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Spectra of weighted scale-free 
networks
Zhongzhi Zhang1,2, Xiaoye Guo1,2 & Yuhao Yi1,2

Much information about the structure and dynamics of a network is encoded in the eigenvalues of 
its transition matrix. In this paper, we present a first study on the transition matrix of a family of 
weight driven networks, whose degree, strength, and edge weight obey power-law distributions, 
as observed in diverse real networks. We analytically obtain all the eigenvalues, as well as their 
multiplicities. We then apply the obtained eigenvalues to derive a closed-form expression for the 
random target access time for biased random walks occurring on the studied weighted networks. 
Moreover, using the connection between the eigenvalues of the transition matrix of a network and 
its weighted spanning trees, we validate the obtained eigenvalues and their multiplicities. We show 
that the power-law weight distribution has a strong effect on the behavior of random walks.

As a standard tool, random walks on a network describes various dynamical processes in the network, 
such as search1,2 spreading3, diffusion4, to name a few. Due to its role as a fundamental mechanism char-
acterizing diverse other processes, random walks on complex networks have attracted considerable atten-
tion in the past years5–19. The vast literature provided novel methods for computing mean first-passage 
time, steady-state distribution, as well as many other properties of random walks.

Since random walks are completely described by the transition matrix20, most interesting quantities 
and properties related to random walks are determined by the spectra (eigenvalues and eigenvectors) 
of the transition matrix. First of all, the mean first-passage time from one node to another can be rep-
resented through the eigenvalues and eigenvectors of the transition matrix20. Furthermore, the sum of 
reciprocals of one minus every eigenvalue, excluding the eigenvalue 1 itself, determines the random 
target access time21. Finally, the smallest eigenvalue, together with the second largest eigenvalue, provides 
an upper bound and a lower bound for the mixing time22. In addition to the properties of random walks, 
the spectra of the transition matrix for a network are also pertaining to structural aspects of the network, 
for example, spanning trees23,24 and effective resistance25, which can also be determined by the spectra 
of Laplacian matrix26. Thus, transition matrix is closely related to Laplacian matrix, with the latter being 
widely used in quantum walks27,28 and quantum algorithms29.

In view of the significance, the study of spectra for transition matrix has become a central issue30. In 
the past decade, there has been important progress in determining the eigenvalues for transition matrix 
of different networks or characterizing their properties. Examples include random graphs31,32, Sierpinski 
gasket33,34, Tower of Hanoi graph35, Cayley tree and extend T-fractal36, fractal37,38 and non-fractal39,40 
scale-free networks. These works provided a deeper understanding on spectral characteristics of the 
transition matrix of different networks, as well as the effects of network topology on the spectral density 
and random-walk process. Extensive empirical research has unveiled that real networks are characterized 
by the heterogeneity41,42, not only in the aspect of degree distribution43 but also in the context of weight 
distribution44–46. Previous works about spectra of the transition matrix were limited to binary networks, 
and the influence of inhomogeneous weight distribution on the spectral properties of transition matrix 
still remains unknown.

In this paper, we study analytically the eigenvalues for transition matrix of a class of weighted net-
works47, which exhibit some prominent properties that are observed in real-world systems44–46, such as the 
power-law distribution of node degree, strength, and edge weight. Based on the particular construction 
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of the networks, we find all the eigenvalues and their corresponding multiplicities. Using the obtained 
eigenvalues, we deduce an explicit expression for the random target access time, as well as its leading 
scaling, which is different from those previously obtained for binary heterogeneous networks, implying 
that the weight has an important impact on the random-walk behavior. Moreover, we determine the 
weighted counting of spanning trees in the studied networks using the eigenvalues, which is consistent 
with that derived by another technique, corroborating the validity of our computation for the eigenvalues.

Results
Construction and properties of weight driven scale-free weighted networks. The network 
family, parameterized by two positive integer m and δ, is constructed in an iterative manner47. Let g  
denote the network class after g (g ≥  0) iterations. Then, the network family is built as follows. For g =  0, 
g  consists of an edge (link) with unit weight connecting two nodes (vertices). For g ≥  1, g  is obtained 
from  −g 1 by performing the following operations. For each edge with weight w in  −g 1, we add mw new 
nodes for either end of the edge and connect each of the mw new nodes to the end by new edges of unit 
weight; then we increase weight w of the edge by mδw. Figure 1 illustrates the network generation process 
for a special case of m =  2 and δ =  1.

