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Introduction
Entry of enveloped viruses into host cells requires binding of 
the virus to one or more receptors present at the host cell sur-
face. This binding is followed by fusion of the viral envelope 
with the cellular membrane. These steps are mediated by virally 
encoded glycoproteins, which promote both receptor recogni-
tion and membrane fusion. The membrane fusion process involves 
large structural rearrangements of the fusogenic glycoproteins after 
interaction with specific triggers (e.g., a low pH environment 
and/or cellular receptors). These conformational changes result 
in the exposure of hydrophobic motifs (so-called “fusion peptides” 
or “fusion loops”), which then interact with one or both of the 
participating membranes, resulting in their destabilization and 
fusion (Weissenhorn et al., 2007; Harrison, 2008). Conforma-
tional change triggered in the absence of a target membrane in-
activates the fusion properties of the fusogenic glycoprotein.

Determinations of the atomic structure of the ectodomains 
of many viral fusion glycoproteins in their pre- and/or post-fusion 
states have revealed a large diversity of conformations (Skehel 

and Wiley, 2000; Gibbons et al., 2004; Kielian and Rey, 2006; 
Lamb and Jardetzky, 2007; Harrison, 2008; Roche et al., 2008; 
Backovic and Jardetzky, 2009), but experimental data suggest 
that the membrane fusion pathway is very similar for all the  
enveloped viruses studied to date, regardless of the organization 
of their fusion machinery (Chernomordik et al., 1998; Gaudin, 
2000; Zaitseva et al., 2005). Fusion is generally thought to proceed 
via the formation of an intermediate stalk that forms a local lipid 
connection between the outer leaflets of the fusing membranes. 
Radial expansion of the stalk then induces the formation of a tran-
sient hemifusion diaphragm (i.e., a local bilayer composed of the 
two initial inner leaflets). The formation and enlargement of a pore 
within this structure results in complete fusion (Chernomordik 
et al., 1995; Chernomordik and Kozlov, 2005).

The stalk/pore model is largely supported by experimental 
results (Kemble et al., 1994; Chernomordik et al., 1998; Gaudin, 
2000; Zaitseva et al., 2005). However, it remains unclear how 
fusion proteins catalyze the formation of these lipid intermedi-
ates during the fusion process. In particular, many studies have 
shown that fusion involves the cooperative action of a large 
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the virus, at different pH values. We also visualized individual 
fusion events between viral particles and liposomes. Fusion ap-
pears to occur preferentially at the flat base of the virion. More-
over, once the spikes on the cylindrical part of the particle have 
attained their post-fusion conformation, they tend to form regu-
lar arrays. At pH values below 5.5, extended helical networks of 
G were observed. Viral membrane tearing was observed when 
this helical network was formed in the absence of a target mem-
brane. Finally, the formation of regular arrays is an intrinsic 
property of the G ectodomain: Gth incubated with liposomes at 
low pH also self-organizes to form similar networks at the sur-
face of the bilayer.

Based on these observations, we suggest that the fusion of 
VSV with target membranes is driven by two successive struc-
tural rearrangements of G at two different sites in the virion. 
Glycoproteins located at the flat base of the virion initiate the 
fusion process by undergoing conformational changes, allow-
ing them to interact with the target membrane. G molecules lo-
cated outside the fusion site on the cylindrical part of the viral 
particle then self-organize, imposing membrane constraints that 
lead to the merging of the two membranes.

Results
Characterization of the fusion induced  
by VSV
A resonance energy transfer method based on non-exchangeable 
fluorescent donor and acceptor probes was used to assay fusion. 
Fig. 1 A shows typical fusion kinetics for various pH values, at 
20°C. Fusion was not observed above pH 6.5. Below this pH, 
fluorescence increased rapidly (t1/2 of 15 s) and the fusion reac-
tion was complete within 50 s. Fusion peaked at about pH 6, de-
creasing thereafter with the pH (Fig. 1 B). Fusion levels at pH 5.5 
were about half those at pH 6. These data are consistent with 
published data for VSV (Clague et al., 1990) and other rhabdo-
viruses (Gaudin et al., 1993, 1999). We investigated the structure 
of G on the surface of the virus in the absence of fusion (pH 7.5), 
in optimal fusion conditions (pH 6) and in conditions in which 
fusion is partially inhibited (pH 5.5).

