker to assist
in the diagnosis of OSCC patients. We confirmed the prognostic
efficacy of five hub genes in the external dataset TCGA and tried
to validate the expression of hub genes at the protein level
through the HPA database. Moreover, we also explored the
biological function, immune infiltration, and small molecule
drug sensitivity of hub genes through the GO, GSEA, GSVA
analysis, and online database: TIMMR and GSVALite. We believe
that our study is a valuable reanalysis of the data provided by
Lohavanichbutr et al., and is expected to provide new insights
into the diagnosis and targeted treatment of OSCC patients.

Pathway enrichment analysis indicated that these hub genes
may be involved in the cancer-associated signal pathway, like
p53 and KARS signaling DN’s to prove tumor progression.
Abnormal DNA methylation is one of the epigenetic changes
associated with gene silencing, while normal somatic cells are
generally unmethylated [17]. Hence, the result from GSCALite
showed that VRK1 and SPC25 were not susceptible to epigenetic
silencing, leading to a bad prognosis for patients. TIMER revealed
the correlation between hub genes and the abundance of tumor
immune infiltrating cells. High expression of hub genes related to
increased immune cell infiltration suggested the presentation of
tumor antigen and immune response. On the contrary, decreased
tendency of immune infiltration may suppress host immune
responses and lead to a worse prognosis [18].

Vaccinia-related kinase 1 (VRK1), is amember of theVRK family
of serine/threonine kinases. It controls the early process of the cell
cycle and influences different cell cycle phases according to protein
level and activation degree [19]. The higher level of VRK1 in the S
phase indicates that VRK1 plays an important role in promoting
DNA replication [20]. As for expression in tumors, VRK1 has been
detected to be highly expressed in a variety of cancers, such as head
and neck squamous cell carcinomas (HNSCC), and lung cancers
especially with p53 mutations[21, 22]. Namgyu Lee et al reported
that higher levels of VRK1 can suggest poorer prognosis, shorter
overall, and higher recurrence rates [23]. Another study on the
expression of VRK1 in breast cancer showed the same conclusion
[24]. VRK1 is a widely-detected gene, and its relationship with the
cell cycle and cancer progression is relatively clear, which is helpful
for the accuracy of our verification.

NUP37 is a component of the nuclear pore complex (NPC). It
is found to be both significantly mutated genes (SMGs) and
tumor-specific disruptive genes (TDGs) in OSCC specimens, but
its role in the process of OSCC has not been clarified in this study
[25]. In other cancers, it was reported to be remarkably up-
regulated in Hepatocellular carcinoma (HCC) which can
promote the growth, migration, and invasion of HCC through

activating YAP/TEAD signaling [26]. A recent report showed that
the expression of NUP37 in advanced NSCLC was significantly
higher than that in early NSCLC, and the high expression of
NUP37 indicated poor overall survival [27]. These findings are
consistent with our results, which reveal the role of NUP37 in
promoting tumor progression and affecting prognosis.

Hyaluronan-mediated motility receptor (HMMR) is highly
related to the tumor process because of hyaluronan-mediated
signaling. HMMR regulates spindle assembly in mitotic cells, so
an elevated expression of HMMR can be detected in actively
proliferative tissues, like neoplastic tissues [28]. However, in
cancer, HMMR is not only related to tumor progression, but
also to tumor invasion, metastasis, and prognosis. Kiran et al
reported that HMMR was involved in the pathogenesis of
malignant peripheral nerve sheath tumor (MPNST) [29]. Li
et al found that the detection rates of HMMR increased with
the tumor process of gastric cancer by pathological and
immunohistochemical examination of different stages of gastric
cancer specimens [30]. Assmann et al found that higher
expression of HMMR elevated movability and invasiveness of
breast cancer cells [31]. HMMR is rarely reported in squamous
cell carcinoma, so our novel findings need further investigation.

