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Multi-scale, whole-system models of liver metabolic
adaptation to fat and sugar in non-alcoholic fatty liver disease
Elaina M. Maldonado1, Ciarán P. Fisher2, Dawn J. Mazzatti3, Amy L. Barber1, Marcus J. Tindall4,5, Nicholas J. Plant1,6,
Andrzej M. Kierzek1,2 and J. Bernadette Moore 1,7

Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue associated with high fat, high sugar diets. However, the
molecular mechanisms mediating NAFLD pathogenesis are only partially understood. Here we adopt an iterative multi-scale,
systems biology approach coupled to in vitro experimentation to investigate the roles of sugar and fat metabolism in NAFLD
pathogenesis. The use of fructose as a sweetening agent is controversial; to explore this, we developed a predictive model of
human monosaccharide transport, signalling and metabolism. The resulting quantitative model comprising a kinetic model
describing monosaccharide transport and insulin signalling integrated with a hepatocyte-specific genome-scale metabolic network
(GSMN). Differential kinetics for the utilisation of glucose and fructose were predicted, but the resultant triacylglycerol production
was predicted to be similar for monosaccharides; these predictions were verified by in vitro data. The role of physiological
adaptation to lipid overload was explored through the comprehensive reconstruction of the peroxisome proliferator activated
receptor alpha (PPARα) regulome integrated with a hepatocyte-specific GSMN. The resulting qualitative model reproduced
metabolic responses to increased fatty acid levels and mimicked lipid loading in vitro. The model predicted that activation of PPARα
by lipids produces a biphasic response, which initially exacerbates steatosis. Our data support the evidence that it is the quantity of
sugar rather than the type that is critical in driving the steatotic response. Furthermore, we predict PPARα-mediated adaptations to
hepatic lipid overload, shedding light on potential challenges for the use of PPARα agonists to treat NAFLD.
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INTRODUCTION
Non-alcoholic fatty liver (NAFLD) disease is a major public health
concern associated with obesity and the metabolic syndrome.
Prevalence is estimated at 30–45% of the adult population in
many countries, although NAFLD is typically underdiagnosed due
to its asymptomatic nature in its initial stages. Pathogenesis
begins with steatosis, the accumulation of lipid droplets within the
hepatocytes of the liver. Although steatosis can be reversible and
may be viewed as relatively benign clinically,1 it has long been a
recognised marker of liver damage that is known to alter the
metabolism and disposition of therapeutic drugs due to altera-
tions in activity of metabolising enzymes.2 Moreover, steatosis can
progress to non-alcoholic steatohepatitis (NASH), which involves a
series of inflammatory responses in the liver. While still potentially
reversible, NASH is associated with increased incidence of fibrosis,
hepatocellular carcinoma, liver failure and the need for liver
transplant.1 Despite the high prevalence of this disease, particu-
larly in obese individuals, the pathogenesis of NAFLD is complex
and not well understood, limiting the development of effective
treatments. Currently, there are no pharmaceutical agents
licenced for the treatment of NAFLD with weight loss, dietary
and lifestyle modifications underpinning clinical management.3

Whether or not a low-sugar or low-fat diet should be

recommended for NAFLD is controversial and we consider these
dietary factors here.
Dietary sugars, in particular fructose, have been implicated in

the development and progression of NAFLD and other chronic
metabolic diseases.4 Fructose has been scrutinised in part due to
its extensive use in beverages such as fizzy and fruit-flavoured
drinks for which children and adolescents are major consumers.
High fructose intakes have been shown to alter hepatic insulin
sensitivity, increase lipogenesis and ectopic lipid disposition in
human and rodent studies.5 Hepatic fructose metabolism
bypasses a key rate-limiting step in glycolysis leading to the
provision of increased substrates for de novo lipogenesis (DNL)
and the increased synthesis of long chain fatty acids, triacylgly-
cerol (TAG) and other, often inflammatory, lipid intermediates.6 In
addition, fructose regulates the activity of multiple transcription
factors involved in the regulation of both lipogenesis and fatty
acid oxidation including the carbohydrate response element
binding protein (ChREBP), the sterol response element binding
protein (SREBP1) and the peroxisome proliferator activated
receptor alpha (PPARα).5,7 However, the impact of fructose at
lower, ‘normal consumer’ levels is debatable, and it is unclear if
there is a differential impact on lipogenesis and NAFLD beyond
the provision of, typically, excess energy.
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Recent focus on the negative metabolic effects of a high-sugar
diet has led to debate over historical dietary guidelines, which
recommend low-fat (considered <35% of daily energy from fat
with an ‘acceptable distribution’ of 20–35%) and low-saturated fat
diets (7–10% of total energy) for the prevention of cardiovascular
disease.8,9 The critical point frequently neglected in the, often
polarised, debates around whether sugar or fat is the nutrition
villain of the day,10,11 is the key observation that, at a population
level, identifying individual culpable nutrients is problematic.
While almost no one consumes a low-fat diet (US12 and UK13