Electron microscopy of VSV incubated at 
pH 7.5
We initially used negative staining to analyze the structure of 
VSV G at the surface of native virions incubated at pH 7.5. Under 
these conditions, virions did not aggregate and were evenly dis-
tributed over the grid (Fig. 2 A). The stain did not penetrate the  
virion efficiently, so the RNP was not visible in most cases (Fig. 2 B). 
The viral particles had the characteristic bullet shape described 
in previous studies (Nakai and Howatson, 1968; Brown et al., 1988; 
Barge et al., 1993), with a flat base and a round tip. A rather con-
tinuous layer of spikes formed on the cylindrical part of the  
virion and on the round tip, making it difficult to distinguish  
between individual glycoprotein molecules (Fig. 2 B, large  
arrow). The width of this layer (8 nm) was consistent with the 
length of the proposed pre-fusion conformation determined by 
x-ray crystallography (Roche et al., 2007). The spikes exhibited 
a low density area close to the viral membrane, again consistent 

number of viral proteins, interacting with and deforming the  
viral and target membranes (Blumenthal et al., 1996; Danieli  
et al., 1996; Roche and Gaudin, 2002; Leikina et al., 2004), but 
the underlying molecular mechanisms remain unknown.

Rhabdoviruses are enveloped viruses with a flat base and 
a round tip, resulting in a characteristic bullet shape (Nakai and 
Howatson, 1968; Brown et al., 1988; Barge et al., 1993). The 
two most frequently studied rhabdovirus genera are the lyssa-
viruses (prototype virus: rabies virus, RV) and the vesiculoviruses 
(prototype virus: vesicular stomatitis virus, VSV). These viruses 
fuse with the cell membrane after endocytosis of the viral parti-
cle and this process is triggered in the acidic environment of the 
vesicle (White et al., 1981; Matlin et al., 1982). Attachment and 
fusion are both mediated by a single viral glycoprotein, G, the 
only glycoprotein present in these viruses (Roche et al., 2008).

G has at least three conformational states (Clague et al., 
1990; Gaudin et al., 1993): the native pre-fusion state, present  
at the surface of the virus at pH values above 7; the activated  
hydrophobic state, which interacts with the target membrane dur-
ing the first step of the fusion process (Durrer et al., 1995); and 
the post-fusion conformation, which is structurally different 
from both the native and activated states (Clague et al., 1990; 
Gaudin et al., 1993). The different states of G are maintained in 
a pH-dependent equilibrium, which shifts toward the inactive 
state at low pH (Roche and Gaudin, 2002).

Two different structures of a thermolysin-generated VSV 
G ectodomain (Gth), probably corresponding to a high pH pre-
fusion (Roche et al., 2007) and low pH post-fusion (Roche et al., 
2006) state, have been determined by x-ray crystallography. 
Four distinct domains were identified in both these structures: a 
-sheet–rich lateral domain, a central domain involved in trimer-
ization, a pleckstrin homology domain (PH domain), and a fusion 
domain inserted into a loop of the PH domain. The fusion do-
main contains a membrane-interacting motif consisting of two 
hydrophobic loops located at the tip of an elongated three-
stranded -sheet. In striking contrast to other proteins involved 
in fusion, the fusion loops are not buried at an oligomeric inter-
face in the pre-fusion conformation of G. Instead, they are ex-
posed, pointing toward the viral membrane.

The transition from the pre- to the post-fusion structure of 
VSV G involves a major reorganization of the molecule (Roche 
et al., 2006, 2007, 2008). During this transition, the fusion do-
main is projected toward the target cell membrane through two 
structural changes: the reorganization of two hinge segments 
connecting the fusion domain to the PH domain, and lengthen-
ing of the central helix of the trimerization domain. Finally, the 
C-terminal domain associated with the transmembrane segment 
refolds into an -helix that positions itself in the grooves of the 
trimeric core (composed of the central helices) in an antiparallel 
manner, to form a six-helix bundle. The post-fusion state has a 
typical “hairpin” structure (also found in the post-fusion states 
of other viral glycoproteins involved in fusion; Kielian and Rey, 
2006), with the fusion loops in the vicinity of the TM domains.

In this study, we used electron microscopy (on both nega-
tively stained and frozen samples) and tomography to analyze 
the structure of VSV G at the surface of the virus. We demonstrate 
that both crystalline structures can be observed at the surface of 
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toward the base within many virions, indicating a non-uniform 
distribution of mass density along the central axis of the particle.

