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Abstract

Complex traits and other polygenic processes require coordinated gene expression. Co-expression networks model mRNA
co-expression: the product of gene regulatory networks. To identify regulatory mechanisms underlying coordinated gene
expression in a tissue-enriched context, ten Arabidopsis thaliana co-expression networks were constructed after manually
sorting 4,566 RNA profiling datasets into aerial, flower, leaf, root, rosette, seedling, seed, shoot, whole plant, and global (all
samples combined) groups. Collectively, the ten networks contained 30% of the measurable genes of Arabidopsis and were
circumscribed into 5,491 modules. Modules were scrutinized for cis regulatory mechanisms putatively encoded in conserved
non-coding sequences (CNSs) previously identified as remnants of a whole genome duplication event. We determined the
non-random association of 1,361 unique CNSs to 1,904 co-expression network gene modules. Furthermore, the CNS
elements were placed in the context of known gene regulatory networks (GRNs) by connecting 250 CNS motifs with known
GRN cis elements. Our results provide support for a regulatory role of some CNS elements and suggest the functional
consequences of CNS activation of co-expression in specific gene sets dispersed throughout the genome.
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Introduction

Complex gene interactions control biological processes and

a detailed knowledge of their underlying regulatory mechanisms is

critical to understand, repair, and manipulate biological organ-

isms. A powerful technique for modeling massive gene product

interaction systems is the construction of a gene interaction

network [1]. A gene interaction network graph is an intuitive

construct that consists of nodes (gene products), non-random

dependencies between genes (edges), and annotation of nodes and

edges (attributes). While built from simple components, the

biological network is capable of modeling tens of thousands of

gene relationships in a well-defined mathematical environment

suitable for higher order exploration such as coordinated gene

function and regulation inference derived from network topology

[2,3].

A specific class of gene interaction network, the co-expression

network, describes gene interaction as the non-random correlation

of steady-state RNA output between genes. Coordinately ex-

pressed gene sets tend to implement common biological function

and should impart similar gene regulation mechanisms (e.g. [4]).

Through a meta-analytical approach, numerous groups have

mined large, mixed-condition gene expression datasets to

construct networks and to partition the network into co-expressed

gene clusters (modules) underlying complex biological activities

[5,6,7,8,9]. A co-expressed gene module elucidated under defined

experimental conditions (e.g. tissue source, treatment conditions,

genetic background, etc.) can be viewed as the end product of

context-specific gene regulatory network pathways [10]. There-

fore, the co-expression network is a powerful tool to explore the

functional output of dependent genes as well as identify common

(and possibly complex) mechanisms of coordinated gene regula-

tion.

Steady-state RNA transcript output from genes is known to be

regulated through a variety of mechanisms including transcrip-

tional and post-transcriptional mechanisms [11]. For example, cis-

acting DNA elements such as transcription factor (TF) binding

sites [12] and miRNA target motifs [13] interact with trans-acting

factors activated under discrete temporal and spatial conditions

and coordinate enhancement or repression of target gene output

[12]. In plants for example, the cis-acting drought response

element (DRE; A/GCCGAC) recruits trans-acting DRE-binding

proteins (DREB) that affect gene expression in response to abiotic

stress [14,15]. A specific collection of cis and trans regulatory

factors compile a gene regulatory network (GRN), which Mejia-

Guerra et al defined as ‘‘composed of transcription factors (TFs)

and microRNAs (miRNAs), trans factors that regulate transcription

or RNA translation/degradation, via cis-elements in the promoters

of their target genes or in their resulting mRNAs respectively’’

[16]. GRN elucidation is an active area of research in all

organisms, and a collection of validated and putative Arabidopsis

GRNs can be found in the Arabidopsis Gene Regulatory In-

formation Server (AGRIS) database AtRegNet; [10]. Through the

non-random assignment of cis regulatory motifs to GRN target

genes in co-expression network modules, it is possible to associate

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e45041



one or more GRNs as the potential mediators of co-expression

network topology.

