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Background Few studies have described the aetiologies of neonatal cholestasis, and the overall neonatal cholestasis-
related mortality (NCM) rate is unclear. We investigated the aetiology and outcome of neonatal cholestasis in a ter-
tiary hospital and developed an NCM prediction model for these patients.

Methods Patients aged <100 days with serum direct bilirubin (DB) levels of >1.0 mg/dL were retrospectively
screened. Diagnostic and laboratory data during the 8-week follow-up period after enrolment between 2005 and
2020 were extracted digitally, and medical charts were reviewed manually by clinicians. Logistic regression was
used to derive a prediction model for the 1-year mortality outcome of neonatal cholestasis, and performance evalua-
tion and external validation were conducted for the NCM prediction model.

FindingsWe enrolled 4028 neonates with DB of >1.0 mg/dL at least once. Prematurity and birth injury (35.4%),
complex heart anomalies (18.6%), liver diseases (11.4%), and gastrointestinal anomalies (9.2%) were the most
common aetiologies; 398 (9.9%) patients died before one year of age. The peak value of DB was positively corre-
lated to the 1-year mortality rate. In the multivariate analysis, simple laboratory indices, including platelet, pro-
thrombin time, aspartate aminotransferase, albumin, direct bilirubin, creatinine, and C-reactive protein, were
independent predictors of 1-year mortality outcome of complete-case subjects. Using these laboratory indices, a
logistic regression-based NCM prediction model was constructed. It showed acceptable performances on dis-
crimination (area under the curve, 0.916), calibration (slope, 1.04) and Brier scoring (0.072). The external vali-
dation of the sample (n = 920) from two other centres also revealed similar performance profiles of the NCM
model.

Interpretation Various aetiologies of neonatal cholestasis were identified in a tertiary hospital, resulting in unfav-
ourable outcomes of a large proportion. The NCM prediction model may have the potential to help clinicians to be
aware of high-risk neonatal cholestasis.
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Introduction
Neonatal cholestasis is defined as reduced bile forma-
tion or flow resulting from hepatobiliary dysfunction or
obstructive lesions of the bile duct in the neonatal
period.1 Neonatal cholestasis is screened by the
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Research in context

Evidence before this study

Aetiologies of neonatal cholestasis were described in
few studies from liver centres with small numbers of
subjects. Risks of mortality in neonatal cholestasis have
been assessed by a limited dataset of subgroups such
as parenteral nutrition.

Added value of this study

This study of the largest cohort of neonatal cholestasis
showed various aetiologies and combined medical con-
ditions in detail. Using simple laboratory indices, a novel
prediction model for 1-year mortality was developed
and validated based on the TRIPOD guidelines.

Implications of all the available evidence

The results show that the prediction model has a poten-
tial for clinical application in identifying high-risk neona-
tal cholestasis.
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identification of elevated direct (or conjugated) bilirubin
(DB) and bile acids. Neonatal cholestasis occurs in
approximately 1 out of every 2500 term neonates.2,3 In
primary care, the management of neonatal cholestasis
requires caution because its causes are known to be bili-
ary atresia (BA) and monogenic liver disease in approxi-
mately 25�40% and 25% of cases, respectively.1�5 As
delayed Kasai operation generally leads to a poor out-
come of the native liver, the early detection of BA is cru-
cial.4 Infections, galactosemia, tyrosinemia,
panhypopituitarism, bile acid synthesis defect, and bili-
ary sludges (or stones) also require prompt manage-
ment. So, the correct diagnosis of neonatal cholestasis
often requires extensive invasive and non-invasive evalu-
ations.1 Although the aetiologies are not discovered on
differential diagnosis or treatments are not available for
specific causes, nutritional optimisation and prevention
of medical complications from this condition can be
beneficial for the appropriate growth or nutritional sta-
bilisation of the patient before liver transplantation.
Despite the clinical importance of neonatal cholestasis,
currently, a total of fewer than two thousand studies of
various study designs are available in the literature on
this subject.5�23

There is also little information available on the out-
come of neonatal cholestasis in the literature, and the
little available information is generally determined and
reported by each specific cause and available
treatment.5�23 Approximately 50% of patients with BA
lose their native livers within 2 years after a Kasai opera-
tion.4 Contrarily, idiopathic cholestasis, including that
caused by idiopathic neonatal hepatitis, is often tran-
sient and benign; only 1% of patients with idiopathic
cholestasis lost their native livers before the age of
2 years in a recent report from the Childhood Liver Dis-
ease Research Network study.5 Transient cholestasis is
also often observed in infants with specific systemic
conditions such as sepsis, ischaemic injury from birth
asphyxia or congenital heart anomalies, haemolytic dis-
ease and defective enteral autonomy with prolonged
parenteral nutrition.1�6 Premature infants cannot often
afford oral nutrition and the risk of cholestasis doubles
in cases of parenteral nutrition that lasts for more than
30 days.24 Many single-centre studies have revealed a
variety of epidemiologic characteristics and clinical out-
comes in neonatal cholestasis, of which cohorts con-
tained heterogeneous patient groups based on the kind
of centre (liver-oriented centre vs. other specialised
centres; referral centre vs. primary centres).5�23

