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Abstract: Weakly supervised instance segmentation (WSIS) provides a promising way to address
instance segmentation in the absence of sufficient labeled data for training. Previous attempts on WSIS
usually follow a proposal-based paradigm, critical to which is the proposal scoring strategy. These
works mostly rely on certain heuristic strategies for proposal scoring, which largely hampers the
sustainable advances concerning WSIS. Towards this end, this paper introduces a novel framework for
weakly supervised instance segmentation, called Weakly Supervised R-CNN (WS-RCNN). The basic
idea is to deploy a deep network to learn to score proposals, under the special setting of weak
supervision. To tackle the key issue of acquiring proposal-level pseudo labels for model training,
we propose a so-called Attention-Guided Pseudo Labeling (AGPL) strategy, which leverages the
local maximal (peaks) in image-level attention maps and the spatial relationship among peaks and
proposals to infer pseudo labels. We also suggest a novel training loss, called Entropic OpenSet
Loss, to handle background proposals more effectively so as to further improve the robustness.
Comprehensive experiments on two standard benchmarking datasets demonstrate that the proposed
WS-RCNN can outperform the state-of-the-art by a large margin, with an improvement of 11.6%
on PASCAL VOC 2012 and 10.7% on MS COCO 2014 in terms of mAP50, which indicates that
learning-based proposal scoring and the proposed WS-RCNN framework might be a promising way
towards WSIS.

Keywords: weakly supervised learning; instance segmentation; proposal scoring network

1. Introduction

Instance segmentation [1–4] refers to the task of jointly localizing, categorizing and
segmenting the spatial extents of individual visual objects from a given image. Like many
other computer vision tasks, remarkable progress has recently been made on instance
segmentation driven by the prosperity of convolutional neural networks (CNN) [2,4–7].
Nevertheless, CNN-based solutions to vision tasks commonly suffer from the data-hungry
nature, i.e., the necessity of a large amount of annotated data for training. This may
be particularly infeasible for instance segmentation since pixel-wise annotations at the
instance level are extremely labor-intensive. Weakly supervised instance segmentation
(WSIS) [8,9] is one possible way to alleviate the dependency on such strong annotations,
which aims to achieve instance segmentation by the use of weaker and thus less labor-
intensive annotations [10–12], ideally image-level labels only [8] as we are concerned with
in the present work.

There recently emerge a couple of attempts on WSIS with image-level labels in the
literature [8,9,13–15], which can be typically outlined as three major steps: (1) proposal
generation, i.e., a number of class-agonistic segment proposals are generated from the
given image; (2) proposal scoring, i.e., classification scores are assigned to the proposals;
(3) postprocessing, i.e., final results are retrieved from the scored proposals by using non-
maximal suppression or certain postprocessing procedures (e.g., applying Mask R-CNN
for refinement [14]). It has been well-established that CNN classifiers trained globally at
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the image level have remarkable ability of spatial localization [16,17], and the so-called
attention maps of a certain form (e.g., Class Activation Maps [18], Occlusion Maps [19],
Saliency Maps [20], Excitation Backprop [17]) are utilized to represent such localization
cues, where the intensity stands for the possibility of spatial occurrence of visual objects.
Taking advantage of this fact, previous works on WSIS mainly put their efforts on the step
of proposal scoring, i.e., how to infer reasonable classification scores for the proposals
from global attention maps. As a pioneering work on WSIS, Zhou et al. [8] proposed
Peak Response Map (PRM) to boost the instance localization ability of CNNs, which then
enables better proposal scoring. Zhu et al. [13] presented the Instance Activation Map
which aims to enhance the spatial extents of instances in PRM and consequently improves
proposal scoring. Ahn et al. [14] deployed the Inter-pixel Relation Network to learn a
high-quality proposal generator, as well as pairwise semantic affinities which guide the
proposal scoring.

While these wisdoms of making improvements on proposal scoring (or other particular
components) can indeed benefit to an extent, previous works on WSIS share one major
limitation that they commonly follow a heuristic way to exploit attention maps for proposal
scoring, lacking of a unified framework. Concretely, they utilize certain attention maps
and hand-crafted scoring rules to assign classification scores to proposals [8,13]. In this
way, the attention maps are expected to be aware of the spatial extents of visual objects,
such that they can match the shapes of true objects and consequently assign them with
high scores. On the other hand, attention maps can only sparsely highlight some sites
discriminative for classification, usually at very coarse spatial solutions and unaware of
object extents. Such discrepancy explains why previous works all devote their efforts to
enhancing the perception of object extents of attention maps. Nevertheless, this is by nature
a rather difficult perceptual grouping task (see Figure 1), which may limit the substantial
advances on this topic. These observations motivate us to consider if these exist a simpler
but more effective way towards WSIS.

Figure 1. Illustration of the motivation of our work. Existing proposal-based approaches to WSIS
commonly follow a heuristic way to exploit attention maps for proposal scoring. In order to assign
high scores to the proposals of true objects, the attention maps are expected to be aware of the spatial
extents of objects, which is also the main focus of previous efforts on WSIS. But unfortunately, this is
by nature a very difficult perceptual grouping task, since attention maps can only have very coarse
resolution sparsely highlighting some discriminative sites (unaware of object extents). For intuition,
we show some exemplary results obtained by the poineering approach of PRM [8], where (a) is
the original image, (b) is the PRM of the cow class, and (c,d) are two proposals and the obtained
classification scores. As can be seen, the more favorable proposal in (c) is undesirably assigned with
a lower score.