A potentially profound influence on the formation of gene co-

expression relationships is gene duplication in which coding

sequences and flanking regulatory DNA is multiplied, providing

a new source of genetic information for selection [17]. Multiple

modes of gene duplication occur, frequent and rare, in all

multicellular organisms including tandem, whole-genome, seg-

mental, and transposition events [18]. In the Arabidopsis thaliana

(hereafter Arabidopsis) lineage there have been three whole genome

duplication events, with the most recent being a dramatic

tetraploidy event occurring ,23.2 Mya (alpha duplication event)

[19,20,21]. Remnants of the alpha event can be detected in the

form of duplicate open-reading frames (alpha duplicates) and

proximal conserved non-coding DNA sequences (CNSs; [22]) that

have resisted deletion (fractionation) over millions of years of

evolution. Clearly, many of these DNA patterns that have been

copied and conserved should contain functional information

including gene regulatory potential.

We hypothesized that CNS elements detected in remnants of

the alpha event are involved in the regulation of steady state

mRNA levels in Arabidopsis. In support, Arabidopsis CNS elements

have been shown to influence both co-expression and expression

intensity of alpha duplicate pairs in Arabidopsis and that CNS

regulatory mechanisms may be a combination of transcriptional

and post-transcriptional control [23]. In this study, we sought

evidence for a regulatory role of CNS elements in the formation of

co-expression relationships in alpha duplicate genes as well as

genes found elsewhere in the genome. Our primary goal was to

determine the non-random association of CNS elements with

tissue sorted co-expression network gene modules. A CNS-

enriched module can be hypothesized to be under partial cis

control by the CNS, and once placed into the context of known

GRNs provides a working model for the complex regulation that

created a co-expressed gene set. In this study, we were able to

determine hundreds of functionally annotated gene modules from

tissue-enriched co-expression networks and provide evidence that

many are controlled by CNS-encoded regulatory mechanisms.

Results

Construction of Arabidopsis Co-expression Networks
In order to maximize detection of co-expression relationships

relevant to specific tissues and organs, we used 4,566 Arabidopsis

AffymetrixH ATH1 microarray samples, obtained from the NCBI

Gene Expression Omnibus database [24], that were previously

subdivided by manual curation into nine tissue-enriched datasets:

aerial, flower, leaf, root, rosette, seedling, seed, shoot, and whole

plant (whole) [23]. Nine co-expression networks were then

constructed from these presorted groups which we termed: Aerial,

Flower, Leaf, Root, Rosette, Seedling, Seed, Shoot, and Whole

networks. A tenth Global network was constructed using all 4,566

microarray expression samples. Expression dataset input our

network construction pipeline ranged in size from 108 samples

(Seed) to 877 (Leaf) samples. Significant pairwise correlations for

each network were determined using the random matrix theory

(RMT) hard threshold method [25] with significant correlation

thresholds ranging from 0.836 (Seedling) to 0.942 (Seed) (Table 1).

The node count for each tissue-enriched network varied from 800

nodes (Shoot) to 1,780 (Aerial), accounting for 3.9% to 8.6% of the

measureable gene space on the microarray platform. The

frequency of genes unique to a tissue-enriched network ranged

from 9.6% (Seedling) to 49.4% (Flower), while the unique edge

count (co-expression relationships) ranged from 38.3% (Seedling)

to 83.0% (Seed) (Table S1). When combined, the number of

unique genes present in the nine tissue-enriched networks was

5,947, or 28.8% of the measurable genes. The Global network

contained 95,004 edges and 2,606 nodes, representing 12.6% of

measurable genes of the array platform (Table 1). The total

number of unique genes in the ten networks was 6,246,

representing 30.2% of the measurable Arabidopsis gene space.

