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Abstract There are many dynamic optimization problems in the real world, whose convergence

and searching ability is cautiously desired, obviously different from static optimization cases. This

requires an optimization algorithm adaptively seek the changing optima over dynamic environ-

ments, instead of only finding the global optimal solution in the static environment. This paper pro-

poses a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in

dynamic environments problems, which employs a pool of optimal foraging strategies to balance

the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee for-

aging behaviors in the ABC model by combining Powell’s pattern search method, life-cycle, and

crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic

model that the bee can reproduce and die dynamically throughout the foraging process and popu-

lation size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on

the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-

world application of dynamic RFID network optimization. Statistical analysis of all these cases

highlights the significant performance improvement due to the beneficial combination and demon-

strates the performance superiority of the proposed algorithm.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many real-world optimization problems are subject to chang-
ing conditions over time, which can be identified as dynamic
optimization problems (DOP) (Ha, 2016). In the DOP cases,

changes may affect the object function, the problem instance,
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or constraints, causing that the optimal solutions of such
dynamic problem being considered may change over time
(Branke, 2001). From this point of view, most of the real world

problems have dynamic characteristics, where one or more ele-
ments of the under-lying model for a given problem may
change over time. This requires optimization algorithms to

not only find the global optimal solution under a specific envi-
ronment but also to continuously track the changing optima
over different dynamic environments.

In recent years, investigating swarm intelligence (SI) algo-
rithms for DOPs has attracted a growing interest (Clerc and
Kennedy, 2002), due to that SIs are intrinsically inspired
from natural or biological evolution, which is always subject

to an ever-changing environment, and hence SIs, with proper
enhancements, have a potential to be good optimizers for
DOPs. Artificial bee colony algorithm (ABC) is one of the

most popular members of the family of swarm intelligence,
which simulates the social foraging behavior of a honeybee
swarm (Karaboga and Basturk, 2007a,b). Due to its simple

arithmetic and good robustness, the ABC algorithm has been
widely used in solving many numerical optimizations
(Karaboga and Basturk, 2007a,b; Biswas et al., 2014) and

engineering optimization problems (Karaboga et al., 2007).
However, facing up complex dynamic problems, similar to
other EAs, ABC algorithm suffers from the following draw-
backs (Karaboga and Basturk, 2007a,b): (1) the solution

search equation of ABC works well in global exploration
but is poor in the exploitation process. (2) With the dimen-
sion increasing, the information exchange of each individual

is limited in a random dimension, resulting in a slow conver-
gence rate.

Several ABC variants have been developed to improve its

optimization performance. One significant improvement is
the introduction of PSO-based search equation (Zhu and
Kwong, 2010), which allows a powerful global search in the

early stage by incorporating the information of the gbest
solution into ABC. Similarly, Banharnsakun et al. (2011) pre-
sented a modified search equation for the onlooker bees. In
their method, the new candidate solutions are more likely

to be close to the current best solution. Gao et al. (2013a,
b) proposed an efficient and robust ABC variant based on
modified search equation and orthogonal learning strategies,

which demonstrated its high effectiveness and efficiency.
Another interesting approach by (Gao et al., 2013a,b) is
using the Powell’s method as a local search tool to enhance

the exploitation of the algorithm. In this method, ABC good
at exploration ensures the search is less likely to be trapped in
local optima while it enjoys the merits of fine local search by
Powell’s method. Hybridization of ABC with other operators

has also been studied widely. For example, Kang et al. (2011)
used the Rosenbrock’s rotational direction method to imple-
ment the exploitation phase and proposed the Rosenbrock

ABC algorithm. Coelho and Alotto (2011) developed a novel
alternative search equation in which a parameter is responsi-
ble for the balance between the Gaussian and the uniform

distribution.
Inspired by previous works, this paper presents a novel

optimization algorithm called comprehensive learning artificial
bee colony optimizer (CLABC), which synergizes the idea of
extended life-cycle evolving model with a pool of local search-
ing strategies (Liu, 2013). The main motive of CLABC is to

enrich artificial bee foraging behaviors in ABC model by com-
bining population initialization based on orthogonal Latin
squares approach, Powell’s pattern search method, life-cycle,

and crossover-based social learning strategy, which contributes
in the following aspects:

(1) The orthogonal Latin squares approach can be used
for artificial bee colony initialization to cover the
search space with balanced dispersion and neat
comparability.