Let Ng, Eg, Qg denote, respectively, the total number of nodes, the total number of edges, and the total 
weight of all edges in g . And let nv(g) and ne(g) denote, respectively, the number of nodes and the 
number of edges that are created at iteration g. Then, ne(g) =  nv(g) holds for all g ≥  1. By construction, 
for g ≥  0, we have

δ= ( + + ) , ( )−Q m m Q2 1 1g g 1

which under the initial condition Q0 =  1 yields

δ= ( + + ) . ( )Q m m2 1 2g
g

Furthermore, it is easy to derive that for all g ≥  1,

δ( ) = ( ) = ( + + ) . ( )−n g n g m m m2 2 1 3v e
g 1

Thus,

∑ δ
δ δ= ( ) =

+
( + + ) + +

( )=

N n g m m2
2

[ 2 1 1]
4

g
g

g

v i
g

0i

and

Figure 1. Illustration of the growth for a particular network. The growth process corresponds to m =  2 
and δ =  1, showing the first three iterations. The bare edges denote those edges of unit weight.
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δ
δ δ= − =

+
( + + ) + .

( )
E N m m1 1

2
[2 2 1 ] 5g g

g

For an edge e connecting two nodes i and j in g , which is born at iteration τ, we use we(g) or wij(g) 
to denote its weight. Then, we(g) =  wij(g) =  (δm +  1)g−τ. Let si(g) (resp. di(g)) be the strength (resp. degree) 
of node i in g , which is added to the network at generation gi. It is easy to obtain

∑ δ δ( ) = ( ) = ( + + ) ( − ) = ( + + )
( )∈Ω

−s g w g m m s g m m1 1 1
6

i
j

ij i
g g

i

i

and

δ δ
δ

( ) =
( + + ) +

+
,

( )

−

d g
m m 1

1 7i

g g i

where Ω i is the set of neighbors of i in g .
The resultant networks display prominent properties as observed in real systems44–46, with their 

degree, strength, and edge weight following power law distribution47.

Eigenvalues and multiplicities of transition matrix. After introducing the construction and prop-
erties of the weighted scale-free networks, in this section we study eigenvalues and their multiplicities of 
the transition matrix for the networks.

Recursive relation of eigenvalues. Let Wg be the generalized adjacency matrix (weight matrix) of g . The 
entries Wg(i, j) of Wg are defined as follows: ( , ) = ( )W i j w gg ij  if nodes i and j are adjacent in g , or 
( , ) =W i j 0g  otherwise. Then, the transition matrix for biased random walks48,49 in g , denoted by Tg, 

is defined as = −T S Wg g g
1 , where Sg is the diagonal strength matrix of g  with its ith diagonal entry 

being the strength si(g) of node i. Thus, the (i, j)th element of Tg is ( , ) = ( )/ ( )T i j w g s gg ij i , which rep-
resents the local transition probability for a walker going from node i to node j.

We now consider the eigenvalues and eigenvectors of Tg. Since Tg is asymmetric, we introduce the 
following real and symmetric matrix Pg defined as

= = . ( )
− − −

P S W S S T S 8g g g g g g g

1
2

1
2

1
2

1
2

By definition, the (i, j)th entry of Pg is ( , ) =
( )

( ) ( )
P i jg

w g

s g s g
ij

i j

. Since Pg is similar to Tg, they have the 

same set of eigenvalues. Furthermore, if φ is an eigenvector of matrix Pg associated with eigenvalue λ, 
then φ−S

1
2  is an eigenvector of Tg corresponding to eigenvalue λ. Therefore, we reduce the problem of 

finding eigenvalues for an asymmetric matrix Tg to the issue of determining eigenvalues for a symmetric 
matrix Pg.