Each of the ten networks was then subdivided into modules of

inter-connected genes using the Markov Cluster (MCL) and link

communities methods (Table S2) [26,27]. We refer to the genes in

link communities as Link Community Modules (LCM). The MCL

algorithm circumscribes mutually exclusive modules whereas the

LCM method allows for node overlap between modules. The

number of MCL modules per network ranged from 113 (Flower)

to 342 (Aerial) while the number of LCM modules ranged from

172 (Shoot) to 810 (Global) (Table 1). The MCL algorithm

assigned all nodes to modules and captured 68.0% (Aerial) to

95.1% (Global) of the network edges. The LCM algorithm

captured 59.8% (Aerial) to 93.8% (Global) of the network edges

and 43.8% (Aerial) to 66.0% (Flower) of network nodes. In total,

5,491 modules were detected across all ten networks.

Significant Association of CNS Elements with Co-
expressed Gene Modules
CNS elements were previously detected as conserved sequence

patterns proximal to alpha duplicate gene pairs [22] and may play

a role in the co-regulation of alpha duplicate gene pairs [23].

Functional CNSs contain information (regulatory and otherwise)

that was copied during the whole genome duplication event and

resisted deletion, presumably through the selective advantages

associated with maintenance of the duplicate gene pair as opposed

to fractionation. Any function encoded in a CNS element could be

active elsewhere in the genome which would simply be missed in

the CNS screen that was focused on proximal alpha duplicate gene

space. Therefore, we sought to evaluate CNS regulatory patterns

outside of alpha duplicate genes by identifying CNS elements in

non-alpha duplicates across the Arabidopsis genome. CNS elements

that were found near fractionated (non-alpha) genes were termed

CNS’ elements. In total 10,439 out of 11,452 CNS elements were

identified in close proximity to 18,853 genes throughout the

genome (Table S3). Thus, we assigned 56.1% of Arabidopsis genes

Table 1. Arabidopsis Co-expression Network Properties.

Network Arrays Nodes Edges ,k. PCC MCL LCM

Aerial 231 1,780 5,217 5.9 0.862 342 278

Flower 146 972 8,043 16.5 0.941 113 187

Leaf 877 920 4,553 9.9 0.902 148 181

Root 640 1,690 9,537 11.3 0.837 297 323

Rosette 268 1,627 5,867 7.2 0.864 285 289

Seedling 675 1,722 13,562 15.8 0.836 261 435

Seed 108 1,081 3,574 6.6 0.942 201 177

Shoot 305 800 4,699 11.7 0.926 119 172

Whole 771 1,735 17,111 19.7 0.851 211 426

Global 4,566 2,606 95,004 72.9 0.487 236 810

,k. = Average connectivity;
PCC = Pearson correlation coefficient significance threshold;
MCL = Markov clustering modules;
LCM = Link community modules.
doi:10.1371/journal.pone.0045041.t001

CNS Signatures in Co-Expression Networks
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(TAIR10 build) with a CNS’ element compared to 11.2%

unfractionated alpha genes near CNS elements.

Co-expression edges represent statistically dependent relation-

ships. We hypothesized that co-expressed genes on an edge or

within an LCM or MCL module share common regulatory

features that are the correlation source. Specifically, we hypoth-

esized that co-expressed genes share GRN components, including

cis regulatory DNA elements (CREs), that may be encoded in CNS

or CNS’ elements. To address this, we tested if network modules

were A) enriched in genes (nodes) that contain CNS or CNS’

elements; or B) demonstrated the non-random occurrence of co-

expressed gene pairs (edges) that share the same CNS or CNS’

element, which were termed shared regulatory edges (SREs).

First we evaluated all MCL and LCM modules for significant

enrichment of genes proximal to CNS or CNS’ elements that

contain putative CREs, an indicator that the module might be

regulated by the CRE. Starting with MCL modules, the number of

unique enriched CNS elements varied from 25 (Flower) to 107

(Aerial) while the number of unique enriched CNS’ elements was

slightly higher ranging from 32 (Flower/Shoot) to 123 (Aerial;

Table 2). Enrichment within the Global network MCL modules

was similar with 54 CNS and 92 CNS’ enriched elements.

Combining enrichment results for all of the 2,213 MCL modules

resulted in 411 CNS and 549 CNS’ enriched elements (Bonferroni

p#0.001; Table S4). Within LCM modules, the number of unique

enriched CNS elements varied from 29 (Shoot) to 92 (Whole),

while the number of unique enriched CNS’ elements ranged from

22 (Shoot) to 58 (Root; Table 2). Enrichment within LCM

modules in the Global network was high relative to the nine tissue-

enriched networks with 105 CNS and 91 CNS’ detected elements.