(2) The crossover operation, which helps bees exchange
more information after the early stage of the algorithm.
In this case, the neighbor bees with higher fitness can be

chosen to crossover, which effectively enhances the glo-
bal search ability.

(3) Powell’s local search method enables the bee exploit

around promising area while avoiding search
stagnation.

(4) Life-cycle, which results in a dynamic population. This

means that, the bee can reproduce and quit adaptively
throughout the foraging process and the population
size varies as the algorithm runs in the dynamic
landscapes.

This work adopted the moving peaks benchmark (MPB)
to illustrative the inherent adaptive mechanism in the pro-

posed algorithm of surviving in a changing environment.
The proposed CLABC has been compared with its classical
counterpart, the classical ABC algorithm (Karaboga, 2005)

over dynamic benchmarks with respect to the statistical per-
formance measures of solution quality and convergence
speed.

The rest of the paper is organized as follows. In Section 2,
the proposed comprehensive learning artificial bee colony
(CLABC) algorithm is given. Section 3 presents the experimen-
tal studies of the proposed CLABC and the other algorithms

with descriptions of the involved benchmark functions, exper-
imental settings, and experimental results. Finally, Section 4
outlines the conclusion.
2. Comprehensive learning artificial bee colony algorithm

The main procedures of CLABC, including orthogonal Latin

squares population initialization, Powell’s pattern search,
life-cycle, and crossover-based social learning strategies, are
details as follows.

2.1. Population initialization based on orthogonal Latin squares

approach

The orthogonal Latin squares approach can be used for
population initialization to cover the search space with
balanced dispersion and neat comparability. Suppose a
population consisting of N individuals (or food sources)
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has to be initialized in the D-dimensional search space, a
orthogonal table LN (tD) is designed deliberately where N
represents the number of initial solutions or table rows, t

is the factor level of orthogonal table, D donates the
dimension of search space or the number of orthogonal
arrays. Generally, this approach has a merit of obtaining

optimal space coverage by consuming comparatively less
tests, which has been proved theoretically by relevant
theorem of non-parametric statistics in (Math, 1975). The

main steps of population initialization are listed in
Algorithm 1.

Then the initial solution (i.e., Xi = (xi1, xi2,. . .,xiD),
i= 1,2,. . .,N) obtained by Algorithm 1 is endowed with
promising balanced dispersion and neat comparability.
2.2. Powell’s pattern search

Powell’s search, namely Powell’s conjugate gradient descent
method, is an extension of basic pattern search method to

speed up the convergence of complex nonlinear problems,
in which one merit is that the function need not be differen-
tiable, and no derivatives are taken. The method pursues the
minimum of the function by a bi-directional search along

each search vector, in turn. The new position can then be
represented as a linear combination of the search vectors.
The new displacement vector becomes a new search vector,

and is added to the end of the search vector list. Coinci-
dently, the search vector which contributed most to the
new direction (i.e. the one which was most successful), is

deleted from the search vector list. The algorithm iterates
an arbitrary number of times until no significant improve-
ment can be made. The Powell’s method algorithm is given
as follows.
2.3. Crossover operation

As described in canonical ABC (Karaboga and Basturk,
2007a,b), the search equation for generating the positional
change is much like a blind mutation operator to search in a

randomly selected dimension of a randomly chosen bee, which
means that the information exchange is restricted to a narrow
local scope. This causes that, as the dimension of solved prob-

lems grows exponentially, the algorithm using this information
exchange based on single dimension of single bee will suffer
from the following drawback of premature convergence at

the early generations. On the other hand, the neighbor bee
and dimension are both chosen randomly, which results in
the good individuals with higher fitness may likely be
abandoned.

To address this concerning issue, inspired by genetic algo-
rithm, the crossover-based comprehensive learning is
employed in the bee hive. To benefit from information about

positions of good sources foraged by the employed and onloo-
ker bees, a given number of elites form excellent employed bees
are subjected to crossover operation. The underlying idea

behind this method is to facilitate better search in complex
dynamic search space as opposed to classical ABC that per-
turbs a single parameter. The steps for crossover operation

phase are given as follows and the schematic diagram is illus-
trated in Fig. 1.



Fig. 1 The information exchange mechanism based on crossover operation.
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Algorithm 2. Crossover operation

Step 1. Select elites to the best-performing list (BPL).A set
of competent individuals from current food

sources are selected to construct the best-
performing list (BPL), the ones with higher fitness
have larger probability to be selected.The size of

BPL is equal with current population size. These
individuals of BPL are regarded as elites. The
selection operation tries to mimic the maturing

phenomenon in nature, where the generated off-
spring will become more suitable to the environ-
ment by using these elites as parents.