Predicting the outcome of neonatal cholestasis could
be useful. By discriminating unfavourable outcomes
such as in-hospital mortality among patients with neona-
tal cholestasis, clinicians are able to identify high-risk
neonatal cholestasis cases and to prepare focused and
multidisciplinary strategies for them. There are several
mortality prediction models for liver diseases in paediat-
ric hepatology, including the Pediatric End-Stage Liver
Disease (PELD) score for chronic liver disease, the King’s
College Hospital criteria (KCHC) score, and the Liver
Injury Units (LIU) for acute liver failure.25�27 The train-
ing dataset of these models originated from end-stage
liver disease and fulminant hepatitis in paediatric groups
with wide age ranges, mostly more than 6 months. In
addition, the primary goal of these predictions is to esti-
mate the risk-benefit of liver transplantation in affected
infants and children. Currently, there is no prediction
model for mortality in neonatal cholestasis using a big-
enough dataset of neonatal cholestasis cases.

To make the neonatal cholestasis-related mortality
(NCM) prediction model clinically useful, clear and suf-
ficient information should be provided in the essential
parts of model development-sample aetiologies, variable
selection, model construction, full performance evalua-
tion and external validation.28,29 Notably, not only
accuracy in discrimination (i.e. receiver-operating char-
acteristic curve analysis) but also precision in the cali-
bration of the predicted probability must be included in
the evaluation of the new model’s performance.30 In
addition to reliable performance, a prediction model
should provide clinicians insights into algorithms used
for predicting mortality in neonatal cholestasis. This is
because understanding the ‘how and why’ by clinicians,
which is referred to as the interpretability of models in
statistics, applies to medical decision-making in real-life
clinical practice.31

In this study, we investigated the aetiologic charac-
teristics of neonatal cholestasis and its outcome in a ter-
tiary hospital. In addition, using a large dataset of
simple laboratory indices in this cohort, we developed
an NCM prediction model for 1-year in-hospital mortal-
ity in neonates with cholestasis.
www.thelancet.com Vol 77 Month March, 2022
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Methods

Study population
We conducted a retrospective study on cholestasis in a
group of paediatric patients aged less than 100 days in
the Seoul Asan Medical Center. Neonatal cholestasis
was defined as serum DB >1.0 mg/dL according to a
definition of the North American Society for Pediatric
Gastroenterology, Hepatology and Nutrition and the
European Society for Paediatric Gastroenterology, Hep-
atology, and Nutrition (NASPGHN/ESPGHN) guide-
line.1 The inclusion criteria were as follows:1 age
<100 days (neonatal period),2 DB >1.0 mg/dL (chole-
stasis) at least once and3 occurrence of a first DB
>1.0 mg/dL between January 2005 and January 2020
(study period). Based on the study criteria, neonates
(n = 13,344) who never had DB >1.0 mg/dL were
excluded from the analysis. Diagnostic information in
the electronic medical records was classified according
to the International Classification of Disease (ICD) sys-
tem.14 All electric medical records and their ICD codes
were manually validated in detail by paediatric hepatolo-
gists. The diagnosis of BA was evidenced by intraopera-
tive angiography of the bile duct. Other definitions of
idiopathic neonatal hepatitis and idiopathic neonatal
cholestasis were used according to the criteria of the
Childhood Liver Disease Research Network.5 From
enrolment to the 8th week of follow-up, simple labora-
tory indices, such as the white blood cell (WBC, £ 103/
µL) and platelet (PLT, £ 103/µL) counts; haemoglobin
level (Hb, g/dL); prothrombin time (PT INR, interna-
tional normalized ratio), alanine aminotransferase level
(ALT, g/dL), aspartate aminotransferase (AST, IU/L)
level and albumin (ALB, g/dL), total bilirubin (TB, mg/
dL), DB, creatinine (Cr, mg/dL), and C-reactive protein
(CRP, mg/dL) levels, were analysed.
Literature search
To compare the outcomes of the participants of the
present study, the Medline and EMBASE databases
were searched to extract outcome data from the pro-
spective or retrospective case series or cohort study
with >20 subjects with cholestasis during the neonatal
period. The total number of subjects, proportion of
BA, liver transplantation rate, mortality rate and risk
factors for mortality were reviewed. If information on
patients’ poor outcomes was not available in reported
cohorts in any given study, the study was excluded. To
evaluate the necessity of prediction model, we searched
previous models for cholestatic paediatric patients and
checked suggested questionnaires (Supplementary
Table 1).32
Statistical analysis
The outcome (or dependent) variable for this study was
survival up to the age of 1 year [i.e.1 survival group vs.2
www.thelancet.com Vol 77 Month March, 2022
mortality group]. Descriptive statistics for the charac-
teristics listed above were provided for 1-year survival
and 1-year mortality in subjects included in the model
development. Continuous variables were expressed as
mean values with standard deviations or median values
with interquartile ranges (IQRs) for normally distrib-
uted and skewed data, respectively. Differences
between variable groups were assessed using the two-
sample t-test or the Mann-Whitney U test for continu-
ous variables as appropriate. For categorical variables,
the x2 test or Fisher’s exact test (in cases where the
number of patients involved was �5) was used.
Receiver-operating characteristic (ROC) curve analysis
with the area under the curve (AUC) was performed to
identify optimal cut-off values of continuous variables.
For the multivariate analysis, logistic regression (LR)
was performed. As alternative analyses, machine learn-
ing was also performed to explore underlying data pat-
tern. All statistical calculations were performed using
IBM SPSS version 27.0 (SPSS Inc., Armonk, NY), R
version 3.6.1 (R Foundation for Statistical Computing,
Vienna, Austria), and Python version 3.8.2 (Python
Software Foundation, Wilmington), as appropriate. A
p-value of <0.05 was considered statistically significant
in statistical models.
Variable selection and missing values
The simple laboratory indices within 8 weeks of enrol-
ment (DB >1.0 mg/dL) were selected as predictor candi-
dates. Based on the fact that the paediatric prediction
models for chronic liver disease and acute liver failure
were adopted to use peak index values during the spe-
cific follow-up durations,25�27 not only the initial but
also the peak values of each laboratory index were used
as candidate variables evaluated in the modelling pro-
cess. ROC curve analyses were performed to evaluate
the discriminatory ability in univariate analysis of each
variable and calculate empirical optimal cut-off values
based on the Youden index.