Suppose that λ is an eigenvalue of Pg, and φ φ φ φ= ( , , …, )ΤN1 2 g
 is its corresponding eigenvector, 

where φj is the component corresponding to node j in g . Let φ be a vector of dimension Ng−1 that is 
obtained from φ by restricting its components to the old nodes, namely, nodes generated before or at 
iteration g −  1. As will be shown below, φ is an eigenvector of Pg−1, associated with eigenvalue λ, from 
which λ is generated. By definition, we have

λφ φ= . ( )P 9g

Let o be an old node in g . According to Eq. (9),

∑λφ φ= ( , ) ,
( )∈Θ

P o i
10o

i
g i

where Θ  denotes the set of the do(g) neighbors of node o. Let Θ∼ be the set of the do(g −  1) old neighbors 
of node o, while the other new neighbors form set Θ̄. For each new neighboring node ∈ Θ̄i , one has 
( , ) = / ( )P o i s g1g o , which implies ( , ) = / ( )P o i s g[ ] 1g o

2 . Thereby, the component φi satisfies

λφ φ= ( , ) , ( )P o i 11i g o

implying
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φ
λ

φ=
( , )

. ( )
P o i

12i
g

o

In the case λ≠0, inserting Eq. (12) into Eq. (10) and considering the two relations ( , ) = / ( )P o i s g[ ] 1g o
2  

and δ( ) = ( + + ) ( − )s g m m s g1 1o o , we obtain

∑λ
δ λ

φ φ




−
( + + )





= ( , ) ,

( )∈Θ
∼

m
m m

P o i
1 13o

i
g i

an equation only involving old nodes, which were already existing at iteration g −  1.
For λ≠0, Eq.  (13) is true for an arbitrary node present at generation g −  1. Thus, we can compare 

Eq. (13) with the following corresponding equation for the old node o at iteration g −  1:

∑λφ φ= ( , ) .
( )∈Θ

−
∼

 P o i
14o

i
g i1

This indicates that φ is an eigenvector of Pg−1, corresponding to eigenvalue λ.
It is not difficult to see that the entry Pg−1(o, i) of generation g −  1 is δ

δ
+ +
+

m m
m

1
1

 times its counterpart 
Pg(o, i) of generation g. Then, Eqs. (13) and (14) coincide, provided that

λ
δ
δ

λ
δ λ

δ
δ

λ
δ λ

=
+ +
+





−
( + + )





=

+ +
+

−
( + )

,
( )



m m
m

m
m m

m m
m

m
m

1
1 1

1
1 1 15

which relates λ to λ. Solving the quadratic equation in the variable λ given by Eq. (15) yields

λ
δ λ δ λ δ

δ
=
( + ) ± ( + ) + ( + + )

( + + )
,

( )±

 m m m m m
m m

1 1 4 1
2 1 16

2 2

which shows that each eigenvalue λ of Pg−1 gives rise to two eigenvalues of Pg, λ+ and λ−.
Let φ+ and φ− denote the eigenvectors of λ+ and λ−, respectively. Then, both φ+ and φ− can be 

obtained from φ in the following way. For the nodes already present at iteration g −  1, the components 
of φ+ and φ− are equivalent to the corresponding components of φ; while for the nodes generated at 
iteration g, their components can be determined by replacing λ in Eq. (12) with λ+ or λ−. Therefore, λ+ 
(or λ−) has the same number of linearly independent eigenvectors as that of λ. Moreover, the eigenvec-
tors of λ+ (or λ−) are linearly independent, because Pg is real and symmetric.

Multiplicities of eigenvalues. Equation  (16) indicates that from the eigenvalues of generation g −  1, 
one can obtain the eigenvalues of the next generation g, with the exception of those zero eigenvalues. 
Thus, if there exists an eigenvalue λ that cannot be derived from Eq. (16), it must be zero eigenvalue. 
Let λ( )Dg

mul  represent the degeneracy of eigenvalue λ for matrix Pg. Because Pg−1 is a real and sym-
metrical matrix, each eigenvalue λ of Pg−1 has λ( )−Dg 1

mul  linearly independent eigenvectors. It is the 
same with either of its child eigenvalues, λ+ or λ−. Next we determine the multiplicity of each eigen-
value for matrix Pg.