Combining enrichment results for all 3,278 LCMmodules resulted

in 329 CNS and 360 CNS’ enriched elements (Bonferroni

p#0.001; Table S4). All enriched CNS or CNS’ elements were

then examined for uniqueness to a network, a potential indicator

of tissue-specific control. On average, 36% of CNS elements and

58% of CNS’ elements enriched in modules were exclusive to

a given network (Table 2). In total, module enrichment revealed

1,288 CNS or CNS’ elements enriched in 1,830 modules across all

networks.

Next we used permutation testing to identify modules with

a non-random occurrence of SREs. Starting with MCL modules

with a significantly higher number of SREs relative to background,

the number of CNS elements varied from 0 (Flower) to 34 (Aerial)

while the number of CNS’ elements tended to be higher ranging

from 22 (Shoot) to 56 (Rosette; Table 2). Within the Global

network MCL modules, a significant number of SREs ranged

higher for CNS (41) and CNS’ (75). Combining results for all of

the 2,213 MCL modules resulted in 202 CNS and 216 CNS’

enriched elements (Bonferroni p#0.001; Table S5) from modules

with a significant number of SREs. Within LCM modules the

number of CNS elements in modules with a significant number of

SREs varied from 0 (Leaf) to 20 (Root/Rosette), while CNS’

elements tended to be higher ranging from 0 (Leaf/Root) to 52

(Seedling; Table 2). The Global network was high compared to the

nine tissue-enriched networks with 105 CNS and 114 CNS’

elements. Combining results for all of the 3,278 LCM modules

resulted in 169 CNS and 154 CNS’ elements (Bonferroni

p#0.001; Tables S5). In total, SRE permutation testing identified

469 unique CNS or CNS’ elements in 165 modules with

a significant number of SREs across all networks. Enriched

elements in modules with significant proportions of SRE were also

screened for network exclusivity. On average, 81% of CNS

elements and 26% of CNS’ elements found were exclusive to each

network (Table 2). The existence of exclusively enriched CNS and

CNS’ element across tissue-enriched networks suggests the

possibility of tissue-specific function, which was not considered

further in this study. After combining node enrichment and SRE

significance results, we were able to assign 1,361 unique CNS or

CNS’ elements to 1,904 modules.

Mapping CNS Elements to Gene Regulatory Networks
(GRNs)
While individual genes can be regulated by a single cis-

regulatory module (CRM) [28], we expected that co-expressed

modules were likely the result of complex regulation through

multiple CREs and CRMs which may be acting in one or more

GRNs [28,29]. To place the CNS and CNS’ elements into

a known regulatory network context, we first mapped module

genes to known Arabidopsis GRN target genes from the AtRegNet

GRN database [10]. On average, for all ten networks, 24.8% of

the modules contained genes of known GRN targets, with an

average of 2.4 targets per module (Table S6). Next, we tested

whether these putative CNS/CNS’-embedded CREs overlapped

Table 2. Unique Regulatory Elements in Co-expression Network Modules.

CNS CNS’ CNS in SRE CNS’ in SRE

Network MCL LCM MCL LCM MCL LCM MCL LCM

Aerial 107 (59) 52 (27) 123 (80) 52 (35) 10 (10) 34 (34) 38 (15) 39 (0)

Flower 25 (8) 44 (24) 32 (21) 43 (30) 12 (12) 0 (0) 12 (0) 48 (20)

Leaf 45 (10) 47 (10) 45 (28) 26 (14) 0 (0) 2 (2) 0 (0) 28 (0)

Root 84 (51) 49 (11) 96 (64) 58 (30) 20 (12) 22 (20) 0 (0) 40 (12)

Rosette 78 (37) 69 (24) 87 (45) 53 (37) 20 (10) 23 (23) 9 (1) 56 (30)