Preparation artifacts were minimized by also visualizing 
the viral particles in their native aqueous state, by cryo-EM.  
In these conditions we were able to observe the internal structure 
of the virions, the RNP, which displayed typical helical sym-
metry (Fig. 3 A). The overall organization of the spikes at the viral 
surface was very similar to that observed after negative staining. 
We also observed very few glycoproteins at the base of the virus, 
as after negative staining (Fig. 3 A, arrows).

VSV tomograms at pH 7.5
We performed electron tomography on negatively stained samples 
to analyze more precisely the organization of G at the surface of 
the virus. Image processing and tomogram construction (Fig. 4 A; 
Videos 1 and 2) generated a 3D reconstruction of several viral 
particles. VSV particles had a typical bullet shape, with a cen-
tral cavity (Fig. 4 A, right frame). Nucleocapsids were not visi-
ble because the stain did not penetrate the viral particles. At the 
surface of the viral particle (Fig. 4 A, left frame) we observed 
triangular forms consisting of three dots. We also identified tri-
meric shapes in the calculated volume (Fig. 4 D). These vol-
umes arose from negative staining but, as the typical tripod-like 
shape of the pre-fusion crystal structure including the “legs” 
corresponding to the fusion domains was clearly recognizable, 
we were able to fit G pre-fusion structures into these volumes 
(Fig. 4, D and F). These tripod-like structures were generally 
clustered (Fig. 4 A, left frame). A better fit was obtained if a 
monomer was inserted into the map imposing C3 symmetry 
(Fig. 4 F, right), rather than a crystallographic trimer (Fig. 4 F, 
left), suggesting that there may be some flexibility in the pre- 
fusion conformation of G. Finally, we observed far fewer tripods  
(a few tens) at the surface of the virus than expected, given the 
number of glycoproteins present (1,200 monomers, giving, 
potentially, 400 trimers; Thomas et al., 1985).

Electron microscopy of VSV incubated at 
low pH
At low pH, massive aggregation of the virions was observed 
both after negative staining (Fig. 2 C) and cryo-EM (not de-
picted). This aggregation results from the exposure of hydro-
phobic regions (probably the fusion loops) at the top of the layer 
of spikes. We also observed some fusion between viral particles 
(Fig. 2, C and D). This massive aggregation and fusion made it 
very difficult to observe particle structure. Nevertheless, in rare 
cases, isolated virions (or small aggregates of a few virions) 
were obtained, making it possible to study particle shape (Fig. 2 D; 
Fig. 3, B and C).

These isolated virions no longer had the uniform layer de-
scribed above: individual spikes were clearly visible, sticking 
out perpendicularly to the viral membrane. Their length (12 nm) 
was consistent with the post-fusion conformation determined 
by x-ray crystallography.

In their post-fusion conformation, the spikes tended to be 
organized into arrays (Fig. 2, C and D; Fig. 3, B and C), this  
organization being stronger at lower pH values. After the incu-
bation of the virions at pH 5.5 for several minutes at room 

with the crystallographic model. In most cases, the domain con-
necting the spikes to the membrane could not be visualized by 
electron microscopy. Instead, the glycoprotein layer seemed to 
float around the virion. The oligomeric state of the glycoprotein 
at the surface of the virus could not be determined from electron 
micrographs. Spikes were often hardly visible (Fig. 2 A, asterisks; 
Fig. 2 B, left thin arrow) or not visible at all (Fig. 2 B, right thin 
arrow) on the flat base of the viral particle. Stain accumulated 

Figure 1. pH dependence of fusion between VSV and liposomes. (A) Ki-
netics of VSV fusion at various pH values, at 20°C, a.u. (arbitrary units). 
(B) pH dependence of the extent of fusion at 20°C, obtained from kinetic 
curves, such as those shown in A. The increase in fluorescence was maxi-
mal at pH 6.05, and this value was defined as 100%. The slight increase 
in fluorescence observed at pH values above 6.5 is due to virus–membrane 
interactions rather than membrane fusion. Error bars indicate the standard 
deviation (for three experiments).

http://www.jcb.org/cgi/content/full/jcb.201006116/DC1
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tearing nor RNP release was observed, despite the post-fusion 
conformation of all the spikes (Fig. 3 B).