In this paper, we introduce a general framework for weakly supervised instance
segmentation, called Weakly Supervised R-CNN (WS-RCNN). The underlying idea is
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very simple and natural: Instead of relying on heuristic strategies for proposal scoring,
we deploy a deep network to learn to score proposals. For this purpose, there exists an
inherent challenge, i.e., how to acquire proposal-level pseudo labels to enable the learning
since only image-level labels are available in our problem setting (the pseudo labeling
issue)? This is actually a key issue for any weakly supervised learning problem including
ours. In addition, an appropriate training loss function is also well worthy of exploration
in our learning task. We propose specific solutions to these key issues and further design a
unified framework for WSIS. Since the resulting framework can be conceptually interpreted
as a Fast R-CNN model [21], which is a representative model of general object detection
among the R-CNN family [2,21–23], under the particluar setting of weak supervision, we
name our framework as Weakly Supervised R-CNN (WS-RCNN).

As another major contribution, we propose an effective solution to this pseudo labeling
issue, termed as Attention-Guided Pseudo Labeling (AGPL). AGPL also utilizes attention
maps, however it relies only on local maxima (peaks) in attention maps and the spatial
relationship among peaks and proposal regions. Specifically, it admits object instances
of a target class by inspecting the positional inclusion relationship between proposals
and peaks in the attention maps associated with that particular class (see Section 3.3 for
details). The key insight lies in that AGPL leverages very weak information, instead of
necessitating to take into account object extents like existing approaches [8,9,13,14], which
makes the pseudo labeling procedure simple but robust. We stress that such careful design
of AGPL is crucial to the success of the whole WS-RCNN framework (see Section 4.3 for
experimental validation).

As our third contribution, we suggest a novel loss function for model training to
further boost the performance, called Entropic Open-Set (EOS) Loss. As our method is
proposal-based, the proposal generator will inevitably yield a portion of background pro-
posals (those belonging to none of the concerned classes) even with the state-of-the-art
method. How to make our model conscious of background proposals to avoid misclassifica-
tion is important to its robustness. This is by nature an open-set recognition problem [24,25],
which has been well studied in the context of robust pattern recognition. We propose to
adapt the state-of-the-art method for CNN-based open-set recognition [25] to our back-
ground handling. To our knowledge, this is the work which considers the open-set issue in
object detection/instance segmentation.

We will carry out comprehensive experiments on standard benchmarking datasets
to demonstrate that WS-RCNN can push forward the state-of-the-art on WSIS by a re-
markable margin, with an improvement of 11.6% on PASCAL VOC 2012 and 10.7% on MS
COCO in terms of mAP50 (see Section 4.2 for details). Such overwhelming superiority in
performance suggests that WS-RCNN might be a more appropriate framework for WSIS
worthy of further exploration than existing ones which focus on deducing object extents
from attention maps for proposal scoring. To sum up, the main contributions of our work
are as below:

• We propose a novel framework called Weakly Supervised R-CNN (WS-RCNN) for
weakly supervised instance segmentation. The key insight is to deploy a deep network
to learn to score proposals, instead of relying on heuristic proposal scoring strategies,
which may provide a new perspective for future exploration on WSIS.

• We propose a simple but effective strategy for inferring pseudo labels from attention
maps, called Attention-Guided Pseudo Labeling (AGPL).

• We introduce an Entropic Open-Set (EOS) Loss for handling background proposals in
model training to further boost the performance.

The remainder of this paper is organized as follows: Section 2 briefly reviews related
literature. Section 3 details the proposed WS-RCNN framework, including the AGPL
scheme for pseudo labeling and the EOS loss. Section 4 focuses experiments, including
comparison, ablation study and related analysis. In Section 5, we make a conclusion and
give some remarks on future work.
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2. Related Work

In this section, we present a brief review of the literature that are closely related to
ours, including those on weakly supervised instance segmentation, weakly supervised
semantic segmentation, weakly supervised object detection and open-set recognition and
background handling.

2.1. Weakly Supervised Instance Segmentation

Instance segmentation aims to produce accurate masks that can distinguish between
instances of specific object classes. It generally requires pixel-wise object masks to train an
instance segmentation model, which are extremely expensive. Weakly supervised instance
segmentation (WSIS) devotes to conquering this challenge by using certain forms of weaker
annotations, most ideally image-level labels only as concerned in this paper. Along the line
of WSIS using image-level annotations, PRM [8] is a pioneering work which treats peaks in
class response maps obtained by CNN classifiers as indicators of the existence of object
instances, and introduces the so-called Peak Response Map (PRM) to score object proposals
so as to identify true object instances. In [26], the results obtained by PRM are used as
pseudo annotations to train a Mask R-CNN [2] for further refinement. Zhu et al. [13]
proposed the Instance Activation Map to enhance PRM [8] by taking better care of spatial
extents of objects. Ahn et al. [14] presented the Inter-pixel Relation Network to learn
a good proposal generator, and also inter-pixel connections which can guide proposal
scoring. In [9], the authors collaboratively combined weakly supervised object detection
with WSIS under a unified framework of course learning. As previously stated, WSIS
generally remains at the early stage of exploration, and the few existing approaches mainly
focus on figuring out the shapes of object instances from attention maps for better proposal
scoring, which faces a very difficult perceptual grouping task.