Before conducting multiple imputation or regression
imputation for missing values,33,34 missing values were
classified into missing completely at random, missing
at random, and missing not at random (MNAR). As
MNAR is possibly associated with both independent
and dependent variables,35 the plausible mechanism of
suspected MNAR was reviewed using descriptive statis-
tics. Clinical judgement on subgroups of neonatal cho-
lestasis may affect the selection of a range of serologic
tests, such as PT INR. For example, clinicians may not
conduct full laboratory evaluation for transient benign
neonatal cholestasis20,23 because transient cholestasis
without any underlying severe diseases shows favour-
able survival outcomes.5 As MNAR is still problematic
in statistics,35 we conducted both [1] complete-case anal-
ysis without imputation and [2] whole-case analysis
with imputation.
3
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Model development
The prediction model was developed following the rec-
ommended guideline of the Transparent Reporting of a
multivariable prediction model for Individual Prognosis
Or Diagnosis (TRIPOD) statement and Critical Appraisal
and Data Extraction for Systematic Reviews of Prediction
Modelling Studies (CHARMS) checklist.28,36 One of the
primary aims of this study was to develop a prediction
model for 1-year in-hospital mortality (binary dependent
variable). Firstly, multivariate LR was performed to
develop an NCM prediction model; binary LR with the
forward method37 was derived for the model 1-year in-
hospital mortality risk and resulted in regression b coeffi-
cients and intercept of the appropriate laboratory values
(logit [probability] = b0 + b1 £ 1 + b2 £ 2 + . . . + bnXn).
Multicollinearity among independent variables was
examined before LR, and parameters with correlation
coefficients of �0.85 were removed from the LR analysis.
Using logit (probability), the predicted probability of the
1-year mortality event was calculated.

For alternative analyses, decision trees including
CART and CHAID modelling,38 Random forests
(RFs)39 and extreme gradient boost (XGBoost)40 were
also performed (Supplementary Method 1 in detail). For
machine learning analysis, overall variable importance
and Shapley additive explanations (SHAP) value were
provided.41,42 To promote the interpretability of
XGBoost, a SHAP plot was also used to show the com-
plex relationship between independent and dependent
variables.
Performance evaluation
To evaluate overall performance, the Brier score

ðvalue ¼ 1
N

Pn

k¼1

½predicted probabilityk � observed eventk�2Þ,
which is a metric concept similar to the mean square
error, was used.43 Moreover, Nagelkerke’s R2 and the
Hosmer-Lemeshow test were used as measures of the
overall performance.44 A prediction density plot was
used to visualise the discriminatory trends of each
model. ROC curve analysis was used to evaluate the dis-
crimination of the models and the c-index, which is
equivalent to the AUC in the ROC curve analysis in the
binary outcome, was a measure of the discriminatory
ability. The calibration curve was also used to test the
precision of the models, and the calibration slope and
intercept were calculated using Hosmer-Lemeshow con-
tingency tables. The sensitivity, specificity, positive pre-
dictive value and negative predictive value were used to
evaluate the ‘clinical usefulness’ of models.
Internal and external validation
Both the internal and external validations of the models
were performed. Internal validation for the reproducibil-
ity of prediction models for the originated dataset was
performed through 10-fold cross-validation and boot-
strap re-sampling.45,46 Based on the TRIPOD state-
ment,28 the mean difference between the 200
bootstrapping re-samples is defined as the optimism.
Estimating the optimism (or bootstrap)-corrected AUC
and its confidence intervals (CIs) of the final NCM pre-
diction model was conducted using the internal dataset.
The dataset of neonatal cholestasis at two other large ter-
tiary hospitals (Seoul National University Hospital and
Korea University Hospital) in South Korea were used
for external validation. Using the same modelling
frames, performance on the external dataset was quanti-
fied using the Brier score, AUC and calibration. In addi-
tion, clinical usefulness was determined in the same
manner.
Ethical approval
The study was approved by the Institutional Review
Board of the Asan Medical Center (#2020-0202), with a
waiver of requirement for informed consent due to the
nature of this retrospective study. The study was per-
formed in compliance with the Declaration of Helsinki,
and other relevant regulations.
Role of funding source
The funder had no role in the study design, data collec-
tion, data analyses, interpretation, writing of the report,
and the decision of paper submission.
Results