The fusion of two individual viral particles to each other 
always occurred at the flat bases of the particles (Fig. 2 D), con-
sistent with the notion that this site behaves differently from the 
rest of the viral surface and is the preferential site for fusion.

temperature, a regular helical network was clearly visible at the 
surface of the virion, extending over the entire particle in some 
cases (Fig. 2 D; Fig. 3 C). Once this helical network had formed, 
we often observed virions with a broken membrane at their base, 
resulting in the release of the RNP into the medium (Fig. 3 C).  
In the absence of this regular helical network, neither membrane 

Figure 2. Morphology of negatively stained VSV at pH 7.5, 6.0, and 5.5. (A) At pH 7.5, VSV formed a monodisperse suspension with virions that were 
bullet shaped when viewed from the side and circular when viewed from above. The asterisks indicate viruses with a base depleted of glycoproteins.  
(B) Higher magnification of the virions indicated by an arrow in A. Continuous layer of G over the surface of the virus (large arrow), with a lower density 
at the base of the particle (thin arrows). The right arrow indicates a virus with no spikes visible at its base. (C) VSV forms large aggregates at pH 6.0. G has  
a more elongated structure, making it possible to distinguish individual spikes, which are often closely packed at the apex of the viral particle (arrows).  
(D) At pH 5.5, the spikes form ordered helical arrays. Note that the viral particles fuse at their bases. The nucleocapsid is now clearly visible, indicating 
that the stain penetrated the viral particle.
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all cases, the viral and liposome membranes were clearly sepa-
rate and no fusion event could be detected.

At pH 6, as expected from the results of the fluorescence 
assay (Fig. 1), we observed massive fusion and aggregation on 
both negative staining and cryo-EM. This massive aggregation 
precluded the visualization of any individual fusion event  
(Fig. 5 B; Fig. 6 B).

At pH 5.5, consistent with the results of the fusion assay 
(Fig. 1), fusion was less extensive and we were able to detect 
individual fusion events between virions and liposomes, by both 
negative staining (Fig. 5 C) and cryo-EM (Fig. 6 C). The viral 
particle always associated with the target membrane via its flat 
base (21 fusion events were observed), confirming this area to 
be a preferential site for fusion. The helical network was also 
observed on the side of the virion. It seemed to impede or to delay 
the diffusion of glycoproteins into the liposome membrane.  
Indeed, even after the release of some of the RNP into the lipo-
some, the glycoproteins often remained clustered around the  
virion, maintaining the shape of the viral particle.

Low pH–induced viral membrane 
deformation is associated with the 
formation of the G network
Our data suggest that viral membrane tearing resulted from the 
formation of a helical G network at the virion surface. We took 
advantage of the possibility to prevent the massive aggregation 
of the virions by incubating the virus at an intermediate pH (6.6) 
and 37°C for a few minutes before a second incubation at lower 
pH (Gaudin et al., 1993), to confirm this hypothesis.

Fusion was detected only at pH values below 6.5 (Fig. 1), but 
the incubation of virions for 15 min at 37°C and a pH as high as 6.6 
resulted in most, if not all the G molecules adopting a post-fusion 
conformation (ectodomain length of 12 nm and trimeric head;  
Fig. 7 A). Thus, the structural transition of most of the virion spikes 
toward the post-fusion state is not sufficient to induce membrane 
fusion. These conditions also minimize aggregation, with the virions 
distributed evenly over the grid. An intact membrane and the  
typical bullet shape were retained by 84% of the virions (n = 531) 

The strong penetration of the stain into the viral particle 
confirmed the destabilization of the membrane at pH 5.5.  
In these conditions the inner structure of the virion could be  
visualized (Fig. 2 D).

VSV tomograms at pH 5.5
We then performed electron tomography on samples stained at 
pH 5.5 (Fig. 4 B; Video 3). We were able to identify volumes 
with an elongated shape at the surface of the virus, in which we 
could fit the crystalline post-fusion structure of the G ecto-
domain (Fig. 4, E and G).

Consistent with previous findings (Barge et al., 1993), 
staining revealed the presence of material within the tightly 
coiled helical RNP (Fig. 4 B). At some sites this material  
resembled uncoiled RNP in solution, whereas at others it re-
sembled the structures formed by matrix protein (M) aggre-
gated at low salt concentration (Gaudin et al., 1995). At the 
resolution of the tomogram, it is therefore difficult to draw 
firm conclusions concerning the nature of the central structure 
of the virion.