2.2. Weakly Supervised Semantic Segmentation

The mainstream paradigm for weakly supervised semantic segmentation (WSSS) can
be summarized as to derive pseudo semantic masks to enable the training of a model of
fully supervised semantic segmentation (most typically FCN [27]), and existing approaches
can be distinguished by how they acquire the pseudo masks. In [28], discriminative
regions are selected from CAMs [18] based on three principles, called “seed, expand and
constrain”, as pseudo labels to supervise a segmentation network. Roy et al. [29] utilized
a novel deep architecture which fuses bottom-up, top-down, and smoothness cues to
acquire pseudo masks. Other representative strategies for enhancing the quality of pseudo
masks include the LSE pooling [30], the EM algorithm [31], seeded region growing [32],
semantic affinity [33], dilated convolution [34], the anti-erase strategy [35,36], similar region
mining [37], the self-erasing strategy [38], visual saliency [39,40], etc. Although WSSS is
another task different from WSIS, our work was somewhat inspired by the paradigm of
inferring pseudo labels to train fully supervised models.

2.3. Weakly Supervised Object Detection

The task of weakly supervised object detection (WSOD) is similiar to WSIS except for
the necessity of yielding instance segmentation masks. Earlier works on WSOD mostly
follow the pipeline of multiple instance learning [41–43]. Recently CNN-based approaches
have attracted more and more research interest. As a milestone work along this direc-
tion, WSDDN [44] adopts a two-branch network where softmax operations are performed
over proposals and classes respectively in the two branches, and the obtained classifica-
tion scores are synthesized into an image-level score so as to establish the training loss.
Diba et al. [45] introduced a novel cascaded network for WSOD, which performs ROI pool-
ing at multiple levels to boost the performance. Ref. [46] proposes a weakly supervised
region proposal network which is trained using only image-level annotations and the
proposed region proposal network can be plugged into a WSOD network easily. In [47],
Tang et al. introduced the Proposal Clustering Learning which generates proposal clusters
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to learn refined instance classifiers by an iterative process. Other successful approaches
to WSOD include the Min-Entropy Latent Model [48], the Category-Aware Spatial Con-
straint [49], etc. While the tasks are essentially different, these works on WSOD are similar
to ours in being proposal-based.

2.4. Open-Set Recognition and Background Handling

Traditional recognition systems obey the closed-set assumption, i.e., the training and
testing data are drawn from the the same set of semantic classes. However, a more realistic
scenario is that data from unseen classes can emerge unexpectedly during testing, which
may drastically decrease the robustness of the system. This is well-known as the open-set
issue in pattern recognition, which has attracted a lot of research interests [24,25,50]. In two-
stage object detectors (like FRCNN [21] and our WS-RCNN), the proposals obtained by the
proposal generator will inevitably include a portion of proposals from image background
(unseen classes to the model), which is by nature an open-set recognition problem [24].
But surprisingly, no previous authors have addressed this problem from the perspective
of open-set recognition to our knowledge. Instead, they usually perform background
handling in certain ad-hoc strategies, e.g., adding a dummy background class to the model.

3. Approach

In this section, we start with the problem statement of WSIS, followed by describing
the proposed WS-RCNN framework. Then we detail the key components, including the
Attention-Guided Pseudo Labeling and the Entropic Open-Set Loss. Finally, we present
some remarks.

3.1. Problem Statement

Given a set of classes of interest C = {1, . . . , C} and a training set I = {(Ik, yk)}K
k=1,

where Ik is an image and yk ∈ {0, 1}C×1 is the corresponding multi-class label vec-
tor, the task of weakly supervised instance segmentation (WSIS) in our work can be
roughly stated as to segment, for an input testing image, all the object instances belong-
ing to the classes C. Such a problem setting differs intrinsically from general instance
segmentation [2,4] in that no pixel-wise instance annotations but only image-level labels
are available for model establishment, which makes the task very challenging.

Like general instance segmentation, WSIS can also follow a proposed-based
paradigm [8,13,33], which can be epitomized as a three-step pipeline as aforementioned.
These approaches can then be viewed as to retrieve true object instances from a pool of
proposals according to the assigned scores, central to which is proposal scoring, i.e., how
to appropriately assign classification scores to proposals. One commonly-used strategy for
proposal scoring is to make use of the well-established localization ability of CNNs [8,16,18].
Specifically, the training set I with image-level labels are firstly taken to train an image-
level CNN classifier, from which a collection of class-specific attention maps are derived
to assign classification scores to the proposals. For this purpose, it is desired that these
attention maps can preserve object shapes, which is however a difficult perceptual group-
ing task. In addition, the hand-crafted scoring rules adopted by existing methods are also
limited as well. These facts motivates us to propose the WS-RCNN framework.