Characteristics of neonatal cholestasis
During the study period, 17,372 neonates aged less than
100 days underwent 128,822 serologic DB tests (Supple-
mentary Figure 1). Among them, 4028 neonates had
DB of at least �1-fold of the DB threshold of >1.0 mg/
dL, defined as neonatal cholestasis in the NASPGHN/
ESPGHN guideline,1 with a median of 1.3 mg/dL (IQR:
1.1�1.6 mg/dL). The mean age of these patients at the
time of enrolment was 10.2 § 19.7 days with a median
gestational age of 35 weeks (IQR: 32�38 weeks) and
median birth weight of 2.36 kg (IQR: 1.5�3.0 kg). There
were 2322 (57.6%) male patients. A variety of combined
medical conditions were noted in the classification of
the ICD code and review of medical charts (2.6 ICD
codes per patient). Among them, the primary diagnoses,
directly linked to the development of neonatal cholesta-
sis, are listed in Table 1. Birth issues with prematurity
and injury (35.4%), congenital heart anomaly with other
cardiac issues (18.6%), liver diseases (11.4%), gastroin-
testinal anomaly and related issues (9.2%), neonatal
unconjugated jaundice with DB <20% of TB (7.4%),
respiratory anomaly and other issues (5.5%) and
genetic/chromosomal disorders (4.3%) were the most
common primary diagnoses in the whole-case dataset.
www.thelancet.com Vol 77 Month March, 2022



Primary diagnosis for neonatal cholestasis Dataset

Complete-case n = 2661 (%) Whole-case n = 4028 (%)

Prematurity and birth-related issues 654 (24.6%) 1426 (35.4%)

Congenital heart anomaly and other problems 663 (24.9%) 751 (18.6%)

Liver origin diseases including biliary atresia and hepatitis 416 (15.6%) 461 (11.4%)

Gastrointestinal anomaly and other problems 345 (13%) 369 (9.2%)

Neonatal jaundice in healthy newborns 58 (2.2%) 299 (7.4%)

Respiratory anomaly and related issues 178 (6.7%) 222 (5.5%)

Genetic/chromosomal disorders 141 (5.3%) 174 (4.3%)

Renal anomalies and urinary tract issues 55 (2.1%) 81 (2.0%)

Malignancy and tumour 57 (2.1%) 59 (1.5%)

Brain anomalies and other neurologic issues 32 (1.2%) 48 (1.2%)

Infection 15 (0.6%) 43 (1.1%)

Haematologic disorders 16 (0.6%) 38 (0.9%)

Hypopituitarism/hypothyroidism 9 (0.3%) 27 (0.7%)

Others 22 (0.8%) 30 (0.7%)

Table 1: Primary diagnosis of neonatal cholestasis.
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Among diseases of hepatic origin, BA and neonatal hep-
atitis were the most common. Neonatal unconjugated
jaundice also had the transient condition of DB
>1.0 mg/dL, which is a definition of the study. In addi-
tion, a variety of genetic disorders and other specific
diagnoses combined with neonatal cholestasis, which
were not highlighted in the literature,5�23 are listed in
Supplementary Table 2.
Outcomes of neonatal cholestasis
Among the 4028 neonates with cholestasis, 425
(10.6%) patients died during the whole follow-up period
and 398 (9.9%) patients died in the first year of their
lives (Figure 1a). The median age at the time of death
was 55 days (IQR: 23�128 days) with a sex ratio (male/
female) of 1.3 (Figure 1b). Causes of 1-year mortality are
listed in Supplementary Table 3; complex heart anoma-
lies, prematurity-related condition, birth injury, foetal
hydrops and congenital diaphragmatic hernia were the
most common causes of mortality. Among survivors, 54
(1.3%) underwent liver transplantation, with BA being
the most common indication (n = 46/54, 85%). Notably,
transient neonatal cholestasis (or early resolved chole-
stasis), including idiopathic neonatal hepatitis, idio-
pathic neonatal cholestasis, and neonatal jaundice with
DB >20% of TB, had no mortality-related issues.
Among the neonates included in this study, 148 neo-
nates with BA were initially diagnosed or referred to a
tertiary hospital without Kasai operation. Among them,
145 (3.6%) patients had Kasai operation, while three
patients with no Kasai operation went to liver transplan-
tation later. In BA, one patient died due to sepsis caused
by cholangitis and another due to heart failure caused
by combined cardiac anomalies. In the literature
search,5�23 18 reports (n = 2225) were included
www.thelancet.com Vol 77 Month March, 2022
(Supplementary Table 4), and the death rate was 10.8%
(n = 240), which was similar to that found in the current
study, although etiologic proportions were different.
Variable selection and plausible mechanism of the loss
of missing variables
For comparison of simple laboratory indices between
the 1-year mortality group and the survival group, the
initial dataset at the time of enrolment and peak value
dataset during the 8-week follow-up were selected for
analysis (Supplementary Table 5). All the laboratory
indices showed significant differences between survival
and death groups in the univariate analysis. Among
them, the peak value dataset had more variables of
higher discriminatory ability in the ROC curve analysis.
In addition, based on the fact that current liver-oriented
prediction models, such as KCHC, PELD and LIU, use
peak values of variables during a certain period in their
prediction algorithms,25�27 we used the peak values of
simple laboratory indices in the development of a new
NCM prediction model. Notably, peak DB value was
positively correlated to observed mortality rate (Supple-
mentary Figure 2). In multicollinearity analysis, the
Spearman correlation coefficient between AST and ALT
was 0.9 (Supplementary Figure 3), and ALT was then
removed from the LR analysis. The sample size of this
study was appropriate to satisfy the minimum criteria
of events per selected variables.47