The tomograms also provided information about the orga-
nization of the viral proteins beneath the membrane. In mem-
brane regions depleted of glycoprotein (Fig. 4 C, enlargement 
of a virion from the tomogram shown in Fig. 4 B) we observed 
another layer of protein, with punctate staining between the he-
lical RNP—identified on the basis of the bilobed shape of the 
nucleoprotein (N) (Albertini et al., 2006; Green et al., 2006)— 
and the lipid bilayer. This additional protein probably corre-
sponds to M protein (Fig. 4 C; Ge et al., 2010).

Fusion of VSV G with liposomes, as 
studied by electron microscopy
Having determined the structural characteristics of the virions, 
we investigated their interactions with liposomes at different  
pH values. At pH 7.5, virions were visualized as individual parti-
cles, by both negative staining and cryo-EM. In some cases, due 
to flattening and/or 2D projection artifacts, the viral particles 
seemed to interact with target liposomes (Fig. 5 A). However, in 

Figure 3. Morphology of VSV embedded in vitreous ice. (A) At pH 7.5, G forms a thin continuous layer around the viral particle. The arrows indicate 
viruses with no G visible at their base. (B) At pH 6, G elongates and individual spikes protruding from the membrane are visible. The arrow indicates an 
area in which the spikes are regularly organized. (C) At pH 5.5, all the spikes display a well-ordered helical organization. Note that the membrane at the 
base of the particle is disrupted, allowing the release of internal material (indicated by arrows). In A and B, the image is underfocused by 1.8 µm. In C, 
it is underfocused by 3 µm, to improve visualization of the helical G array.

http://www.jcb.org/cgi/content/full/jcb.201006116/DC1
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Figure 4. Tomography of negatively stained VSV incubated at pH 7.5 and 5.5, and comparison of the structure of G with the corresponding x-ray crystal-
lography model. (A and B) Three sections of the tomograms are shown (extracted from Videos 1 and 3); one at the level of the G layer (left), one at the 
level of the nucleocapsid (middle) and one passing through the center of the particle (right). The tilted series used to calculate the tomograms were recorded 
on negatively stained samples. (A) At pH 7.5, VSV is bullet shaped, with a central cavity. In some areas, the G layer contains trimeric entities (arrows in 
the enlargement). As the stain does not penetrate the viral particle, the nucleocapsids are not visible. (B) At pH 5.5, G shows trimeric structures that form 
quasi-helical arrays (left). The nucleocapsid is now visible (middle and right). In the center of the particle, a twisted material occupies the central cavity. 
(C) Enlargement of the central section (indicated by the arrow in the right frame in B) showing the organization of the particle beneath the membrane. 
The characteristic bilobed shape of N is visible and an additional domain is seen that may be attributed to M (Ge et al., 2010). (D and E) Volumes at 
the surface of the particle, extracted from the tomograms, revealing the presence of trimeric entities to which x-ray models of the pre-fusion (D) and post-fusion (E)  
structures can be manually fitted. In each case, two models (in blue and red) are displayed. (F and G) For a more quantitative fit, four trimers were 
isolated from the reconstructions and averaged. The x-ray models were fitted to the resulting averaged 3D reconstructions with UROX (Siebert and Navaza, 

http://www.jcb.org/cgi/content/full/jcb.201006116/DC1
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network), more than half of the virions were disrupted and no  
longer bullet shaped. Only 47% (n = 304) seemed to have retained 
their initial morphology. Despite the disruption of viral membranes 
(Fig. 7 C), many arrays of G remained visible. These arrays were 
less regular than those observed after direct incubation at pH 5.5.

Thus, the structural transition of all the virion spikes toward 
the post-fusion state is not sufficient to deform the membranes. 

in these conditions, comparable to 75% of the virions (n = 315) 
from the same preparation being intact when kept at pH 7.5.

After subsequent incubation at pH 6.0 and 20°C, EM 
observations were very similar to those after incubation at 
pH 6.6 (Fig. 7 B).

If the second incubation was performed at pH 5.5 and 20°C 
(conditions under which we previously observed the helical  

unpublished program), a more user-friendly version of URO (Navaza et al., 2002). (F) For viruses incubated at pH 7.5, two fits are shown. For the fit 
displayed above and to the left, the crystallographic trimer, with its domains shown in color, was directly fitted in the electron microscopy reconstruction. 
The second fit (below and to the right) was performed with a monomer, imposing C3 symmetry. The better fit obtained with this model suggests that the 
trimer of G at the surface of the particle is slightly different from that in the crystalline structure. (G) At pH 5.5, the crystalline post-fusion model of G fits 
the tomographic model well.