Seedling 65 (20) 69 (10) 69 (26) 41 (20) 6 (6) 20 (18) 52 (10) 48 (20)

Seed 68 (34) 44 (27) 88 (53) 51 (33) 6 (0) 24 (24) 8 (0) 36 (20)

Shoot 35 (7) 29 (8) 32 (22) 22 (14) 4 (2) 22 (16) 17 (0) 22 (4)

Whole 69 (21) 92 (20) 74 (42) 45 (22) 10 (10) 24 (20) 38 (14) 36 (10)

Global 54 (17) 105 (38) 92 (29) 91 (46) 105 (87) 41 (35) 114 (59) 75 (31)

MCL = Markov clustering modules; LCM = Link community modules; SRE = Shared regulatory edge; CNS = Conserved noncoding sequence.
Numbers in parentheses represent regulatory element frequency specific to corresponding network.
doi:10.1371/journal.pone.0045041.t002
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with AtRegNet GRN-CREs. To do this, we mapped each of the

471 unique GRN-CREs collected from AtRegNet to the CNS or

CNS’ elements and found that 250 of the unique CNS/CNS’-

embedded CREs contained known GRN-CREs (Table S6). The

remaining 1,111 CNS/CNS’ CREs were not represented in the

AtRegNet database, and our results provide evidence for their role

as novel GRN components. Interestingly, only 26 of the 1,904

modules mapped to CNS or CNS’ elements contained nodes

annotated as transcription factors (TFs) indicating that TFs are

rarely co-expressed with putative regulatory targets in a module

(Table S6).

Discussion

These results support the hypothesis that CNS elements are

involved in the regulation of steady state mRNA levels in

Arabidopsis. We provide evidence in the form of non-random

association of CNS and CNS’ elements with co-expression

network modules indicating a regulatory role of CNS-encoded

CREs beyond alpha duplicate genes and into the broader genome.

Specifically, we provide evidence of cis regulatory function for

1,361 unique CNSs across 1,904 co-expressed gene modules. A

CNS2/CNS’-enriched module can be hypothesized to be under

partial cis control by the element. Moreover, when these elements

were placed into the context of known gene regulatory networks

(GRNs), a model was created of the complex regulation underlying

a co-expressed gene module. Furthermore, our method filtered

insignificant CNS and CNS’ elements that are either non-

functional (artifacts?), weakly involved in coordinated expression

of module genes, or are not involved in mechanisms that control

steady state RNA levels.

A current limitation of global co-expression networks is that

many gene interactions are often missed because of mixing

transcriptome states which confounds the detection of diluted but

relevant relationships. This may confound the detection of genes

controlled by overlapping GRNs and CREs such as the CNS

elements examined in this study. Significance thresholding of

pairwise expression correlations ensures that networks contain

highly-significant, non-random interactions [30]. However, if

a treatment condition or tissue source is underrepresented in an

expression profile collection, then a real interaction relevant to

that cellular environment could be masked and remain un-

discovered. The end result is that global co-expression networks

often capture a small portion of the measurable RNA interactome

of an organism. For example existing rice, maize and Arabidopsis

co-expression networks captured between 10 to 20% of the

measurable genes respectively [5,7,31,32]. This implies that

assignment of coordinated gene output to relevant biological

function is incomplete and the data mining potential of public

databases is not fully realized. Through manual pre-sorting of

expression data into tissue-enriched groups, our network collection

increased capture of Arabidopsis genes in co-expression relation-

ships to 30.2% enhancing the power to detect diluted tissue-

specific gene interactions.

Previous co-expression networks have been constructed from

grouped samples designed for a specific test [7] or focused on select

tissues of interest [8]. Our approach gathers all available

expression data for a holistic view of co-expression, and attempts

to reduce noise created by mixing disparate datasets via

partitioning samples into ontology defined expression sets. The

composite of all nine tissue-enriched networks captured 5,947

unique nodes (28.7% of the measurable gene space), 51,750

unique edges, and 1,977 (MCL)/2,468 (LCM) modules. This was

a marked improvement over the Global network, which captured

12.6% of the measurable gene space. The sample size of each

tissue network is in line with the prescribed ‘‘optimum’’ of 100

microarrays [33], and each network contained overlapping and

distinct regulatory information (Table 2). Therefore, these net-

works and their functionally annotated modules are a significant

improvement in the description of the Arabidopsis interactome.