As the peak variable dataset was selected, the miss-
ing data mechanism was also evaluated; a large propor-
tion of missing values in PT INR and CRP were
possibly MNAR (Supplementary Table 6). Among the
4028 patients, the proportion of missing PT INR values
was 34% (n = 1368). Groups with missing PT INR had
only 2.3% (n = 32) mortality compared to the 13.7%
5



Figure 1. Outcome of neonatal cholestasis. a. The loss of native liver occurred in 12% of patients. b. Time-lapse from birth to
demise among 425 mortality cases.
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(n = 366) mortality of the group with PT INR test val-
ues. This absence of PT INR values was also associated
with higher values of DB, AST, Cr, and CRP (Supple-
mentary Figure 4), suggesting that PT INR may be a
clich�e of problematic MNAR impacting both indepen-
dent and dependent variables. As there is currently no
established strategy for problematic MNAR,35 we then
performed separate analyses for both [1] complete-case
analysis (n = 2661) without missing PT INR values as a
main reference dataset and [2] whole-case analysis
(n = 4028) with regression imputation as an alternative
dataset (Supplementary Figure 5).
Interpretable prediction model development
Multivariate LR was conducted first for complete-case
analysis using the forward method to predict 1-year mor-
tality (Supplementary Table 7). The significance of the
LR model was assessed by x2=843.0 (p-value <0.001)
and the Hosmer�Lemeshow test revealed insufficient
www.thelancet.com Vol 77 Month March, 2022
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goodness-of-fit of the LR model (p-value <0.05) with a
low Nagelkerke’s R2 of 0.54. The logit (p) and its pre-
dicted probability were calculated using the following
equation:

Logit pð Þ ¼ �0:016� lowPLT 103=mLð Þ þ 0:095� peakPT INR
þ 0:000065� peakAST IU=Lð Þ
� 0:748� lowALB g=dLð Þ þ 0:051� peakDB mg=dLð Þ
þ 0:38� peakCr mg=dLð Þ
þ 0:027� peakCRP mg=dLð Þ � 0:382

Probability %ð Þ ¼ 1

1þ e�Logit pð Þ � 100
Alternative analysis using machine learning
The odds ratios in this LR analysis cannot reflect the rel-
ative importance of continuous variables in the LR
model because the scale of each variable is different.
Therefore, we performed decision tree analyses for
more interpretable models. CART and CHAID were
used to visualise classification algorithms to distinguish
the death group from the survival group (Figure 2a and
Supplementary Figure 6). In both CART and CHAID
analyses, initial segregations consisted of subgroups by
different values of PLT. These findings suggested that
the lowest values of PLT in this dataset are hierar-
chically higher in the prediction of mortality than varia-
bles directly related to hepatic conditions. Based on the
fact that multiple illnesses such as sepsis, birth
asphyxia, prematurity, liver disease, respiratory distress,
and disseminated intravascular coagulation can be com-
bined with thrombocytopenia in neonates,48 the severity
of thrombocytopenia was probably reflected by the
degree of systemic illness, which may affect survival in
Figure 2. Exploratory analyses on complete-case and whole-cas
1-year mortality case in whole-case dataset without imputation: CART
vs. whole-case analysis with regression imputation. c. Odds ratio plot

www.thelancet.com Vol 77 Month March, 2022
patients with neonatal cholestasis. Next, segregations
were guided by thresholds of PT INR and AST in the
CART model (Figure 2a) and by thresholds of PT INR,
AST, ALB and DB in the CHAID model (Supplemen-
tary Figure 6). PT INR, AST, ALB and DB are, in gen-
eral, indicators of liver pathologies.25�27

We also applied flexible machine learning (RF and
XGBoost) to explore whether other data patterns
between predictors and outcomes were hidden. Com-
plete-case and whole-case datasets were split into the
train set (70%) and the test set (30%) in RF and
XGBoost (Supplementary Figure 7). Through grid
search, hyperparameters were optimised (Supplemen-
tary Table 8); otherwise, default settings were applied to
both models. The result of variable importance in RF
and XGBoost had similar findings of LR and decision
tree models (Supplementary Figure 8), with PLT, PT
INR, Cr, AST and DB being the most important in RF’s
complete-case and whole-case analyses. In XGBoost,
variable importance, presented as the F score, showed a
similar hierarchical order of variables to that shown in
RF. In a SHAP summary plot, as a patient’s platelet
count decreases (approaches blue), the SHAP value
impact on 1-year mortality increases (Figure 2b), and as
patients’ PT INR, CRP, AST and DB increase, the
SHAP value impacts also increase. Overall, machine
learning modelling agreed with the findings of LR
(Figure 2c).
Performance evaluation
Three measures were used to evaluate the apparent per-
formance of the NCM model and other alternative
e development dataset. a. Example of decision trees to classify
analysis. b. SHAP plot for XGBoost model; complete-case analysis
in LR model. Asterisks indicate no statistical significance in LR.
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Prediction model Dataset Performance Clinical usefulness