Step 2. Crossover operation.To produce well-performing

individuals, parents are selected from the BPL’s
elites only for crossover. To select parents effec-
tively, the tournament selection scheme is used.

Firstly, two enhanced elites are selected randomly,
and their fitness values are compared to select the
elites. The one with better fitness is viewed as par-

ent. Then, another parent is selected in the same
way. Two offspring are created by performing
crossover on the selected parents. Here adopts a
representative crossover method, namely arith-

metic crossover, according to which, the offspring
is produced by the following equation:

where Snew is newly produced offspring, parent1
and parent 2 are randomly selected from BPL.

Step 3. Update with different selection schemes.Not all cur-
rent bees are replaced by the elites from BPL, we
set a selecting rate CR to determine the replaced

individuals. Assuming that population size is S,
then the replaced individuals number is S*CR.
For the selected individual Sj, the newly produced
offspring Snew is then compared with Sj, applying a
greedy selection mechanism, in which the better

one is remained. We can choose four selecting
approaches: selecting the best individuals (i.e.
S*CR individuals), a medium level of individuals,
the worst individuals, and randomly individuals.

2.4. Life-cycle model

This work assumes that the computational life-cycle model of
bee colony has five major stages, namely the born, forage,
reproduction, death, and migration. The bee state transition

diagram is shown in Fig. 2.
The bees are born when they are initialized. Then they will

forage for nutrient (nectar). We define the nutrient updating

formula as:



Table 1 Parameters of the CLABC.

CLABC= (S,D, Fsplit, Fadapt, CR, Tp, g)

S Population size

D Dimensions of optimization problem

Fsplit Reproduction and death criterion

Fadapt Control parameter to adjust reproduction and death

criterion

CR Selection rate

Tp Parameter to activate Powell’s search

Inertia coefficient

Table 2 Parameter settings.

Parameter Value

N 15

H1 0

R1 0

X1 0.5

Y1 0.5

Hi [1,10]

Ri [8,20]

Xi [�1, 1]

Yi [�1,1]

i 2,. . .,N
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where fit(Xi
t) is the fitness of the ith bee Xi at time t for a min-

imum problem, Ni(t) is the nutrient obtained by the ith bee Xi

at time t. In initialization stage, nutrients of all bees are zero.
For each Xi at onlooker bee phase, if the new position is better

than the last one, it is regarded that the bee will gain nutrient
from the environment and the nutrient is added by one. Other-
wise, it loses nutrient in the foraging process and its nutrient is
reduced by one. Then the information rate Fi

t deciding to

reproduce or die for each bee Xi at time t is computed as:

HiðtÞ ¼ fitðXt
iÞ � fittworst

fittbest � fittworst
ð3Þ

Ft
i ¼ g

HiðtÞ
PSt

j¼1HjðtÞ
þ ð1� gÞ NiðtÞ

PSt

j¼1NjðtÞ
; g � ½0; 1� ð4Þ

where fittworst and fittbest are the current worst and best fitness of

the whole bee colony at time t.
In the foraging process, if the bee Xi converts enough infor-

mation rate Fi
t as:

Ft
i > maxðFreproduce;Freproduce þ ðSt � SÞ

Fadapt

Þ ð5Þ

it will reproduce an offspring by using best-so-far solution

information in search equation of employed and onlooker bees
steps:

xnewi;j ¼ xi;j þ uðxbest;j � xi;jÞ ð6Þ
where xnew is the new offspring, xi is the ith bee, xbest is best
individual of current colony, j is a randomly chosen indexes;

/ is a random number in range [�1,1].
If the bee enters bad environment, and its information rate

drops to a certain threshold as:

Ft
i < minð0; ðS

t � SÞ
Fadapt

Þ ð7Þ

It will die and be eliminated from the population. Here S is

the initial population size and St is the current colony size,
Fsplit and Fadapt are two control parameters used to adjust
the bee reproduction and death criterions.

It should be noticed that the population size will increase by
one if a bee reproduces and reduce by one if it dies. As a result,
the population size dynamically varies in the foraging process.