3.2. The Proposed WS-RCNN Framework

The basic idea of WS-RCNN is to deploy a deep network to learn to score proposals
under the special setting of weak supervision, instead of relying on heuristic proposal
scoring strategies. To achieve this goal, one major obstacle is the absence of proposal-level
labels necessitated for training. To conquer this challenge, we develop an effective strategy,
called Attention-Guided Pseudo Labeling (AGPL), to take advantage of the attention
maps associated with the image-level CNN classifier to infer proposal-level pseudo labels.
Furthermore, we introduce an Entropic Open-Set Loss (EOSL) to handle the background
issue in training to further improve the robustness of our framework. In the following, we
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will first present an overview of WS-RCNN, followed by detailing the AGPL stategy and
the EOSL loss.

Network Architecture: The overall network architecture of WS-RCNN is shown in
Figure 2. Following the notations above, the input image I sized by HI ×WI is first fed
into a proposal generator (using the off-the-shelf method [51,52] in our implementation)
to obtain the segment proposals {Rn}N

n=1, where each Rn is an HI ×WI binary mask
representing a segment proposal with arbitrary shapes (rather than regular bounding-
boxes). The image then goes through a backbone CNN for feature extraction, yielding the
feature maps F ∈ RH×W×M, where H ×W is the size and M the number of the feature
maps. Afterwards, the network bifurcates into two branches, i.e., the proposal scoring
branch and the pseudo labeling branch. Notice that these two branches share the same
backbone CNN.

Figure 2. Overview of the proposed Weakly Supervised R-CNN (WS-RCNN) framework for weakly
supervised instance segmentation. WS-RCNN adapts Fast R-CNN (FRCNN) [21], a representative
model for general object detection, to the particular setting of weak supervision, which can be roughly
interpretted as to derive pseudo labels from the image-level CNN classifier to initiate the FRCNN.
The network mainly consists of two streams, i.e., the proposal scoring stream and the image-level
classification stream. The former learns to score proposals, trained by the Entropic Open-Set Loss,
and the latter performs pseudo labeling using the Attention-Guided Pseudo Labeling.

In the proposal scoring branch, the features corresponding to each individual proposal
are extracted. A standard operation for this task is RoIAlign [2], widely used in two-
stage object detectors, which however cannot be directly applied to our case since it is
designed for bounding-box proposals. Therefore, we modify RoIAlign to adapt to segment
proposals, resulting in the SegAlign operation (see details below). For each proposal Rn,
the corresponding features can be extracted from F and aligned to a canonical grid via
SegAlign, denoted by fn ∈ Rh×w×M (we use h = w = 7; M = 512 in this paper), which is
followed by three fully-connected layers (FCs, with the node numbers being 4096, 4096 and
C respectively) and a softmax layer to get the proposal-level classification score xn ∈ RC×1.

The pseudo labeling branch is executed for training only, where the feature maps
F are followed by an image-level classifier. Then, a set of class-specific attention maps,
denoted by {Mc}C

c=1, are extracted from this classifier, where each Mc reflects the spatial
probability of occurrence of object instances belonging to the class c. Among possible
choices of attention maps, we adopt the Class Peak Responses [8] in our implementation
due to its excellent localization ability. These attention maps (as well as the image-level
label y) are then utilized to infer the proposal-level pseudo class labels {zn}N

n=1, where
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zn ∈ RC×1 is a one-hot vector zn ∈ 0C×1 standing for the background class), by the use
of AGPL.

Training Strategy: We adopt a two-phase training strategy to train the WS-RCNN
model. In the first phase, we train the image-level classifier in the pseudo labeling branch,
which is initialized by the model pre-trained on ImageNet. Proposal-level pseudo labels
are then inferred from the trained imagelevel classifier using AGPL. In the second phase,
we train the proposal scoring branch, where the backbone CNN is reinitialized with the
model pre-trained on ImageNet. We will validate the effectiveness of this two-phase
training strategy by comparative experiments in Section 4.3. Notice that since there usually
exist significantly more background proposals than target-class ones after pseudo labeling,
we always make their numbers identical by uniformly sampling background proposals.

Training Loss: For the training of the image-level classifier (the first-phase training), we
use the given image-level labels {yk}K

k=1 and the conventional cross-entropy loss function
for multi-label classification to establish the training loss.

For the training of the proposal scoring branch (the secondphase training), suppose
for the image Ik labeled with yk in the training set I , the proposals obtained are {Rk

n}N
n=1.

For each Rk
n, let us denote by xk

n the classification score predicted by the proposal scor-
ing branch, and by zk

n n the pseudo class label inferred by the pseudo labeling branch
using AGPL. Given all these, the training loss for the proposal scoring stream can be
established by

Lp =
1
K

K

∑
k=1

[
1
N

N

∑
n=1

`EOSL(xk
n, zk

n)

]
, (1)

where `EOSL is the proposed Entropic Open-Set Loss (see details in Section 3.4).
SegAlign: As shown in Figure 3, following the notations above, suppose for a segment

mask R in the WI × HI image I, the corresponding receptive field mapped to the feature
maps F∈RH×W×M is RF. SegAlign extracts from F the features corresponding to RF and
maps them to canonical feature maps f∈Rh×w×M, which is basically a modified RoIAlign
to adapt to segment masks. Concretely, suppose RF is bounded by the rectangle B, ϕ is the
bilinear transform from the spatial coordinates (i, j) ∈ f to (i′, j′) ∈ B, i.e., (i′, j′) = ϕ(i, j),
and g is the bilinear interpolation function over F. The SegAlign operation can then be
defined by

f(i, j) =

{
g(F, ϕ(i, j)), if ϕ(i, j) ∈ RF,

0, otherwise.
(2)

Note we drop the channel dimension of feature maps above without loss of clarity.