Brier
score

AUC Calibration
slope

Threshold Sensitivity Specificity PPV NPV

Logistic regression

Complete-case 0.072 0.916 1.04 16.1% 86.9% 84.6% 47.3% 97.6%

Whole-case 0.052 0.937 1.05 13.7% 86.9% 88.4% 45.1% 98.4%

Alternative analyses

CART* Complete-case 0.071 0.89 1.01 9% 87.7% 78.6% 39.5% 98.6%

Whole-case* 0.052 0.89 1.02 9% 82.4% 87.8% 42.6% 97.8%

CHAID* Complete-case 0.071 0.916 1.06 14% 87.4% 81% 42.4% 97.6%

Whole-case* 0.052 0.936 1.08 7% 94.2% 77.8% 31.7% 99.2%

Random forest** Complete-case 0.067 0.921 1.03 18.9% 84% 87.8% 50.9% 97.3%

Whole-case 0.046 0.954 1.09 14.5% 89% 90.3% 49.8% 98.6%

XGBoost** Complete-case 0.074 0.919 0.82 5.6% 84.9% 85.6% 47.4% 97.4%

Whole-case 0.049 0.951 0.93 11% 86.6% 90.9% 51% 98.4%

Table 2: Performance and clinical usefulness of neonatal cholestasis-related mortality (NCM) prediction model. The NCM model was
derived from complete-case dataset by logistic regression analysis.
* Missing values were not imputed

** Values of performances were derived from the test dataset (See Supplementary Figure 7).AUC; area under the curve, CART; classification and regression

tree, CHAID; chi-square automatic interaction detection, ML; machine learning PPV; positive predictive value, NPV; negative predictive value, XGBoost;

extreme gradient boost.
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machine learnings; these were the Brier score, discrimi-
nation by the AUC value, and calibration. Table 2 sug-
gests that the overall judgement of the performance of
LR-based models is acceptable compared to that of other
models (Figure 3a and Supplementary Figs. 9 to 13).
The AUCs of the LR-based models were 0.916 for the
complete-case analysis and 0.937 for the whole-case
analysis with regression imputations. The calibration
slopes were 1.04 for complete-case analysis and 1.05 for
whole-case analysis. The discriminatory abilities were
high in RF and XGBoost for the complete-case and
whole-case analyses. Furthermore, the differences
between complete-cases and whole-case analyses were
minimal within analyses. Overall, LR-based NCM pre-
diction model from complete-case dataset showed
acceptable performance in predicting the 1-year mortal-
ity of neonatal cholestasis.
Subgroup analyses and comparison of other paediatric
models
We performed subgroup analysis according to the major
aetiologies, such as [1] prematurity with very low birth
weight [2], complex heart anomalies, and [3] gastrointes-
tinal anomalies with related issues. The discriminatory
abilities of the NCM model were acceptable with AUCs
ranging from 0.89 to 0.93 (Supplementary Figure 14),
suggesting that the apparent discriminatory perfor-
mance of the NCM model were applicable to the sub-
groups.

In addition, we compared our NCM model with
existing scoring models (KCHC and PELD) that have
been widely used for acute liver failure and chronic liver
disease in the older infant and childhood age groups.
The AUCs of the NCM model and PELD score
(0.863�0.937) were much higher than those of the
KCHC (0.607�0.606) in both complete-case and
whole-case analyses (Supplementary Figure 15). Overall,
the NCM model showed a significantly higher discrimi-
natory performance compared to the PELD and KCHC
models (Supplementary Table 9).

Using another criterion of DB �2.0 mg/dL in the
Childhood Liver Disease Research Network,5 1608
(40%) patients were identified with a mortality rate of
7.4%. Adding another criterion of cholestasis duration
of >2 weeks, persistent cholestasis with DB �2.0 mg/
dL was observed in 937 (23%) patients with 19.1% mor-
tality. Using the NCM model, we performed subgroup
analyses (Supplementary Figure 16). In the perfor-
mance evaluation of DB �2 mg/dL and DB �2 mg/dL
and duration >2 weeks groups, the AUCs were 0.90
and 0.89, respectively. Other LR analyses using the
dataset of the two subgroups were also performed, and
all risk variables remained significant, with the excep-
tion of albumin (data not shown), indicating that the
variables used in the original NCM model and recon-
structed models were valid in the subgroups with higher
intensity and longer duration of the phenotype. Boot-
strap analysis of these LR showed the same variable pat-
terns (data not shown).
Internal and external validations
To validate the NCMmodel internally in our dataset, the
cross-validation and bootstrap re-sampling method were
used to estimate the optimism and its 95% CIs. In the
www.thelancet.com Vol 77 Month March, 2022