 

Figure 5. Visualization of individual fusion events between VSV and liposomes at low pH, after negative staining. (A) At pH 7.5, some viral particles 
interact with liposomes, but no fusion is detected. (B) At pH 6.0, viral particles and liposomes aggregate and numerous fusion events are visible. Fusion 
events are characterized by the presence of several nucleocapsids within a liposome, the membrane of which contains glycoproteins in the post-fusion 
conformation, often clustered into locally ordered arrays (arrow; magnified inset). (C) At pH 5.5 individual fusion events can be seen, demonstrating that 
fusion occurs at the base of the virion and that spikes located on the cylindrical part of the virus form ordered helical arrays.
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Tomograms of negatively stained virions obtained at low 
pH confirmed the presence of material within the coiled nucleo-
capsid (Barge et al., 1993). However, due to the low resolution 
of the tomograms, we cannot draw firm conclusions about the 
nature of this material, which was not observed in the recent virus 
reconstruction by cryo-EM (Ge et al., 2010). However, this internal 
material did not display the helical symmetry imposed by Ge et al. 
(2010) in their reconstruction of the viral nucleocapsid.

Both crystal structures of Gth were observed at the surface 
of the virion. At pH values of 6.6 and below, all G spikes were in 
the elongated, post-fusion conformation. At pH 7.5, we observed 
only a few spikes with the tripod-like pre-fusion conformation. 
We cannot exclude the possibility that the oligomeric pre-fusion 
structure was disrupted during the preparation of the sample for 
observation by electron microscopy. However, the small number 
of G trimers observed at the surface of the virus suggests that at 
least one other conformation of G, different from both the struc-
tures determined by crystallography, is also present on the sur-
face of the virion at pH values above 7. We suggest that this 
reflects the equilibrium between monomeric and trimeric forms 
of G. The existence of such an equilibrium has been demon-
strated for detergent-solubilized G (Lyles et al., 1990). As previ-
ously suggested (Roche et al., 2008), the monomeric conformation 
of G may be an intermediate in the transition pathway.

Our data suggest that the flat base of the virion is the pre-
ferred site for fusion. This may be due to the particular cur-
vature of the membrane at the base of the virion, a particular 
glycoprotein density and/or organization at this site, or both. 
Consistent with a role for glycoprotein density and organiza-
tion, under pre-fusion conditions at pH 7.5, the flat base often 
seemed to be devoid of spikes, suggesting a lower abundance  
or a different structure and/or packing of spikes on this part of 
the virion. Indeed, a dense layer of protein (such as that on the  
cylindrical part and the round tip of the viral particle) would prob-
ably impede the formation of the initial lipid structures connecting 
the viral and target membranes.

Our findings demonstrate that the structural transition from 
the pre- to post-fusion conformation is not sufficient to drive viral 
fusion with a target membrane. Indeed, no fusion was detected at 

Membrane deformation occurred only in the presence of regular 
arrays of glycoproteins.

Gth forms tubular structures when 
incubated at low pH in the presence  
of liposomes
In the helical G network observed at the viral surface at pH 5.5, 
some contacts between glycoprotein ectodomains were ob-
served. However, the formation of this helical assembly may 
also be driven by interactions between the intraviral part of  
G and other proteins of the virus (such as the M or N proteins).

We investigated the interaction between Gth and liposomes 
by electron microscopy to exclude this possibility. No inter-
action between liposomes and proteins was observed at high pH, 
whereas, at low pH, Gth, in its post-fusion conformation, bound 
massively to the liposomes. The orientation of the molecule in-
dicated that binding was mediated by the fusion loops located at 
the tip of the elongated trimer (Fig. 7).

At pH 6, the liposomes were entirely covered by Gth. Some  
liposomes retained their original spherical shape, but many adopted 
a tubular shape (Fig. 8 A). This shape change was associated with 
the formation of local, regular arrays of Gth (Fig. 8 A, inset).

Lowering the pH to 5.5 increased the number of tubular struc-
tures associated with the formation of an elongated, regular, helical 
Gth network (Fig. 8 B). At pH 5.2, most of the protein–lipid struc-
tures observed were elongated rigid tubes (Fig. 8 C), with a mean 
diameter of 68 nm (±8), which is smaller than the diameter of a  
virion (97 nm, ±3). Nevertheless, the overall pattern of interaction be-
tween Gth in such structures was very similar to that at the surface of 
virions at low pH. Thus, neither another viral protein nor the trans-
membrane domain of G is required for formation of the helical net-
work. Thus, the G ectodomain is independently able to self-associate 
into a quasi-crystalline array, thereby deforming membranes.