For small networks, the eigenvalues and their multiplicities can be calculated directly. The eigenvalues 
of P0 are 1 and − 1. For P1, its eigenvalues are 1, − 1, 0, 

δ + +
m

m m 1
, and −

δ + +
m

m m 1
, where two pairs of 

eigenvalues (1 and −
δ + +

m
m m 1

, − 1 and 
δ + +

m
m m 1

) are generated, respectively, by eigenvalues 1 and − 1 of 
P0. Moreover, the offspring eigenvalue of 1 and − 1 has a single degeneracy. For g ≥  2, the eigenvalues of 
matrix Pg display the following remarkable nature. Every eigenvalue appearing at current generation gi 
always exists at the next generation gi +  1, and all new eigenvalues of +Pg 1i

 are those produced via 
Eq. (16) by substituting λ with those eigenvalues that were newly borne at generation gi; moreover every 
new eigenvalue inherits the multiplicity of its parent. Hence, for g ≥  2, all eigenvalues (excluding zero 
eigenvalue) of Pg are generated from 1, − 1, and 0, with all the offspring eigenvalues of 1 and − 1 being 
nondegenerate. Therefore, all that is left is to determine the multiplicity of 0, as well as the multiplicities 
of its descendants.

Let r(M) denote the rank of matrix M. Then, the multiplicity of the zero eigenvalues for Pg is

( ) = − ( ). ( )D N r P0 17g g g
mul

We now evaluate r(Pg). For the set of all nodes in g , let α denote the subset of nodes in  −g 1, and β the 
subset of nodes newly produced at generation g. Then, Pg can be written in a block form
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=










 =










, ( )

α α α β

β α β β

α α α β

β α

, ,

, ,

, ,

,
P

P P
P P

P P
P 0 18

g

where the fact that Pβ,β is the (Ng −  Ng−1) ×  (Ng −  Ng−1) zero matrix is used.
Notice that r(Pα,β) =  r(Pβ,α). We can prove that (see Methods) Pβ,α is a full column rank matrix. Then, 

δ δ( )= = ( + + ) + +β α δ, − +
−r N m mP [ 2 1 1]g

g
1

2
2

1  and ( ) δ δ= = ( + + ) + +
δ− +

−r N m mP 2 [ 2 1 1]g g
g

1
4

2
1 . 

According to Eq.  (17), the multiplicity of eigenvalue 0 for matrix Pg is: ( ) =D 0 00
mul  for g =  0; and 

δ δ δ( ) = ( + − )( + + ) − −
δ+

−D m m m m0 [ 2 1 2 1 1]g
gmul 2

2
1  for g ≥  1. Because each eigenvalue in Pg 

keeps the degeneracy of its parent, the number of each of the first-generation descendants of zero eigen-
value is δ δ δ( + − )( + + ) − −

δ+
−m m m m[ 2 1 2 1 1]g2

2
2 , the number of each of the second-generation 

descendants of zero eigenvalue is δ δ δ( + − )( + + ) − −
δ+

−m m m m[ 2 1 2 1 1]g2
2

3 , and so on. Thus, 
the total number of zero eigenvalue and its descendants in Pg (g ≥  1) is

∑ δ
δ δ δ

δ
δ δ

( ) =
+

( + − )( + + ) − −

=
+

( + + ) + + − .
( )

=

− −

+

N m m m m

m m

0 2
2

[ 2 1 2 1 1]2

2
2

[ 2 1 1] 2 19

g
i

g
i g i

g g

seed

1

1

1

For eigenvalue 1 (or − 1), the total number of its descendants in Pg (g ≥  0), including 1 (or − 1) itself, 
is

( ) = (− ) = . ( )N N1 1 2 20g g
gseed seed

Adding up the number of the above-obtained eigenvalues yields

δ
δ δ( ) + (− ) + ( ) =

+
( + + ) + + = ,

( )
N N N m m N0 1 1 2

2
[ 2 1 1] 21g g g

g
g

seed seed seed

which implies that we have found all the eigenvalues of matrix Pg and thus the transition matrix Tg.
Since the distribution of eigenvalues conveys much important information, in Fig. 2 we display as a 

histogram the distribution of eigenvalues for a specific network 6 for the case m =  2 and δ =  1. Because 
eigenvalues 1, − 1, and their offspring are nondegenerate, we only provide the density of eigenvalue 0 and 
its descendants. Figure 2 indicates that the eigenvalue distribution is heterogeneous.