Figure 3. Performance evaluation of LR-based NCM prediction model across development (complete-case) and external validation
(complete-case) samples.
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10-fold cross-validation, the average AUCs of complete-
case and whole-case analyses were 0.913 (95% CI,
0.898�0.927) and 0.936 (95% CI, 0.924�0.948),
respectively (Supplementary Table 10). In bootstrap re-
sampling, the stability of AUCs was shown on 150 times
re-sampling, and the average values of optimism after
500 times re-sampling were 0.003 and 0.0023 for com-
plete-case and whole-case analyses, respectively. There-
fore, the optimism-adjusted AUCs were 0.912 (95% CI:
0.897�0.928) and 0.935 (95% CI: 0.922�0.947) for
complete-case and whole-case analyses, respectively.
Moreover, optimism-adjusted calibration slopes were
1.03 (95% CI, 0.92�1.14) and 1.04 (95% CI,
0.99�1.07), respectively (Supplementary Figure 17). A
criterion of internal validation includes obtaining a cali-
bration slope �0.9 and optimism of AUC �0.02.49 As
a result, no adjustments to the regression coefficients in
the NCM prediction model were made.

As external validation is essential in assessing the
generalizability of a new model to a plausibly related
population,50 we collected the retrospective dataset
(n = 2541 with 174 [6.8%] deaths) of neonatal cholestasis
with the same inclusion criteria from two of the largest
tertiary hospitals in Korea. Due to insufficient manual
reviews of medical charts of external samples, spatial
transportability was evaluated in the external validation.
Among external samples, the complete-case dataset was
available in 36.2% (n = 920 with 109 [11.8%] deaths) of
all subjects. The NCM prediction model showed accept-
able discriminatory performance across the external val-
idation samples (AUC=0.903 and Brier score=0.072)
(Figure 3b). Moreover, the level of agreement between
the observed and predicted 1-year mortality risk across
the external samples was acceptable (calibration
slope=0.923, intercept=0.006) compared to the appar-
ent performance. Finally, systemic inspection on the
NCMmodel was performed in accordance with the TRI-
POD and CHARM checklists.
Discussion
The present study had two major findings: aetiologic
characteristics of neonatal cholestasis in a tertiary hospi-
tal and development of a novel neonatal cholestasis-
related prediction model for 1-year mortality. First, this
is the first report of thousands of subjects with neonatal
cholestasis that has never been published in a single
centre that describes a variety of aetiologies and their
outcomes in detail. A large proportion (54%) of birth
issues and heart issues reflected the clinical setting of a
tertiary hospital. The variety of liver diseases and genetic
disorders also reflected that of a liver transplantation
centre, where the largest paediatric transplantation
cohort was built in Korea.51 The proportion (3.6%) of
BA was small compared to those reported in other stud-
ies (Supplementary Table 4). The authors believe that it
is because large number of subjects (n = 2420) with
subtle neonatal cholestasis (1 mg/dL <DB <2.0 mg/dL
during the 8-week follow-up) enrolled based on the
NASPGHN/ESPGHN guideline’s cut-off value of DB
>1.0 mg/dL.1 The cut-off DB value of >1 mg/dL used
by Harpavat et al. to screen biliary atresia showed an
excellent diagnostic accuracy in their well-established
population-based study.52 In fact, if we adopted another
criterion of DB �2.0 mg/dL in the Childhood Liver Dis-
ease Research Network,5 1608 (40%) patients could be
enrolled from this dataset. Regardless of the screening
value of DB, independent risk factors remained similar
in this dataset, and peak DB was positively correlated to
the observed mortality rate (Supplementary Figure 2).
With regard to mortality in neonatal cholestasis, the lit-
erature search showed an overall mortality of 10.8% in
these groups (Supplementary Table 4), which was inter-
estingly similar to the value (10.6%) we found in our
cohort. However, the interpretation of this coincident
finding requires caution because of the different propor-
tions of underlying aetiologies and study inclusions
among studies.

Second, a novel prediction model for 1-year mortality
named NCM was developed and validated following the
recommended steps of the TRIPOD statement.28 This
is also the first model to predict the outcome of neonatal
cholestasis using large internal and external datasets.
Liver-oriented prediction models, such as PELD and
KCHC, were also suitable to an extent for further analy-
sis in this cohort (Supplementary Figure 15), with AUCs
of 0.678 and 0.841, respectively, as reported in other
studies.53 This may indicate that the dataset of our
cohort may be appropriate for the analysis of cholesta-
sis. However, the comparison may not be meaningful
because the purposes of models, decision rules and
datasets of subjects are different.25�27 As TRIPOD state-
ment recommends a nomogram for rapid estimation of
risk, a nomogram for 1-year overall mortality probability
was made based on our NCM prediction analyses (Sup-
plementary Figure 18).

The performance of the NCM prediction model was
acceptable in terms of Brier scoring, discrimination and
calibration. However, the value of Nagelkerke’s R2 of
0.5 in this LR model indicates that the model explains
50% of data patterns in the LR-based analysis. This low
R2 value may be appropriate because prognostic models
generally have R2 values of 0.2�0.3(32) because sub-
stantial future uncertainty within 1 year remains at the
individual level in the reality of neonatal cholestasis.
Notably, the machine learnings RF and XGBoost,
known to be efficient classifiers,54 agreed with the find-
ings of the LR-based NCM prediction in our study. Espe-
cially, the Shapley plot of XGBoost properly explained
how the changes and density of variables affect the mor-
tality outcome in this study.