Spindle polar component 25 (SPC25), a component of
Ndc80 complex, controls spindle assembly checkpoints in
mitosis [32]. Reports showed that elevated expression of
SPC25 can increase cancer stem cell (CSC) properties and
predict poor prognosis. In non-small cell lung
adenocarcinoma, SPC25 knockout reduced CSC characteristics
and invasiveness of A549 cells. And in lung adenocarcinoma,
SPC25 was identified to be an independent prognostic factor for a
worse survival rate [32]. In prostate cancer (PrC), Cui et al found
SPC25 + PrC produced more tumor spheres, which also had
stronger resistance to chemotherapeutic drugs-induced cell
apoptosis compared with SPC25- PrC. Their results showed
that SPC25 can regulate the stemness of prostate cancer cells
[33]. Studies of breast cancer and liver cancer research also
reached the same conclusion. SPC25 was significantly up-
regulated in tumor tissue, and can independently predict the
prognosis of patients [32, 34].

RUVBL1 is a highly conserved AAA+ ATPase in eukaryotic
cells and participates in tumor progression [35]. Many specific
RUVBL1-involved signaling pathways have come to light, which
means that RUVBL1 has been confirmed as a tumor therapeutic
target. Guo et al have found that RUVBL1 can inhibit the
phosphorylation of c-raf protein at serine 259, thus activating
the Raf/MEK/ERK pathway and promoting tumor progression
[35]. Yuan et al reported that in lung adenocarcinoma cells,
RUVBL1 knockdown caused arrested G1/S phase cell cycle and
decreased proliferation of A549 and h292 cells due to repression
of the AKT/GSK-3β/cyclin D1 pathway [36]. These pathways
provide a good reference for the specific mechanism of
RUVBL1 on OSCC.

WGCNA can identify the relationship between gene
expression patterns and clinical traits in an unsupervised
manner, which makes the results have significant biological
implications. However, we acknowledge several potential
limitations of this study. Firstly, like most other statistical analyses,
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the results of WGCNA may be biased or invalid when tissues are
contaminated. Additionally, because of insufficient funding, the
results have not been validated by experiments. Although hub
genes have good prognostic value in OSCC in general, tumors at
different localizations, TNM stages, and ages may have different
clinical outcomes, which requires further subgroup analysis. Further
clinical experiments are required to better substantiate the findings of
this study. Last, due to the limited sample size, it is necessary to verify
the results using more datasets.

In conclusion, we identified five hub genes (VRK1, NUP37,
HMMR, SPC25, RUVBL1) associated with oral carcinogenesis
and progression, which may serve as effective prognostic
indicators for OSCC and potential therapeutic targets in
OSCC treatment.
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Supplementary Figure S1 | Immunohistochemistry of hub genes based on the
Human Protein Atlas. Immunohistochemistry of the five hub genes based on the
Human Protein Atlas. (A) Protein levels of VRK1 in normal tissue (staining: low;
intensity: weak; quantity: >75%). (B) Protein levels of VRK1 in tumor tissue (staining:
medium; intensity: moderate; quantity: 25–75%). (C) Protein levels of NUP37 in
normal tissue (staining: not detected; intensity: weak; quantity: <25%). (D) Protein
levels of NUP37 in tumor tissue (staining: medium; intensity: moderate; quantity:
>75%). (E) Protein levels of HMMR in normal tissue (staining: l not detected;
intensity: negative; quantity: none). (F) Protein levels of HMMR in tumor tissue
(staining: low; intensity: moderate; quantity: <25%). (G) Proteins level of RUVBL1 in
normal tissue (staining: not detected; intensity: weak; quantity: <25%). (H) Protein
levels of RUVBL1 in tumor tissue (staining: low; intensity: weak; quantity: <25%). (I)
Protein levels of SPC25 in normal tissue (staining: not detected; intensity: negative;
quantity: none). (J) Protein levels of SPC25 in tumor tissue (staining: medium;
intensity: moderate; quantity: 25%–75%).

Supplementary Figure S2 | Drug sensitivity analysis of hub genes based on
GSCALite. The spearman’s correlation between the expression of each hub gene
and the IC50 of each drugwas shown. The blue spot represents drug sensitivity, and
the red spot represents drug resistance.

Supplementary Figure S3 | Difference of methylation level of hub genes in tumor
and normal tissue based on GSCALite. Blue represents a negative correlation
between the expression of hub genes and the methylation level of hub genes.

Supplementary Table S1 | The detailed list of module genes.
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