Figure 3. Illustration of the SegAlign operation. SegAlign adapts the widely-used RoIAlign [2] to
segment masks.

3.3. Attention-Guided Pseudo Labeling

AGPL leverages the localization ability of CNNs and the spatial relationship among
proposals to achieve pseudo labeling. As shown in Figure 4, for the image I ∈ I , given the
class label vector y = [y1, . . . , yC]

T , the segment proposals {Rn}N
n=1 and the class-specific

attention maps {Mc}C
c=1, AGPL can be outlined as follows:
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Figure 4. Illustration of Attention-Guided Pseudo Labeling (AGPL). AGPL leverages the localization
ability of CNNs and the spatial relationship among proposals to achieve pseudo labeling.

(1) For each target class c (with yc = 1), all the local maxima (peaks) are identified from
Mc, denoted as {pc

i }
mc
i=1, where pc

i ∈ R2 stands for pixel coordinates and mc the number of
peaks. For each pc

i , we pick up all the proposals spatially including this point, which are
further averaged and thresholded to get a support mask Sc

i as follows

Ac
i =

1
mc

i
∑

{n|pc
i∈Rn}

Rn, (3)

(Sc
i )pq =

{
(Ac

i )pq, if (Ac
i )pq > β,

0, otherwise.
(4)

where mc
i is the number of picked proposals corresponding to pc

i , p and q are pixel indices,
and the threshold β ∈ [0, 1] is a parameter (we adopt β = 0.7 in our implementation.
See Section 4.4 for parameter study). The resulting peaks {pc

i }
mc
i=1 and associated support

masks {Sc
i }

mc
i=1 are then utilized to admit proposals belonging to the class c.

(2) Sort all the peaks {pc
i |c = 1, . . . , C; i = 1, . . . , mc} in the descending order of their

values in the attention maps, i.e., {Mc(pc
i )}. Then, for each ordered peak pc

i and the
associated Sc

i , those proposals which overlap sufficiently with Sc
i are labeled as the class c,

i.e., zn = c if
IoU(Sc

i , Rn) > 0.5, (5)

where IoU stands for the Intersection-over-Union operation. Notice that one proposal is
allowed to be exclusively assigned to one class only during the ordered labeling. For clarity,
we summarize the AGPL algorithm above in Algorithm 1.

3.4. Entropic Open-Set Loss

Since our WS-RCNN is proposal-based, the proposals after pseudo labeling will
unavoidably contain some background proposals, i.e., those labeled as none of the target
classes. It is necessary to handle these background proposals in model training, otherwise
a model trained only with samples from target classes will be distracted by the unseen
background proposals in testing, degrading its robustness. A natural solution is to add a
dummy class into the model to accommodate background proposals. However, since the
background class is a class of “stuff”, its variance is so large that it is hard to be modeled
by any single class.
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Algorithm 1 Attention-Guided Pseudo Labeling (AGPL)

Input: The label vector y = [y1, . . . , yC] ∈ {0, 1}C×1, the segment proposals {Rn}N
n=1 and

the class-specific attention maps {Mc}C
c=1 (associated with the image I); the parame-

ter β.
Output: The one-hot pseudo class labels {zn}N

n=1 for the proposals.
1: Initialize zn = 0, Q ← ∅.
2: for all c with yc = 1 (target class) do
3: Find the local maxima {pc

i }
mc
i=1 in Mc;

4: for i = 1, . . . , mc do
5: Calculate the support mask Sc

i using Equations (3) and (4);
6: Q ← (pc

i , Sc
i );

7: end for
8: end for
9: Sort Q in the descending order of the values {Mc(pc

i )}, denoted by Q̃ the sorted set.
10: L ← {1, . . . , N};
11: for all (pc

i , Sc
i ) ∈ Q̃ do

12: Find the proposals indexed by I ⊆ L satisfying Equation (5);
13: Set (zn)c = 1, ∀n ∈ I ;
14: L ← L \ I ;
15: end for

To address this issue, we observe that the task of background handling here is by
nature an open-set recognition (OSR) problem, which has been well studied in robust
pattern recognition. Hence, we propose to introduce the Entropic Open-Set Loss (OSEL),
which is a representative method for OSR [25], to address our background handling
problem. The basic idea of OSEL is to treat the samples from target and background classes
separately in establishing the training loss. For target classes, the standard cross-entropy
loss is used, while for the background class, an entropic loss is used to encourage predicting
uniformly-distributed classification scores. Since the C scores sum up to 1 (output by
the softmax layer), encouraging uniform distribution on background class will make
these scores small and therefore suppressed during the Non-maximal Suppression (NMS)
procedure. Formally, suppose the predicted score vector of a proposal is x = [x1, . . . , xC] ∈
RC×1 and the corresponding one-hot pseudo label vector is z = [z1, . . . , zC] ∈ {0, 1}C×1,
the EOSL is defined by

`EOSL(x, z) =


− zc log xc, if zc 6= 0,

−
C

∑
i=1

log xi, if z = 0.
(6)

To our knowledge, this is the first work which addresses the background handling prob-
lem in object detection/instance segmentation from the perspective of open-set recognition.