At the beginning of the foraging process, the bee will repro-
duce when its information rate is larger than Freproduce. In
the course of bee foraging, in order to avoid the population

size becoming too large or too small, the reproduction and
death criterions, namely Eq. (5) and Eq. (7), are delicately
designed: if St is larger than S, for each Fadapt of their differ-
ences, the reproduce threshold value will increase by one; if

St is smaller than S, for each Fdapt of their differences, the
death threshold value will decrease by one. The strategy is also
consistent with the natural law: if the population is too

crowded, the competition between the individuals will increase
and death becomes common; if the population is small, the
individuals are easier to survive and reproduce.

When the nutrient of a bee is less than zero, but it has not
died yet, it could migrate with a probability as a scout bee. A
random number is generated and if the number is less than
migration probability Pe, it will migrate and move to a ran-

domly produced position. Then nutrient of this bee will be
reset to zero.
In summary, in order to facilitate the below presentation
and test formulation, we define a unified parameters for

CLABC model in Table 1.

3. Benchmark test

3.1. Dynamic test function

The moving peak benchmark (MPB) problem has been widely
used as a dynamic benchmark problem in the literature
(Morrison and De Jong, 1999). Within the MPB, the optima

can be varied by three features, i.e., the location, height, and
width of the peaks, which can be defined as follows:

where N is the number of peak in the environment.Hi indicates

the ith peak height, Ri is the slope control variable, and (Xi, Yi)
represents the coordinate of its center. The initialization of
parameters is shown in Table 2.

But in our experimental studies, the height and range of
slope for each peak are set to be constant, and only the posi-
tions of the peaks are changing. In this case, xstep and ystep
are the step sizes in x and y direction respectively. And for each

step i, Xi+1 and Yi+1 are calculated as
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where Ax and Ay are both a constant, respectively. Dxi and Dyi

can be assigned 1 or �1 with probability 0.5, respectively. An
example of the dynamic environment, generated with MPB, in

four steps, is illustrated in Fig. 3.
The experiments based on MPB are designed to evaluate

the adaptability of CLABC for various dynamic environments.

Various environmental changes are used in our simulation
studies, which are divided into three ranges:

(1) Range I – Slow level of environmental changes;
(2) Range II – Intermediate level of environmental changes;
(3) Range III – High level of environmental changes.

The level of changes is reflected by the frequency of changes
in the environment, which is defined as a probability f. For the
environmental changes classified in Range I, f 2 [0, 0.01], in

Range II, f 2 [0.05, 0.2] and in Range III f 2 [0.3, 0.8]. In
our simulation studies, f indicates the probability of occur-
rence of environmental changes after each foraging step.

3.2. Performance evaluation criteria

3.2.1. Average best over a period (ABP)

The search ability of algorithms is one of the most important
factors in optimization domain. In a dynamic environment,
the optimum might be varying over time, which means that

it is insufficient to only evaluate the fitness found after a cer-
tain number of generations.

There is an alternative as evaluation criteria, which aver-

ages over the best solution found at each step during a period
between two environmental changes (Tang et al., 2006). It is
concerned with an average of the best values, denoted by aver-

age best, found over a period Ti, where Ti denotes the ith per-
iod. This average best over a period is denoted as ABP, which
Fig. 3 A MPB example of
represents the best fitness for a given period Ti. Let Si be
the first step of Ti, Ei be the last step. Thus, ABP is formulated
as:

3.2.2. Accuracy

To obtain the accuracy of algorithm A in function F, firstly, we

calculate accuracy in each step t,

Then, the accuracy as a whole is defined as:

where Vw and Vo are the worst and optimum value respec-
tively, N is the number of steps.

3.2.3. Stability

Similar to the definition of accuracy, the stability is defined as
follows:

3.3. Parameters settings for the involved algorithms

With and without the orthogonal Latin squares population ini-
tialization strategy, two CLABC variants are tested, as seen in
Table 3 with their experimental settings. To fully evaluate the

performance of the proposed CLABC variants, the classical
environmental changes.



Table 3 Two versions of CLABC algorithms and their parameter settings.

Algorithm Strategies Parameters

S D g CR Freproduce Fadapt Tp

CLABC-1 Life-cycle;

crossover

Powell’s search

50 30 0.6 1 (Lb-Ub)-2 50 5

CLABC-2 Orthogonal Latin squares population initialization;

life-cycle;

crossover;

Powell’s search

50 30 0.6 1 (Lb-Ub)-1 50 5
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artificial bee colony algorithm (ABC) (Karaboga and Basturk,
2007a,b) was used for comparison.