adults consume an average of 34–35% of daily energy intake from
fat), the vast majority of adults in developed countries consume
excess energy from foods high in both sugar and fat, fundamen-
tally contributing to increasing obesity and NAFLD.
While it is generally accepted that high-sugar and high-fat diets

disrupt metabolic homoeostasis and the regulation of lipogenesis,
thereby contributing to NAFLD, the molecular mechanisms and
temporal order of key metabolic and signalling events are unclear.
Here in silico models and systems biology approaches may offer
insights into disease mechanisms, generating hypotheses for
subsequent experimental testing.14 Computational systems biol-
ogy has advanced considerably in the last decade, including the
reconstruction of human genome-scale metabolic networks
(GSMNs), comprehensive models incorporating the metabolic
and transport reactions mediated by the proteins encoded within
the genome.15–17 These models can be further constrained to
reflect specific tissues, or even specific organelles, using tran-
scriptomic data.18–20 Recently GSMNs have been utilised for the
mechanistic interpretation of clinical NAFLD data.21,22 However,
these models are static and do not reflect the dynamic
reprogramming of global metabolism and metabolic adaptation
to maintain homoeostasis during sugar and lipid loading.
Increasingly, GSMNs are being integrated with detailed gene
regulatory and/or physiologically based pharmaco/toxico-kinetic
models in the emergent fields of quantitative systems pharmacol-
ogy/toxicology.23

Here we adopt a multi-scale approach, coupling GSMNs to
dynamic models of regulatory networks23–25 to study how
disruption of metabolic adaptation contributes to NAFLD patho-
genesis. We examine two important questions in NAFLD; the
differential impact of glucose and fructose on lipogenesis, and the
role of the PPARα regulome in liver adaptation to lipid loading.

RESULTS
Using the systems approach outlined in Fig. S1, two questions
related to NAFLD were explored. First, we examined an area of
debate in the NAFLD literature;4,5 specifically, whether or not
fructose is more lipogenic than glucose. Utilising the QSSPN24

method, we reconstructed a dynamic, quantitative model of
monosaccharide transport and fully parameterised insulin signal-
ling;26 and integrated this to a hepatocyte-specific GSMN19 with
an external nutrient exchange set27 representing in vitro condi-
tions constrained by in vitro consumption and secretion rates (see
Supplementary Tables S1-S4 and Fig S2-S3). Alongside this
computational approach, monosaccharide and insulin-treated
hepatocytes (HepG2 cells) were utilised for in vitro experiments
to aid in model validation and hypothesis testing.
Secondly, we conducted a transcriptomics study to identify

pathways perturbed by lipid loading in immortalised human
hepatocytes. The data-driven, pathway enrichment analysis of this
data, as well as additional proteomic datasets from our preclinical
and in vitro models of NAFLD, identified the PPARα regulome as a
key regulatory network module in liver adaptation to lipid
loading.28,29 Due to the large scale of this omics data derived
regulatory network, parameterisation of a fully quantitative model
was not feasible. Therefore, we capitalised on the flexibility of the
multi-formalism QSSPN method and developed a qualitative

dynamic model, again coupled to the hepatic GSMN. In both
cases, model simulations drove experimental design and further
model refinement in an iterative fashion, generating hypotheses
that were tested in vitro.