Application of eigenvalues. In this section, we apply the obtained eigenvalues and their multiplici-
ties to determine the random target access time for biased random walks and the weighted counting of 
spanning trees in the weighed scale-free networks g . Note that since g  has a treelike structure, the 
weighted counting of spanning trees is just be the product of weights of all edges in g . Thus, our aim 
for evaluating this quantity is to verify that our computation for eigenvalues and their multiplicities is 
correct.

Random target access time. Transition matrix Tg describes the biased discrete-time random walks in g , 
and thus various interesting quantities related to random walks are reflected in eigenvalues of the tran-
sition matrix. For example, the sum of reciprocals of 1 minus each eigenvalue (excluding eigenvalue 1 

Figure 2.  Distribution of distinct eigenvalues for  6 corresponding to m = 2 and δ = 1.



www.nature.com/scientificreports/

6Scientific RepoRts | 5:17469 | DOI: 10.1038/srep17469

itself) of transition matrix Tg determines the random target access time, also called eigentime identity, 
in g

21.
Let Hij(g) denote the mean first-passage time from node i to node j in g , defined as the expected 

time for a walker starting from node i to visit node j for the first time. Let π π π π= ( , , …, )ΤN1 2 g
 rep-

resent the steady state distribution for random walks on g
48,49, where ( )π = ( )/s g Q2i i g  satisfying 

π∑ == 1i
N

i1  and π π=Τ ΤTg . The random target access time, denoted by  g , for random walks on g , 
is defined as the expected time needed by a walker from a node i to another target node j, chosen ran-
domly from all nodes according to the steady state distribution, that is,

 ∑π= ( ),
( )=

H g
22

g
j

N

j ij
1

g

which does not depend on the starting node20 and can be recast as

 ∑ ∑ ∑ ∑π π π π= ( ) = ( ).
( )= = = =

H g H g
23

g
i

N

i
j

N

j ij
j

N

j
i

N

i ij
1 1 1 1

g g g g

Since  g  can be looked upon as the average trapping time of a special trapping problem11, it encodes 
much useful information about trapping in g .

We introduce a matrix Lg =  Ig −  Pg, where Ig denotes the Ng ×  Ng identity matrix. Actually, Lg is the 
normalized Laplacian matrix23,25,31 of g . Let λi(g) (1 ≤  i ≤  Ng) be the Ng eigenvalues of Pg. By definition, 
for any i, σi(g) =  1 −  λi(g) is an eigenvalue of Lg. It can be proved48 that  g  can be represented in terms 
of the nonzero eigenvalues of Lg, given by

 ∑σ=
( )
,

( )= g
1

24g
i

N

i2

g

where σ λ( ) = − ( ) =g g1 01 1  is assumed, with λ1(g) =  1 being the largest non-degenerated eigenvalue 
of Pg.

In Methods, we derive that  g  obeys the following recursive relation:

 δ
δ

δ
δ
δ

=
+ +
+

+ ( + + ) − +
+ +
+ +

,
( )−

−m m
m

m m m m m
m m

2 1
1

[2 2 1 1] 1
2 1 25g g

g
1

1

which, with the initial condition  =0
1
2
, is solved to obtain


δ
δ

δ
δ
δ

δ
δ

δ
δ

=
( + )

( + + ) +
− −
( + )





+ +
+





+
+

( + + )
.

( )

−
−m

m m m m
m

m m
m

m
m m

2 1
2 1 3 1

2 1
2 1

1
1

2 2 1 26

g
g

g
1

1

 g  can be further represented in terms of of network size Ng as


δ δ δ

δ δ

δ δ δ

δ δ
δ

δ

=
( + ) ( + ) − − 


( + + )

+
( − − ) ( + ) − − 



( + + )( + )

+
+

( + + )
.

( )

δ
δ δ

+ +

( + ) − −

m N

m m

m m N

m m m
m

m m

1 2 2 2

2 1

3 1 2 2 2

4 2 1 1
1

2 2 1 27

g
g

g

log m m
N g

2 1
2 2 2

2

Thus, for large networks (i.e., → ∞N g ),  ∼ Ng g , growing linearly with the network size. This is in 
sharp contrast to that obtained for unweighted scale-free treelike networks39 and Cayley tree36 (where 
 ∼ N Nlng g g), as well as fractal trees (where  ( )∼

η
Ng g  with η >  1)37,36. Thus, the heterogenous 

distribution of edge weight has a substantial influence on the behavior of random walks in weighted 
networks.