In all experiments in this section, the values of the initial
population size used in each algorithm were chosen to be the
same as 50. The number of function evaluations (FEs) was

used as a measure criterion. All algorithms were terminated
after 100,000 FEs. For the classical ABC algorithm, as referred
to (Karaboga and Basturk, 2007a,b), the limit parameter of

ABC is set to be SN � D, where D is the dimension of the
problem, and is set 30. SN is the total number of employed
bees and onlooker bees, and can be set 50.

3.4. Results for the dynamic MPB functions

To investigate their performances in dynamical different-level
environments, the frequency of changes with f= (0.001,

0.01), f= (0.05, 0.1) and f= (0.5, 0.8) are selected, which
fall into from Range I to Range III, respectively. Accordingly,
the dynamic accuracy and stability results of CLABC-1,

CLABC-2 and ABC are given in Table 4 and Table 5,
respectively.

From the results, both CLABC-1 and CLABC-2 performed

powerful when f= 0.001. However, CLABC-1 performed a
little worse than ABC when f= 0.01, which belonged Range
I. This means that the CLABC didn’t exhibit significant advan-
tage when the dynamic environmental varied slowly. When
Table 4 Accuracy comparison.

Freq CLABC4 CLABC7 ABC

0.001 0.301559 0.082557 0.42760

0.01 0.39025 0.220559 0.44092

0.1 0.395654 0.139605 0.41891

0.05 0.324041 0.120704 0.43214

0.5 0.396415 0.091319 0.36090

0.8 0.395924 0.130154 0.33703

Table 5 Stability comparison.

Freq CLABC4 CLABC7 ABC

0.001 0.01396 0.03214 0.00102

0.01 0.009465 0.04096 0.00211

0.1 0.012598 0.049604 0.01173

0.05 0.009299 0.042643 0.00627

0.5 0.014894 0.042692 0.03738

0.8 0.018464 0.049709 0.03744
f= 0.05 and f= 0.1 in Ranges II, both CLABC-1 and
CLABC-2 achieved satisfactory performance. In contrast, the

performance of ABC decreased obviously, this is due to the
CLABC can react to the dynamical environmental changes
effectively. When f= 0.5 and f= 0.8 in Range III, it is not

surprising that both the CLABC-1 and CLABC-2 still main-
tain high accuracy and stability, which can be interpreted that,
in this case, the dynamical environment changes rapidly and

the strategies of life-cycle and crossover operation play an
important role in improving the ability of involved algorithm
to search in dynamical functions.

The differences between the compared algorithms in terms

of accuracy on these dynamic benchmarks suggest that the
CLABC is better at a fine-gained search than its counterpart
ABC. The key difference is mainly due to Powell’s search

and crossover operator in the CLABC. The ABC with cross-
over operator acts as the main optimizer for quickly searching
the near-optimal areal while the Powell’s method performs fine

tuning the best solutions in a certain time interval. However,
for the dynamic optimization cases, we need not only the high
optimization accuracy and computation robustness, but also a
faster solution speed. Fortunately, the life-cycle mode enables

the population size and bee colony behaviors of CLABC can
be dynamically adaptive to the complexity of the dynamic
objective functions, which reduces the computational complex-

ity of the optimization process.
ABC & CLABC7 CLABC4 & CLABC7

1 0.175878 1.705158

0.049244 0.453024

5 0.025615 0.909054

5 0.143515 1.124204

5 �0.03961 1.264104

3 �0.06569 0.721053

ABC & CLABC7 CLABC4 & CLABC7

9 �0.41856 �0.4366

6 �0.3466 �0.4276

3 �0.04099 �0.34194

8 �0.12593 �0.38243

7 0.693567 �0.0588

8 0.460629 �0.10788
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4. Conclusions

In order to improve classical artificial bee colony algorithm for
complex dynamic optimization problems efficiently, this paper

proposes a novel comprehensive learning artificial bee colony
algorithm (CLABC) by combining several optimal foraging
approaches, namely the orthogonal Latin squares population

initialization, Powell’s search, crossover operation, and life-
cycle strategies. This paper substantially extends the previous
work on the ABC algorithms that can be distinguished from
it from three aspects: (1) to refine the local search behaviors

when a bee finds promising area, the Powell’s search is incor-
porated to emphasize the exploitation process. (2) to refine
the bee-to-bee communication mechanism based on crossover

that enhances the information exchange among bee colony,
dealing with the global exploration. (3) to refine the bee life-
cycle behaviors, which contains born, forage, reproduction,

death, and migration states.
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