Multi-scale modelling of hepatic monosaccharide metabolism
In silico model recapitulates in vitro sugar transport. Human
hepatoma (HepG2) cells were first treated with physiological and
supraphysiological concentrations of insulin and sugars to mimic
the human hepatic overfed state in vivo. We confirmed the
responsiveness of HepG2 cells to insulin stimulation by measuring
the phosphorylation ratio of the RAC-alpha serine/threonine-
protein kinase (pAKT/AKT) protein, which transduces signalling
from the insulin receptor. In response to a postprandial-like dose
of 1 nM insulin, a 1.7-fold increase in pAKT/AKT (P < 0.05) was
observed (Fig. 1a), while 100 nM of insulin elicited an 8-fold
increase in pAKT/AKT (P < 0.0001; Fig. 1a). Insulin treatment
(100 nM) increased the rate of monosaccharide disappearance
from the medium relative to non-insulin stimulated cells (Fig. 1b).
HepG2 cells consumed glucose at a faster rate than fructose (Fig.
1b); after the first 24 h, glucose concentrations in medium
decreased by 9.3 ± 0.55 mM (equivalent to 0.97 mg/million cells)
and 11.6 ± 0.42 mM (1.14 mg/million cells) in non-insulin and
insulin stimulated cells, respectively. Meanwhile, fructose
decreased by 7.7 ± 0.49 mM (0.82 mg/million cells) and 9.6 ±
0.48mM (1.0 mg/million cells) in non-insulin and insulin-treated
cells, respectively. During the second 24-h period, the average
uptake of glucose was still more than the uptake of fructose (as
measured by clearance from medium), with a decrease in
concentration of glucose by 5.2 ± 0.36 mM (0.44 mg/million cells)
and 5.9 ± 0.23mM (0.47 mg/million cells) and of fructose by 3.9 ±
0.25mM (0.39 mg/million cells) and 5.2 ± 0.34 mM (0.49 mg/
million cells) in non-insulin and insulin treated cells, respectively.
At this time point, insulin still caused a significant increase in
fructose uptake (P < 0.05), whereas the effect of insulin on glucose
uptake disappeared (Fig. 1b).
To validate the in silico model with experimental data on

monosaccharide uptake, initial conditions were set with or
without 100 nM of insulin with either 25mM of glucose (Fig. 1c)
or fructose (Fig. 1e). We note that model parameters were not
adjusted to improve the fit of the model to experimental data,
allowing evaluation of the predictive power of the model. To
explore the predicted range of sugar utilisation, we formulated a
dynamic flux variability analysis (dFVA) simulation protocol
(described in detail in Supplementary Methods), with maximisa-
tion of the objective function (i.e. glucose transport, reaction ID:
EX_Glucose; and fructose transport, reaction ID: EX_Fructose)
representing consumption, and minimisation representing pro-
duction. To the best of our knowledge, this is the first application
of dFVA to a quasi-steady state, dynamic simulation.
QSSPN dFVA maximisation of glucose transport predicts a rapid

depletion of glucose from medium (Fig. 1c), which is complete
after 20 h. Minimisation of glucose transport predicts an
accumulation of glucose in the medium due to gluconeogenesis.
Likewise, maximisation of fructose transport resulted in depletion
of medium fructose, although this was slower than predicted for
glucose and not fully complete within the 48-h simulation period.
As expected, no significant accumulation of fructose in medium
was predicted for minimisation of transport (Fig. 1e). Acute insulin
stimulation of HepG2 cells resulted in an increased rate of
depletion of both glucose and fructose from medium (Fig. 1c, e).
dFVA minimisation of glucose transport predicts a small decrease
in the rate of accumulation in the medium in the presence of
insulin. This effect can be more clearly seen by examining the rate
of glucose flux (Fig. 1d); production and export of glucose was
initially reduced, recovering to baseline within 6 h. In contrast, no
impact on fructose transport was predicted with insulin
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stimulation (Fig. 1f). This may be due to the features of dFVA,
which predicts the absolute minimal and maximal reaction rate to
provide a unique feasible solution space given the conditions of
the computational model. Nonetheless in both instances, the
in vitro data were found to fit well within the predicted dFVA
solution space.