Weighted counting of spanning trees. For a weighted network  , denote by ϒ( ) the set of its spanning 
trees. For a tree  ∈ ϒ( )G , its weight ( )w  is defined to be the product of weights of all edges e in  , 
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that is,  ( ) = ∏ ∈w we e, where we is the weight of edge e. Let τ ( ) denote the weighted counting of 
spanning trees of  , which is defined by G TT Gτ ( ) = ∑ ( )∈ϒ( ) w .

Since g  is a tree, it has only one spanning tree, which is in fact g  itself. Then, the weighted counting 
of spanning trees in g  is  ( )τ = ∏ ( )∈ w gg e eg

, where the product is running over the weight we(g) of 
all edges ∈e g . According to previous results24, we have

( )τ
σ

=
∏ ( ) ∏ ( )

∑ ( )
.

( )
= =

=

s g g

s g 28
g

i
N

i i
N

i

i
N

i

1 2

1

g g

g

For the sum term in the denominator of Eq. (28), we have

∑ δ( ) = = ( + + ) .
( )=

s g Q m m2 2 2 1
29i

N

i g
g

1

g

For the two product terms ∏ ( )= s gi
N

i1
g  and σ∏ ( )= gi

N
i2

g  in the numerator of Eq.  (28), we use Δ g and 
Λ g to represent them, respectively. According to the above-obtained results, the two quantities Δ g and 
Λ g obey the following two recursive relations:

δ∆ = ( + + ) × ∆ ( )−
−m m 1 30g

N
g 1

g 1

and

δ
δ

δ
δ

Λ =
+ +
+ +

×




+
+ +



 × Λ .

( )

−

−

−m m
m m

m
m m

2 1
1

1
1 31g

N

g

1

1

g 1

Multiplying Eq. (30) by Eq. (31) results in

δ δ∆ Λ = ( + + )( + ) ∆ Λ . ( )
−

− −
−m m m2 1 1 32g g

N
g g

1
1 1

g 1

Applying Δ 0 =  1 and Λ 0 =  2, Eqs. (32) is solved to give

δ δ∆ Λ = ( + + ) ( + ) . ( )∑ ( − )
=
−

m m m2 2 1 1 33g g
g N 1i

g
i0

1

Inserting the results in Eqs. (29) and (33) into Eq. (28) yields

( )τ δ= ( + ) . ( )∑ ( − )
=
−

m 1 34g
N 1i

g
i0

1

On the other hand, since g  has a treelike structure, τ ( )g  equals the product of weight of all edges 
in g . Thus, τ ( )g  can be directly obtained by evaluating this product. By construction, τ ( )g  obeys the 
recursive relation  τ δ τ( ) = ( + ) ( )−

−
−m 1g

N
g

1
1

g 1 . Considering τ ( ) = 10 , we have 
τ δ( ) = ( + )∑ ( − )=

−
m 1g

N 1i
g

i0
1 , which is consistent with Eq. (34), indicating the validity of our computa-

tion on the eigenvalues and their multiplicities for the transition matrix Tg of g .

Discussion
In conclusion, we have considered the spectra of transition matrix for a class of weight-driven net-
works, whose degree, strength, and edge weight follow power-law distribution, which is observed in 
various real-world systems. We have determined all the eigenvalues and their multiplicities of the transi-
tion matrix for the networks. Moreover, we have used the obtained eigenvalues to derive a closed-form 
expression about the random target access time for biased random walks taking place on the networks. 
Finally, we confirmed our results for the eigenvalues and their multiplicities via enumerating the weighted 
spanning trees, based on the connection between the two quantities.

We note that although the considered networks look self-similar, they are not topologically fractal. 
Since many real-life networks are fractal50–52, in future it deserves to study the spectra of transition 
matrix for weighted fractal networks. Furthermore, various structural and dynamical properties of a net-
work are also relevant to the spectra of other matrices30, such as adjacency matrix and non-backtracking 
matrix. Future work should include determining the spectra for adjacency matrix31 and non-backtracking 
matrix53,54 of weighted scale-free networks.