3.5. Remarks

Despite the proposed WS-RCNN is very natural and simple, we will later exper-
imentally demonstrate that it has overwhelming superiority in performance over the
state-of-the-art methods, which is very likely due to two key insights of our approach. First,
we adopt a learning-based approach to proposal scoring, which is advantageous in being
able to learn to directly map feature representations of proposals to classification scores,
rather than depending on hand-crafted scoring rules. Second, AGPL only utilizes very
loose information to achieve pseudo labeling, i.e., some sparse points (peaks in attention
maps) and their spatial relationship with proposal regions, which makes our approach
much easier and thereby more robust to complex scenes in comparison with existing works
that involve the consideration of spatial extents of objects. The proposed WSRCNN frame-
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work can be simply interpreted as “learning to score proposal under weak supervision”,
which may provide a promising new perspective for addressing WSIS.

4. Experiments

In this section, we perform extensive experiments to evaluate the effectiveness of the
proposed WS-RCNN, mainly including: (1) comparison with the state-of-the-art WSIS
methods, both quantitatively and qualitatively; (2) validation of the effectiveness of some
key components by comparing with variant baselines; (3) parameter study; (4) analysis on
failure patterns. Our method was implemented in PyTorch on a workstation with 2 Nvidia
Titan XP GPUs, Intel Core(TM) i7-8700 3.70 GHz CPU, 32 GB RAM and Ubuntu 18.04 OS.

4.1. Experimental Setup
4.1.1. Datasets

Two well-known benchmarking datasets for instance segmentation, namely PASCAL
VOC 2012 (termed as VOC) [53] and Microsoft COCO 2014 (termed as COCO) [54] are
adopted for our experiments throughout this paper. VOC may be the most representative
one for evaluating WSIS methods [8,13,33], which includes 10,582 images for training
(trainset) and 1449 images for validation (valset) from 20 object classes. COCO is a much
larger and more challenging dataset, including 82,783 images for training (trainset) and
40,775 images for validation (valset) from 80 object classes. This dataset has rarely been
utilized for the task of WSIS before, and we consider it to enable more comprehensive
evaluation. For both datasets, we take trainset for training and valset for testing, and no
other annotations except for image-level class labels are used for training according to our
problem definition of WSIS.

4.1.2. Performance Metrics

We adopt mAPr, the most commonly-used performance metric for instance segmenta-
tion [8,13,33,53], for quantitative evaluation and comparison, where r is the IoU threshold
utilized to calculate the metric [53,55]. In our experiments on WSIS, we use mAP50 (r = 0.5)
as the major metric for comparison and analysis, but we also report mAP25 (r = 0.25) and
mAP75 (r = 0.75) for more in-depth evaluation.

4.1.3. Implementation Details

We use VGG-16 [56] pre-trained on ImageNet as the backbone for the proposed WS-
RCNN. The number of segment proposals per image is set to be N = 200 following [8,13].
For training WS-RCNN, the SGD optimizer is used with a initial learning rate of 5× 10−4

for the first 3.5× 104 iterations. In the following 104 iterations, the learning rate decreases
to 5× 10−5. For data augmentation, we use five image scales {480, 576, 688, 864, 1200} (for
the shorter side) with horizontal flips for both training and testing.

4.2. Comparison with State-of-the-Art

The study on WSIS is still at its early stage and there have not been many works so
far. We consider four state-of-the-art WSIS methods in the literature for our comparative
study, termed as PRM [8], IAM [13], Label-PEnet [9] and IRnet [14] respectively. For
PRM [8] and IRnet [14], we use the source codes as well as configurations provided by the
authors themselves. For IAM [13] and Label-PEnet [9], since no source codes are publicly
released, we directly cite the results in the original literature [9,13] wherever available
(marked with “-” if the results are unavailable). Besides, we also construct a variant of
WSDDN [44], which is a very impactful method for weakly supervised object detection
(rather than instance segmentation), termed as WSDDN-seg. For this sake, WSDDN-seg
can be easily adapted to our task utilizes segments as the proposals to replace the original
bounding-boxes in WSDDN (while keeping everything else unchanged). We consider
WSDDN-seg because this method is spiritually similar to ours in that it also deploys a deep
network to learn to score proposals. For fair comparison, we use the same method [51,52]

https://github.com/ZhouYanzhao/PRM
https://github.com/ZhouYanzhao/PRM
https://github.com/jiwoon-ahn/irn
https://github.com/ppengtang/pcl.pytorch
https://github.com/ppengtang/pcl.pytorch
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to generate segment proposals for all the compared methods except IRnet [14], because the
method focuses on improving the component of proposal generation. In addition, some
methods perform post-processing (typically taking the obtained instance masks as pseudo
annotations to run Mask R-CNN like [14]) to further refine the results while others do
not. For fair and comprehensive comparison, we consider the two settings separately, i.e.,
without and with (marked by “+p”) using Mask R-CNN for refinement.