Discussion
This electron microscopy study provides new insight into the 
molecular organization of VSV and the functioning of its  
fusion machinery.

Figure 6. Visualization of individual fusion events between VSV and liposomes at low pH, in amorphous ice. (A) At pH 7.5, viral particles and liposomes 
do not fuse. (B) At pH 6.0, G shows the characteristic post-fusion conformation and numerous fusion events are observed. (C) At pH 5.5, individual fusion 
events can be seen. Fusion proceeds from the base of the virus, and G forms helical arrays on the cylindrical part of the viral particle.
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Thus, the VSV fusion pathway seems to involve several 
distinct stages. The first stage is the association of the virion 
with the target membrane via its flat base. This is followed by 
local membrane deformations, leading to the formation of one 
or several stalks, and the formation of one or several initial fu-
sion pores. Interactions between glycoproteins, in their low pH 
conformation, outside the contact zone, then lead to the enlarge-
ment of these initial pores, completing the fusion of the mem-
branes. Pore enlargement is probably driven by the membrane 
tension induced by local reorganization of the glycoprotein net-
work on the lateral side of the virion. This step did not require 
complete helical network formation: as pore enlargement re-
quires less energy than membrane disruption, the formation of 

pH 6.6, despite most of the spikes present at the viral surface hav-
ing undergone the conformational change. Indeed, lateral inter-
actions (probably requiring a second protonation step) between  
G ectodomains in the post-fusion conformation were required for 
fusion. At pH 6, these lateral interactions, which are exclusively 
local (see Fig. 3 B, Fig. 5 B, and Fig. 8 A), did not deform the viral 
particle. However, at this pH the arrays formed by Gth induced the 
deformation of liposomes to form tubular structures.

At pH values of 5.5 or below, both G and Gth formed  
extensive helical networks on the surfaces of virions and lipo-
somes, respectively. These networks disrupted the viral mem-
brane and induced the formation of elongated rigid protein–lipid 
tubes, respectively.

Figure 7. Gradual pH decrease minimizes virion aggregation, making it possible to observe individual VSV particles. (A) After incubation for 15 min 
at pH 6.6 and 37°C, virions are not aggregated and most of the spikes are in their post-fusion conformation (ectodomain length of 12 nm). (B) The viral 
preparation shown in A was subsequently incubated at pH 6.0 and 20°C for 20 min. All the spikes are in their post-fusion conformation and the virions 
have retained their initial shape. The arrow indicates a virion with its surface completely covered by spikes in their post-fusion conformation. (C–G) The 
viral preparation shown in A was subsequently incubated at pH 5.5 and 20°C for 20 min. Most of the particles are disrupted. Extensive lattices of G are 
visible at the surface of the virion (arrows in C, disrupted virion in D). In many cases (E–G) the particles are highly damaged, precluding the observation 
of large regular networks of G. Nevertheless, local regular arrays are still observed (arrows). In all frames, the bars indicate 100 nm.
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Materials and methods
Chemicals
2-(4,4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)-1-
hexadecanoyl-sn-glycero-3-phosphocholine (-BODIPY 500/510 C12-HPC) 
and 2-(4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-
&-hexadecanoyl-sn-glycero-3-phosphocholine (-BODIPY 530/550 C5-HPC) 
were purchased from Invitrogen. Phosphatidylcholine (PC; type XVI-E from 
egg yolk), phosphatidylethanolamine (type III from egg yolk), and ganglio-
sides (type III from bovine brain) were supplied by Sigma-Aldrich.

Virus and cells
Wild-type VSV (Mudd-Summer strain, Indiana serotype) was propagated in 
BSR cells, a clone of BHK 21. Cells were grown in Eagle’s minimal essen-
tial medium supplemented with 10% calf serum. Virus particles were puri-
fied from the culture supernatant 24 h after infection. Cell debris was 
eliminated by a centrifugation for 30 min at 3,500 rpm in a rotor (model 
JA14; Beckman Coulter) at 4°C. The virus was then recovered in as a pellet 
by centrifugation for 3 h at 14,000 rpm in the JA14 rotor at 4°C and re-
suspended in TD buffer (137 mM NaCl, 5 mM KCl, 0.7 mM Na2HPO4, 
and 25 mM Tris-HCl, pH 7.5). For the viral preparations used in fusion  
assays, the virus was purified by an additional centrifugation for 50 min, 
through 30% glycerol in 10 mM Tris HCl, pH 7.5, 50 mM NaCl, and 1 mM 
EDTA, at 25,000 rpm, in a rotor (model SW 28; Beckman Coulter) at 4°C. 
The pellet was resuspended in TD buffer and the preparation was used 
within 2 d.