The network partitioning algorithm played an important role in

our ability to detect putative CRE-encoded CNS/CNS’ elements

in modules. Each algorithm (MCL vs. LCM) found distinct

differences in node-based enrichment for CNS (411 vs. 329) and

CNS’ (549 vs. 360) elements (Table S4). We expected the total

number enriched elements in LCM modules to be lower as LCM

modules only captured an average of 50.0% of the nodes in tissue-

enriched networks. This was supported in that LCM modules

captured 0.23 unique elements per module on average compared

to 0.47 unique elements per MCL module. Notably only 25%

(334) of the node enriched CNS or CNS’ elements were found in

both MCL and LCM modules. It should be noted that SRE-based

association of CNS signatures to modules was also different for

each module set (MCL vs. LCM): CNS (202 vs. 169) and CNS’

(216 vs. 154) elements. This suggests that both node-based and

edge-based CRE to module association approaches could be used

in conjunction with alternate module discovery techniques to

maximize the detection of potential module-CRE relationships.

For each module annotated with putative CREs in our study

(Table S6), evidence is provided for the regulation of that gene set.

For example, Aerial-MCL25, which contained the largest number

of enriched CNS’ elements (9), was comprised of 10 genes that

group into three families: three Cruciferins [34], two Oleosins [35]

and five seed storage albumins genes (SESA; [36,37]) (Figure 1 and

Table 3). Four of the five SESA genes exist in tandem on

chromosome four (SESA1, SESA2, SESA3 and SESA4) and seven

of the ten genes share CNS’ elements (CRU1, CRU2, SESA1,

SESA2, SESA3, SESA4 and SESA5; Figure 1). Seven of the

module’s twenty-seven edges exist between genes that share CNS’

elements (CNS’ SRE), although only two of these edges exist

between genes that are not part of the tandem SESA block

(SESA3-SESA5 and CRU1-CRU2; Figure 1). Many of these

genes are also co-expressed in other MCL modules across the nine

tissue-enriched networks (Seedling, Seed, Shoot and Whole; Table

S2), suggesting that their co-expression relationships are robust

across temporal and spatial conditions. In addition, some of the

enriched CNS’ elements for the Aerial-MCL25 module contain

basic leucine zipper (bZIP) and MYB transcription factor binding

sites, which have been associated with seed storage proteins

(Table 3; [8]). The combination of CNS’ elements encoded for

known CRE motifs and those without known function provides

a framework for the regulatory analysis of this example module,

a representative model for each module identified in our network

collection.

Was the regulatory potential captured by CNSs more likely to

be maintained in unfractionated parts of the genome? We tested

this by counting CNS’ occurrences in close proximity to alpha

duplicate genes versus the remainder of the genome. The

proportion of alpha duplicate genes with CNS’ elements was

found to be significantly higher compared to non-alpha duplicate

genes (p,0.00001). Eighty percent (5,076) of alpha duplicate genes

were assigned at least one CNS’ element compared to 51%

(13,777) of non-alpha genes. In comparison, the propensity of

CNS elements to resist fractionation may be duplication-mecha-

nism specific since only 4% of transposed genes in Arabidopsis have

annotated CNSs [38]. This suggests that CNSs encode regulatory

potential that favors retention after whole genome duplication

events.

CNS Signatures in Co-Expression Networks
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In conclusion, our co-expression network collection provides an

extended model of the Arabidopsis RNA interactome for the

discovery of gene regulatory mechanisms. Specifically, we applied

this model to test the hypothesis that CNS elements encode

regulatory information affecting the co-expression of both alpha

duplicates and genes found in fractionated genome regions. In

support of this hypothesis, we found that over 34% (1,904) of co-

expressed gene modules were significantly associated with CNS or

CNS’ elements. In addition, we identified 1,111 putative CRE-

encoded CNS signature, extending known GRN models. These

data demonstrate the utility of gene co-expression networks for

deepening our view into the Arabidopsis regulome.