4.2.1. Results on VOC

The quantitative results obtained by various methods on VOC are reported in Table 1.
As can be observed, our WS-RCNN outperforms the state-of-the-art (IRnet [14]) by 11.6% in
terms of the major metric mAP50, which also achieves the best performance in terms of other
metrics, either without or with refinement. Relative to the pioneering work of PRM [8],
all the other methods make an improvement to an extent by enhancing certain aspects,
including localization maps (IAM [13] and IRnet [14]), proposal generation (IAM [13])
and combination with object detection (Label-PEnet [9]). Comparatively, our WS-RCNN
is able to improve by a far larger margin, demonstrating its effectiveness. Interestingly,
one can observe that WSDDN-seg [44] can manage to achieve comparable or even better
results than PRM [8]. Notice that WSDDN-seg exploits a CNN-based model to simply learn
to score proposals (like ours), even without using any localization map at all. This may
suggest that proposal scoring is indeed critical to WSIS with a large room for improvement,
and “learning to score” is a promising strategy worthy of further exploration. We also show
some comparisons of instance segmentation performance under different supervision on
VOC in Table 2, including SDI [10], Mask R-CNN [2] and our WS-RCNN. SDI [10] uses
bounding box supervision and Mask R-CNN [2] uses full supervision.

Table 1. Quantitative results obtained by various WSIS methods on VOC.

Methods mAP50 mAP25 mAP75 mAP50(+p) mAP25(+p) mAP75(+p)

PRM [8] 26.8 44.3 9.0 38.0 52.8 14.1
IAM [13] 28.8 45.9 11.9 - - -

Label-PEnet [9] 30.2 49.1 12.9 - - -
IRnet [14] 31.1 49.2 10.7 46.7 60.5 15.6

WSDDN-seg [44] 27.5 47.5 9.8 43.7 55.9 16.9
WS-RCNN (ours) 42.7 57.2 19.4 47.3 62.2 19.8

Table 2. Instance segmentation performance under different supervision on VOC.

Method Supervision mAP50 mAP25 mAP75

SDI [10] Box-Level 44.8 - 16.3
Mask R-CNN [2] Fully-Supervised 69.0 76.7 52.5

WS-RCNN Image-Level 47.3 62.2 19.8

To intuitively justify the motivation and merits of WS-RCNN, we comparatively
visualize in Figure 5 two sets of representative intermediate results, namely, the scores
of a same set of proposals acquired by PRM [8], WSDDN-seg [44] and our WS-RCNN
(shown in the descending order of the proposal scores). One can observe that WSDDN-
seg [44] tends to highlight one dominating instance while ignoring the others of the same
class, and PRM [8] tends to highly score object parts or adjoining objects undesirably.
Comparatively, our method can get more favorable proposal scores, which we argue is
likely due to our advantageous learning mechanism. More representative results obtained
by the various methods are further visualized in Figure 6.
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Figure 5. (a,b) are visualization of two sets of representative proposal scores obtained by various
methods. In each set, from top to bottom are the results of PRM [8], WSDDN-seg [44] and our
WS-RCNN respectively. In each row, the first column is the final WSIS result, and the second to sixth
columns are the scores of the five proposals obtained by the method.

Figure 6. Representative results on VOC obtained by various methods. In each row, from left to
right are (a) the input image, (b) the ground truth, and the results of (c) PRM [8], (d) IRnet [14],
(e) WSDDN-seg [44] and (f) our WS-RCNN, respectively. Notice that we always output the same
number of instances as that in the ground truth for all the methods to enable in-depth comparison.

4.2.2. Results on COCO

Table 3 shows the quantitative results on the COCO dataset. Notice that COCO
has not been considered in previous works compared, and the source codes of IAM [13]
and Label-PEnet [9] are not publicly released, so the results for these two methods are
unavailable. This dataset is far more difficult than VOC, as can be seen by the much worse
overall performance of all the methods. However, our WS-RCNN can still outperform the
compared methods, with a remarkable margin of 10.7% in terms of mAP50 over the state-
of-the-art (IRnet [14]), and 4.6% over WSDDN-seg constructed by ourselves. The relative
performance of the compared methods in terms of other metric remains consistent with
those on VOC, which further verifies the effectiveness of our approach. Some typical results
are presented in Figure 7, which further demonstrate that our WS-RCNN can obtain more
favorable instance masks, especially in case of multiple or adjoining instances.
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Table 3. Quantitative results obtained by various WSIS methods on COCO.

Methods mAP50 mAP25 mAP75 mAP50(+p) mAP25(+p) mAP75(+p)

PRM [8] 5.8 12.1 1.8 14.7 23.7 6.6
IRnet [14] 7.3 13.9 2.4 13.2 22.2 4.8

WSDDN-seg [44] 14.4 24.0 6.0 23.0 30.9 11.5
WS-RCNN (ours) 18.0 27.4 7.2 24.2 32.1 11.6

Figure 7. Representative results on COCO obtained by various methods. In each row, from left to
right are (a) the input image, (b) the ground truth, and the results of (c) PRM [8], (d) IRnet [14],
(e) WSDDN-seg [44] and (f) our WS-RCNN, respectively. Notice that we always output the same
number of instances as that in the ground truth for all the methods to enable in-depth comparison.

4.3. Validation of Key Components

The superiority of the proposed WS-RCNN, to a large extent, should be attributed to
the considerate design of its key components. We further carry out experiments on the
VOC dataset to validate this point. For each component of concern, we construct some
variants to replace the original one in WS-RCNN while keeping everything else unchanged,
and compare the overall performance in terms of mAP50.