Preparation of liposomes
We mixed 700 µg of PC, 300 µg of PE, and 100 µg of gangliosides dis-
solved in organic solvents, and dried the mixture under vacuum. For fusion 
experiments, 2.5 µg of BODIPY 500/510 C12-HPC (as the fluorescence 
donor) and 5 µg of BODIPY 530/550 C5-HPC (as the fluorescence accep-
tor) were added to the mixture before drying. The lipid film was resus-
pended in 1 ml of buffer (150 mM NaCl and 5 mM Tris-HCl, pH 8) and 
the mixture was sonicated in a water bath for 20 min.

Fusion assay
Fusion was assayed as described previously (Malinin et al., 2001; Roche 
and Gaudin, 2004). In brief, we mixed 10 µl of fluorescent liposomes with 
980 µl of phosphate-citrate buffer at the required pH (prepared from 100 mM 
citric acid and 200 mM dibasic sodium phosphate solution) in the cuvette 

local arrays is probably sufficient. Indeed, premature formation 
of the helical network leads to membrane disruption, RNP re-
lease, and viral inactivation, accounting for the lower fusion  
efficiency at lower pH values.

A role for network formation at a late stage of the  
fusion process is consistent with published data for rabies 
virus showing that, at low temperature and at pH 6.4, fusion 
is arrested, probably at the stage of initial pore formation 
(Gaudin, 2000). In these conditions, the structural transition 
toward the post-fusion state is known to be blocked in rabies 
virus (Roche and Gaudin, 2002), precluding formation of  
the network outside the contact zone and preventing mem-
brane fusion.

These observations are also consistent with the model of 
Kozlov and Chernomordik (2002), according to which, fusion 
proteins outside the contact zone generate the driving force 
for fusion by forming a coat around the fusion site. It remains 
unclear whether this mechanism can be generalized to other 
enveloped viruses. Nevertheless, it has been suggested that 
influenza hemagglutinins outside the contact zone are in-
volved in late stages of the fusion process (Leikina et al., 
2004). Furthermore, for paramyxovirus PIV5, micrographs 
indicate that F proteins in their post-fusion conformation tend 
to cluster at the surface of the virus (Ludwig et al., 2008).  
Finally, the spikes of class II fusion glycoproteins, in their 
post-fusion conformation, self-associate to form networks of 
various degrees of regularity, different from the icosahedral 
organization observed before fusion (Gibbons et al., 2003, 
2004; Stiasny et al., 2004; Sánchez-San Martín et al., 2008).  
It is thus tempting to speculate that similar mechanisms are 
used by different fusion machineries.

Figure 8. The incubation of Gth with liposomes at low pH induces the formation of tubular structures. (A) At pH 6, Gth, inserted into liposomes that were 
initially spherical, forms a local network (indicated by the arrow and enlarged in the top right frame), favoring the formation of tubular structures. (B) At pH 
5.5, Gth forms more extensive, regular arrays at the surface of liposomes, resembling those formed by G at the surface of the virus. Spherical vesicles are 
nevertheless still visible (arrow). (C) At pH 5.2, only rigid tubular protein–lipid structures are observed, at the surface of which Gth displays quasi-helical 
symmetry. All the samples were negatively stained for electron microscopy observation.
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respectively. The mean root standard deviations between the models ob-
tained with the trimer and the monomer, with the imposition of C3 sym-
metry, were 15 and 22Å, for the post- and pre-fusion structures, respectively.

Online supplemental material
Videos 1 and 2 are 3D reconstructions of electron tomograms (negative 
stain) of VSV at pH 7.5. Sections of the tomogram presented in Video 1 are 
used in Fig. 4 A. Video 3 is a tomogram of VSV at pH 5.5. Sections of this 
tomogram are used in Fig. 4 B. Online supplemental material is available 
at http://www.jcb.org/cgi/content/full/jcb.201006116/DC1.
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