De novo intracellular lipid in silico and in vitro. The accumulation
of lipid in macrovesicular droplets is the hallmark of steatosis. It is
therefore important to explore not only the ability of hepatocytes
to utilise sugars, but also their subsequent conversion into lipid. As
triacylglycerol (TAG) is the predominate lipid species within the
neutral lipid core of macrovesicular droplets,30 the in silico model
was then used to investigate the influence of monosaccharide
type on TAG metabolism. TAG production (reaction ID: r1223) was

set as the objective function and dFVA was used to explore the
maximal and minimal TAG production possible for a given
monosaccharide. With an initial concentration of 25 mM glucose,
maximisation of TAG production resulted in a rapid production of
TAG over time (2.01 mM/g DW/h; Fig. 2a). This initial rate
decreased to 1.47 mM/g DW/h after ~40 h, as a result of glucose
depletion from the system (Fig. 2b). With fructose as a substrate,
the maximised initial TAG production rate (2.01 mM/g DW/h) was
no different from simulations with glucose (Fig. 2c). Likewise, a
decrease in TAG production rate occurred, although this was
apparent at an earlier time point (approximately 24 h; Fig. 2d). The
area under the time-concentration curve (AUC0-48) for TAG was
2300 and 2332mM.h/g DW for glucose (48.2 h) and fructose
(48.5 h), respectively. As expected, minimisation of TAG produc-
tion resulted in no production of TAG, regardless of

Fig. 1 Insulin sensitivity and verification of sugar consumption in vitro and in silico. a Immunoblot analyses of pAKT/AKT expression (both
~60 kDa) in HepG2 cells stimulated with insulin (n= 3–4), analysed by one-way ANOVA with Dunnett’s test post hoc between doses and
vehicle. b The change in monosaccharide concentration of culture medium in vitro over the first and second 24 h period after treatments of
glucose or fructose with (+) and without (−) 100 nM insulin (n= 4–5), analysed within timepoints between treatment by one-way ANOVA with
Tukey’s test post hoc. c–f The objective function was set as either the glucose or fructose transport flux between the external space (medium)
and sinusoid space. Maximisation was the uptake of monosaccharide, and minimisation was the production and export into the medium
(external space). cModel predictions of glucose concentration in the medium with (+) or without (−) the presence of 100 nM insulin over time
alongside experimental data from HepG2 cells (n= 3–5). d Predicted glucose transport rate over time. e Predictions of fructose concentration
over time alongside experimental data from HepG2 cells (n= 3–5). f Predicted fructose transport rate over time. Data shown as mean ± SEM.
Statistical differences are indicated as * P < 0.05, ** P < 0.01, *** P < 0.001, and **** P < 0.0001
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monosaccharide (Fig. 2a, c). The simulation of insulin treatment
predicted an initial adjustment of the metabolic network land-
scape before stabilising at the maximum TAG production rate of
2.01 mM/g DW/h by 6.4 h (Fig. 2b). Insulin treatment lead to only a
subtle decrease in overall TAG production, with predicted AUC0-48
values of 2288 and 2281mM.h/g DW for glucose and fructose,
respectively.
To confirm the in silico predictions, HepG2 cells were used to

detect the influence of the type of monosaccharide, with and
without insulin, on hepatic intracellular lipid in vitro. HepG2
cells, with or without 100 nM of insulin, were exposed to either
25 mM of glucose or fructose and measured every 24 h over 72 h
by Nile red staining (Fig. 2e). Consistent with the in silico
prediction, lipid accumulation was found to be no different
when glucose or fructose was used as a carbon source. In
addition, insulin stimulation had no significant impact on
intracellular lipid levels expressed as relative to 25 mM glucose
treated cells without insulin stimulation at 0 h. This is consistent
with the in silico prediction of no long-term differences in TAG

production after insulin stimulation for either glucose or
fructose.

Impact of the PPARα regulome on hepatocyte lipid loading
We have previously reported on transcriptomic and proteomic
analyses in preclinical models of NAFLD; including fatty acid-
treated hepatocytes (mimicking steatosis or NASH depending on
fatty acid composition used), and high-fat fed murine models.28,31

The prior identification of disruption and activation of PPARα
signalling in pilot experiments in palmitate-treated hepatocytes
(HuH7 cells),28 was confirmed independently here in a combined
pathway enrichment analysis of both the proteomics31 and
microarray data sets.28 Enriched pathways identified as statistically
significant (P < 0.05) were ranked by clustering coefficient and
presented with results from both datasets using hive plots32 (Fig.
3a). Enriched PPARα pathways were identified independently in
both datasets against multiple databases (KEGG and BIOCARTA).