Methods
Proof for the statement that Pβ,α is a full column rank matrix. Let v be an arbitrary vector of 
order Ng −  Ng−1:
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∑= ( , , …, ) = ,
( )

−
Τ

=
α

−

∈

−

v v v v k M
35

N N
i

N

i i1 2
1

g g

i

g

1

1

where Mi is the ith column vector of Pβ,α so that = ( … )β α, −
M M MP N1 2 g 1

. Let 
= ( , , …, ), , − ,

Τ
−

M M M Mi i i N N i1 2 g g 1
. Assume that v =  0. Then, we can prove that ki =  0 holds for arbitrary 

ki. By construction, for any old node α∈i , it has a new leaf neighboring node β∈l . Then, in the expres-
sion = + , …,, , − , − ,− −

v k M k M k Ml l l N N l N N l1 1 2 2 g g g g1 1
, only ≠,M 0i l , while all Mx,l =  0 for x≠i. From 

vl =  0, one obtains ki =  0. Hence, Pβ,α is a full column rank matrix.

Derivation for the recursive relation between g and g−1. Let  σ σΩ = ( ), ( ), …,g g{g 2 3  
σ ( )g }N g

be the set of the Ng −  1 nonzero eigenvalues of matrix Lg. For g ≥  1, Ω g includes 1, 2, δ
δ
+ +
+ +

m m
m m

2 1
1

, 
and other eigenvalues generated by them. Thus, Ω g can be classified into three nonoverlapping  
subsets Ω( )g

1 , Ω( )g
2  and Ω( )g

3 , satisfying ∪ ∪Ω = Ω Ω Ω( ) ( ) ( )
g g g g

1 2 3 , where Ω( )g
1  consists of all  

the δ δ δ( + − )( + + ) − −
δ+

−m m m m[ 2 1 2 1 1]g2
2

1  eigenvalues 1, Ω( )g
2  contains only the unique 

eigenvalue δ
δ
+ +
+ +

m m
m m

2 1
1

, and Ω( )g
3  includes those eigenvalues generated by 1, 2, or δ

δ
+ +
+ +

m m
m m

2 1
1

. For  
Ω( )g

1  and Ω( )g
2 , we have δ δ δ∑ = ( + − )( + + ) − −

σ δ∈Ω ( ) +
−

( ) m m m m[ 2 1 2 1 1]i g
g1 2

2
1

g i
1  and 

∑ =
σ

δ
δ∈Ω ( )
+ +
+ +

( )i g
m m

m m
1 1

2 1g i
2 . While for ∑

σ∈Ω ( )
( )i g

1
g i
3 , it can be evaluated in the following way.

From Eq. (15), we can derive the following relation dominating the eigenvalues of Lg and Lg−1:

δ σ δ σ δ
σ δ σ

( + + ) ( ) − ( + ) ( − ) + + +

× ( ) + ( + ) ( − ) = , ( )

m m g m g m m
g m g

1 [ ] [ 1 1 2 1]
1 1 0 36

i i

i i

2

which shows that every eigenvalue σ ( − )g 1i  in Ω g−1 generates two eigenvalues, σ ( ), gi 1  and σ ( ), gi 2 , 
belonging to Ω( )g

3 . Using Vieta’s formulas, we obtain σ σ( ) + ( ) =
δ σ δ

δ, ,
( + ) ( − ) + + +

+ +
g gi i

m g m m
m m1 2

1 1 2 1
1

i  and 

σ σ( ) ( ) =
δ σ
δ, ,

( + ) ( − )

+ +
g gi i

m g
m m1 2

1 1
1

i . Then

σ σ
δ
δ σ( )

+
( )
= +

+ +
( + ) ( − )

,
( ), ,g g

m m
m g

1 1 1 2 1
1 1 37i i i1 2

which implies that

∑ ∑σ
δ
δ σ( )

=
+ +
+ ( − )

+ − .
( )σ σ( )∈Ω ( − )∈Ω

−
( )

−
g

m m
m g

N1 2 1
1

1
1

1
38g i g i

g
1

1
i g i g

3
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Combining the above-obtained results leads to the following recursive relation between  g  and  −g 1:

 δ
δ

δ
δ
δ

=
+ +
+

+ ( + + ) − +
+ +
+ +

.
( )−

−m m
m

m m m m m
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