Methods

Arabidopsis Co-expression Network Construction
All microarray expression datasets in this study were comprised

of the nine ontology sets after normalization and quality control, as

described in [39] (Table S7). All networks were generated by

constructing a similarity matrix of pairwise Pearson correlations

for every probe set across all samples. A random matrix theory

(RMT) based algorithm [30] was used to select a hard threshold of

significant correlation. All probe sets in the RMT-thresholded

networks were then mapped to genes using ATH1 mappings

available via TAIR [40] (affy_ATH1_array_elements-2010-12-

20.txt; ftp://ftp.arabidopsis.org/home/tair/Microarrays/

Affymetrix/). Of the original 22,810 probe sets on the ATH1

platform, all Affymetrix control probe sets (prefixed with AFFX),

probe sets that did not map to a gene model in TAIR10 (non-

genic), probe sets that mapped to multiple loci (ambiguous), or

probe sets that were shared by a single gene (redundant) were

removed (Table S8). The final count of probe sets used was

20,677. After probe set filtering, modules were generated using the

Markov Cluster algorithm (MCL; [26]). MCL modules were

generated using the clustermaker v1.1 plugin with Cytoscape

v2.82 using default parameters (inflation value = 2.0) (http://www.

cgl.ucsf.edu/cytoscape/cluster/clusterMaker.html; http://www.

Figure 1. Module Aerial-MCL25. Aerial-MCL25 represents a module with a significant proportion of shared regulatory edges (SRE) and the highest
number of enriched CNS’ elements. SREs are found between genes in close proximity as well as genes on different chromosomes. All genes are
shown with their approximate coordinates within the Arabidopsis genome (e.g. SESA1, SESA2, SESA3 and SESA4 are tandem duplicates on
chromosome 4 at 13.60 Mb). Most genes shown are involved in seed growth and development. Alpha duplication genes have been designated with
the symbol a. Bent black arrows represent the direction of gene transcription. Black downward arrows represent CNS’ elements and unique elements
are identified by different numbers. Solid black lines represent co-expression network edges and black dotted lines are shared regulatory edges (SRE).
(CRU = Cruciferin; OLE = Oleosin; SESA = seed storage albumin).
doi:10.1371/journal.pone.0045041.g001

Table 3. Regulatory Element Enrichment within Network
Module Aerial-MCL25.

Element p-valueA FDRB Known CRE Motifs

CNS_007564 3.51E-09 7.64E-11 GTNNAC; G-box; bHLH/MYB; bZIP

CNS_007554 6.32E-09 1.44E-10 GTNNAC; G-box; ARR; bHLH/MYB; bZIP

CNS_007560 6.32E-09 1.40E-10 ABRE; E-box; G-box; DPBF; MYC

CNS_007562 2.85E-06 7.71E-08 –

CNS_007563 2.85E-06 7.92E-08 –

CNS_007558 3.06E-04 1.02E-05 –

CNS_006699 5.10E-04 1.89E-05 phyA

CNS_006700 5.10E-04 1.96E-05 phyA

CNS_007556 5.10E-04 1.82E-05 GTNNAC; G-box; ARR; bHLH/MYB; bZIP

ABonferroni corrected p-value;
BFDR = False Discovery Rate;
CRE = cis-regulatory DNA element.
doi:10.1371/journal.pone.0045041.t003
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cytoscape.org/). LCM modules were identified with the linkcomm

[41] package in R (binary version 1.0-4; http://cran.r-project.org/

web/packages/linkcomm/index.html). Module assignments for all

genes within networks can be found in Table S2.