4.3.1. Pseudo Labeling Strategy

We consider the following three variants of AGPL:

• PLS-1: For each pc
i we assign those proposals which spatially include this point to

the class c, i.e., assigning zn = c if pc
i ∈ Rn, without considering the support mask

Sc
i (removing Line 5-8 in Algorithm 1 and meanwhile changing the condition in

Equation (5) to be “pc
i ∈ Rn” ).

• PLS-2: For each pc
i we thresold Mc (using the threshold value of 0.5) and take the

connected component surrounding this peak as the support mask Sc
i (changing Line 6

in Algorithm 1).
• PLS-3: We simply adopt the method of PRM [8] for pseudo labeling, i.e., taking the

proposal classification results obtained by the whole pipeline in [8] as the pseudo
labels (changing Line 6 in Algorithm 1).

The results are reported in Table 4, which shows all these variants significantly under-
perform the proposed AGPL. The results validate the merit of AGPL, i.e., relying on peaks
in attention maps and the spatial relationship between peak points and proposal regions to
achieve pseudo labeling.
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Table 4. Comparison with Various Pseudo Labeling Strategies on VOC.

PLS-1 PLS-2 PLS-3 Ours

24.0 25.2 36.2 42.7

4.3.2. Training Strategy

In our WS-RCNN, we adopt a particular two-phase strategy for network training (see
Section 3.2. To verify the effectiveness of such a design, we construct two different training
strategies for comparative study as follows:

• TS-coupled: When training the proposal scoring branch in the second phase, the back-
bone CNN is not reinitialized by the parameters pre-trained on ImageNet, but by
those obtained during the training of the image-level classifier in the first phase.

• TS-joint: The image-level classifier is trained first, and the proposal scoring branch is
trained jointly with the image-level classifier, i.e., combining the two training losses
when training this branch.

The results in Table 5 demonstrate that the training strategy adopted by our WS-RCNN
are more advantageous than the variants compared.

Table 5. Comparison with Various Network Structures and Training Strategies on VOC.

TS-Coupled TS-Joint Ours

36.5 37.6 42.7

4.3.3. Training Loss

To validate the effectiveness of our proposed EOSL loss, we compare it with a widely-
used strategy for background handling as below

• LOSS-CE: We add a dummy class to accommodate background proposals and adopt
the conventional binary cross-entropy to replace the EOSL loss in Equation (6).

As can be observed from Table 6 that our EOSL loss performs much better.

Table 6. Comparison with Different Training Loss for Background Handling on VOC.

LOSS-CE Ours

34.5 42.7

4.4. Parameter Study

Our approach involves specifying two parameters, i.e., the number of proposals N
and the threshold value β in AGPL. Here we further conduct experiments to analyze the
impact of these parameters on performance.

4.4.1. The Number of Proposals N

We vary the number of proposals to be N = {50, 100, 150, 200, 300, 400, 500}, and report
the results in Figure 8a. As can be seen, the performance will not increase significantly after
N > 200, and we adopt N = 200 throughout our experiments for the best tradeoff between
performance and efficiency.
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Figure 8. Impacts of varying the key parameters (a) the number of proposals N and (b) the threshold
value β in AGPL.

4.4.2. The Threshold β in AGPL

We vary the threshold value to be β = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and the results are
depicted in Figure 8b. One can observe that the performance is relatively stable when
β ∈ [0.5, 0.8] and we choose a fixed value of β = 0.7 throughout our experiments.

4.5. Failure Cases

Despite the effectiveness of WS-RCNN, WSIS is essentially a challenging task and the
overall performance still has much room for improvement. Here we show several typical
failure cases of WS-RCNN in Figure 9. Since our method is proposal-based, it relies much
on the quality of proposals. If the proposal generator fails to cover the spatial extents of the
true instance, our method will fail consequently (see Figure 9a). Another typical failure
case is that if there are a number of instances of a class with overlap among or close to each
other, our method may pick up those large proposals which cover multiple instances (see
Figure 9b) or the small proposals which cover only a part of a instance (Figure 9c) (Notice
that the desired proposals are present in (b) and (c).

Figure 9. Typical failure cases of WS-RCNN. (a) Poor proposals. (b) Picking up large proposals
covering multiple instances. (c) Picking up small proposals covering only a part of a instance.

5. Conclusions

In this paper, we have presented a simple, natural but surprisingly effective frame-
work, termed as Weakly Supervised R-CNN (WS-RCNN), for weakly supervised instance
segmentation (WSIS). The basic idea is to deploy a deep network to learn to score proposals
under the particular setting of weak supervision. For this sake, a strategy called Attention-
Guided Pseudo Labeling is proposed to address the key issue of proposal-level pseudo
labeling. And a so-called Entropic Open-Set Loss is introduced for model training to
further improve the robustness. Comprehensive experiments on two well-known datasets,
i.e., PASCAL VOC 2012 and Microsoft COCO 2014, have demonstrated that the proposed
WS-RCNN can significantly outperform the state-of-the-art. Experiments have also been
carried out to validate effectiveness of the key components and to study the impacts of
some key parameters. In our future work, we will consider integrating a learning-based
proposal network to replace the current heuristic proposal generator in WS-RCNN in
order to alleviate its dependency on the quality of proposals. We will also explore how to
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further improve our approach in dealing with complex scenes (e.g., complex background,
multiple or adjoining instances of the same class) since there is generally much room
for improvement.
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