There is limited knowledge about risk factors for
mortality in neonatal cholestasis. To the best of our
knowledge, no literature identified risk factors for
www.thelancet.com Vol 77 Month March, 2022
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mortality of neonatal cholestasis, except for a recent
study by Santos Silva et al. (Supplementary Table 4).
This study identified some predictors of diagnosis and
prognosis, which helped build a diagnostic decision
algorithm.23 TB, DB and gamma-glutamyl transferase
were related to the poor outcomes in a group diagnosed
as having neonatal cholestasis. The findings of Silva’s
report support the concept of our study using simple
laboratory indices in predicting mortality. In the NCM
model, the clinical meaning of each predictor is difficult
to understand in a clinical perspective, despite rigorous
analytic exploration in this study. We speculate that the
whole samples have various heterogeneous aetiologies
for the explanation. Each patient’s condition towards
mortality cannot be simply explained. Moreover, the
endpoint of the outcome is a future event, death within
1 year. Based on our analyses, lower PLT and ALB levels
and higher PT INR, AST, DB, TB, CRP and Cr levels
were related to higher mortality risk. Several severe con-
ditions may be shown in combinations of predictors; for
example, [low PLT + high PT INR + high CRP + high
Cr] in severe septic shock, [high PT INR + high
AST + high DB + high TB] in acute liver failure, [high
PT INR + high DB] in prematurity with parenteral
nutrition-associated liver disease, or [high AST + high
DB + high Cr] in ischaemic liver disease from heart fail-
ure and congenital heart anomalies. A prospective study
in a controlled sample setting is needed to fully under-
stand the specific role of each predictor on future death.

Despite the less interpretable role of predictors, the
clinical utility of the NCM prediction model is clear. By
providing the probability of mortality, the NCM predic-
tion model can help clinicians be aware of high-risk
patients. We believe that patients with a high mortality
probability should prioritise the therapeutic approach.
The prediction model in medical practice generates
decision rules, such as decision support on test order-
ing, surgical decision-making, using treatment thresh-
old (starting, delaying, and intensifying), cost-
effectiveness of treatment, and simple prediction of
future events (attention).32,55 The decision rule of the
NCM prediction model is just a simple prediction for
now. However, this NCM prediction model is just about
to be listed on the evidence-level I of the prediction
model (Supplementary Table 11).56 More clinical utility
can be evaluated in another cohort.

There are several limitations in this study. First, the
study design is retrospective, and a biased cohort is pos-
sible. The large sample size in our study cannot equate
to the novelty of the research. Conventionally, require-
ments to derive reliable prediction mode are [1] at least
‘100 events’ and [2] at least 10 events per variable, and
preferably 20 in the case of an event rate <20%. The
sample size of the complete-case dataset (n = 2661) in
this study barely meets the preferable sample size
requirement. The retrospective study design limits well-
controlled data collection. However, the inclusion
www.thelancet.com Vol 77 Month March, 2022
criteria are almost similar to a well-designed prospective
study for diagnostic screening of BA among neonatal
cholestasis.52 Despite routine diagnostic and genetic
screening, alpha-1-antitrypsin deficiency was absent in
our dataset considering the conventional findings.56

The prevalence rates of some specific diseases may dif-
fer among East Asian subjects.21 Moreover, the evalua-
tion for aetiologies was based on the availability of
diagnostic modalities in our centre. Second, the princi-
pal outcome, which is the 1-year mortality as a hard end-
point, was partially interrupted by various interventions.
For example, patients with BA have a Kasai operation at
the time of diagnosis and liver transplantation at
approximately 1 year of age if the Kasai operation fails.51

In this context, the nomogram from the NCM predic-
tion model may not be suitable for BA. Surgical techni-
ques and medical care for severe complex anomalies
and prematurity have also improved over time. As
expected, like a retrospective study, the outcome assess-
ment was not done by the prior protocol, and the study
period of outcome assessment was arbitrary. Third, the
NCM prediction model provides only the predicted
probabilities of mortality risk and the authors believe
that the prediction model is inherently away from pro-
viding certainty on the individual outcome of the future
reality.

Nevertheless, the LR-based NCM prediction model
showed internal and external validity, suggesting a pos-
sibility of generalisation in a population of children
with neonatal cholestasis. Furthermore, this novel
NCM model fulfilled all checklists of the TRIPOD and
CHARM checklists. Thus, this model strongly suggests
the necessity of a prospective study to develop more
powerful prediction models. To overcome these limita-
tions, the NCM prediction model needs evidence-level
II, assessing the predictive ability when tested prospec-
tively in one setting.55 In this light, the prospective
cohort of the Childhood Liver Disease Research Net-
work5 is vital and needs to expand globally.

In conclusion, the present study provided detailed
aetiologic characteristics of the largest paediatric cohort
of neonatal cholestasis in a tertiary hospital. In addition,
an NCM prediction model for 1-year mortality, which is
the first in neonatal cholestasis, showed appropriate per-
formance.
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