Genome Screening for CNS elements
All of the 11,452 TAIR8-derived CNS sequences [22,23] were

aligned using BLASTN against the TAIR10 chromosomes masked

for coding and repeat sequences. TAIR10 chromosomes and

coding sequences were downloaded from TAIR (ftp://ftp.

arabidopsis.org/home/tair/Sequences/Whole_chromosomes/

*chr*.fas; ftp://ftp.arabidopsis.org/home/tair/Sequences/

blast_datasets/TAIR10_blastsets/TAIR10_cds_20101214). Arabi-

dopsis repeat sequences were downloaded from the MSU database

(ftp://ftp.plantbiology.msu.edu/pub/data/

TIGR_Plant_Repeats/TIGR_Arabidopsis_Repeats.v2_0_0.fsa)

All BLAST hits were limited to an e-value of a 15/15 exact base

pair match (e-value , 0.2). BLAST results were then filtered for

alignments of at least 90% of the original CNS sequence length

before being considered CNS’ sequences. CNS’ sequences were

assigned to all genes within 2000 bp (upstream or downstream)

using a Perl script. This resulted in 10,439 unique CNS’ sequences

assigned to 18,853 genes (Table S3).

CNS/CNS’ Element Enrichment within Modules
All modules in the ten networks were tested for enrichment of

CNS or CNS’ regulatory element terms using a DAVID-like [42]

functional profiling strategy using in house Perl scripts [5,43]. All

terms were tested for enrichment across all networks and network

modules via a Fisher’s exact test using a Perl script. Any terms with

a Bonferroni p-value #0.001 were considered significantly

enriched (Table S4).

Shared Regulatory Edge Enrichment
All networks were separated into groups of edges completely

contained within modules (intramodule) and edges that existed

between modules (intermodule). Using a Perl script intramodule

edges with shared CREs (CNS, CNS’) between both nodes were

identified. These edges were referred to as shared regulatory edges

(SRE). Modules with more than one edge and a count of one or

more SRE were tested for a significant proportion of SREs by

randomly selecting the same edge count from the background of

all network edges (intermodule and intramodule edges) 10,000

times. The p-values were obtained by dividing the number of

instances in which permuted SRE counts were higher than

observed SRE counts across all permutations (Table S5).

AtRegNet GRN-module Associations
Module genes were mapped to the ‘TargetLocus’ in AtRegNet

(reg_net_20100915.tbl) downloaded from http://arabidopsis.med.

ohio-state.edu. A list of Transcription Factor Binding Sites (TFBS)

active at the transcriptional level was obtained from the AtRegNet

AtcisDB (http://arabidopsis.med.ohio-state.edu/AtcisDB/),

which comprised 471 unique TFBS elements dispersed across

the Arabidopsis genome [44]. Cis elements from AtRegNet were

aligned to CNS or CNS’ elements via blastn [45] and filtered for

100% sequence identity over 100% of the shortest aligned

sequence, a word score of 5 and a minimum e-value of 100.

The collection of 1,926 transcription factor genes was obtained

from the supplemental data in [22]. Primary gene descriptions and

symbols for TAIR10 can be found in Table S9.

Enrichment of Functional Terms within Modules
All modules in the ten networks were tested for enrichment of

CNS or CNS’ regulatory element terms using a DAVID-like [42]

functional profiling strategy using in house Perl scripts [5,43]. All

terms were tested for enrichment across all networks and network

modules via a Fisher’s exact test using a Perl script. Any terms with

a Bonferroni p-value #0.001 were considered significantly

enriched (Table S4). All GO (ATH_GO_GOSLIM.txt; ftp://

ftp.arabidopsis.org/home/tair/Ontologies/Gene_Ontology; 10-

25-2011) and Interpro (TAIR10_all.domains; ftp://ftp.

arabidopsis.org/home/tair/home/tair/Proteins/Domains/; 11-

18-2010) annotations were downloaded from TAIR. All TAIR10

peptide sequences (TAIR10_pep_20101214.txt) were downloaded

from ftp://ftp.arabidopsis.org/home/tair/Proteins/

TAIR10_protein_lists and submitted to the KEGG Automatic

Annotation server on 10-26-2011 [46]. Enrichment of functional

terms including gene ontology (GO), protein domains (Interpro),

and biochemical pathways (KEGG) within all modules can be

found in Table S4.
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