Fig. 2 Predicted intracellular triacylglycerol (TAG) in silico and intracellular lipid measured in vitro. a–d The objective function was set as TAG
production within the cytosol. Maximisation was the maximum production of TAG and minimisation was towards null production.
Representing the cell experiment, the model initial state was set with either 25mM glucose or fructose with (+) or without (−) the presence of
100 nM insulin. a Predicted intracellular TAG concentrations from glucose. b Predicted TAG production from glucose over time. c Predicted
intracellular TAG concentrations from fructose. d Predicted TAG production from fructose over time. e Intracellular lipid in HepG2 cells (n= 5)
measured by Nile red staining at every 24 h for 72 h. Media were not replenished during the period of measurements. Data shown as mean ±
SEM, adjusted to background fluorescence from non-Nile red stained cells, and expressed relative to 25mM glucose without insulin treatment
at 0 h. Two-way ANOVA with Tukey’s test post hoc was performed. No differences were detected between treatments

Multi-scale, whole-system models of liver metabolicy
EM Maldonado et al.

4

npj Systems Biology and Applications (2018) 33 Published in partnership with the Systems Biology Institute



With these data as our rationale, a PPARα regulome reconstruc-
tion was manually curated from a thorough search of the peer-
reviewed literature and online databases (Fig S1). The final model
dynamically regulates the expression of 91 PPARα-target genes,
modulating flux through 233 metabolic and transport processes;
full details are presented in Supplementary Methods. Since there
is still insufficient data available to quantitatively parameterise
such a large regulatory network model, the QSSPN approach was
used to create a comprehensive qualitative model of the PPARα
regulome integrated with the hepatocyte-specific GSMN, Hepat-
oNet1.19 This allowed examination of the dynamic cellular
response behaviours to lipid loading. Although previous recon-
structions of the PPARα regulatory network have been pub-
lished,33 we believe our resulting model to be the most
comprehensive model of PPARα-regulated metabolism described
to date.

Lipid loading and PPARα expression in vitro. PPARα mRNA
transcript and protein levels were measured in HepG2 cells
treated with 400 μM oleic acid (OA) over 24 h (Fig. 3b–e).
Intracellular lipid accumulation was monitored through quantifi-
cation of Nile red fluorescence (Fig. 3b, c) at intervals of 2 h for the
first 12 h and then at 24 h, with RNA and protein collected at each
time point (Fig. 3d, e). Intracellular lipid increased in response to
OA treatment, reaching a maximum after 6 h (Fig. 3c) and resulted
in clear macrovesicular steatosis under fluorescent microscopy by
24 h (Fig. 3b). PPARα transcript levels exhibited a significant
change in relative levels over time (one-way ANOVA, P= 0.0003;
Fig. 3c, d); however, this did not translate to a significant change in
relative protein expression (Fig. 3e).

QSSPN simulation of PPARα-regulated metabolism. Building on
previous work,24 the gene regulatory model we employ here is
rule-based and has three stable levels of gene expression,
allowing for genes expressed at basal steady-state to be reversibly
induced or inhibited (Fig. S4). The reconstructed QSSPN model
was used to simulate a dynamic response to lipid loading.

Following the qualitative simulation approach described before,24

we performed Monte Carlo simulations to generate multiple
dynamic trajectories representing sequences of feasible molecular
events given rules defining regulatory networks and the stoichio-
metric constraints of the metabolic model. Simulation time was in
arbitrary units and reflected exclusively the order of events. The
maximal length of the simulation was set so that simulation time
courses covered the whole range of homoeostatic response,
allowing observation of the return to baseline.
Changes in metabolic flux from a representative simulated

trajectory were illustrated in an adjacency matrix heatmap
capturing the reconstructed PPARα regulome and regulated fluxes
within the GSMN (Fig. S5). This maps 91 PPARα target genes and
the 233 metabolic/transport reactions within the GSMN; these are
detailed in supplementary Table S7. After fatty acid stimulation,
reaction fluxes are predicted to rapidly alter, both in terms of
magnitude and directionality, as part of an acute regulatory
response. Alterations in fluxes during the acute regulatory phase
are attributable to the sequential, and within this simulation,
stochastic reprogramming of protein expression through PPARα-
mediated regulation. Subsequent to this, the system reverts to the
baseline over time (reconstitutive phase). Within the reconstitutive
phase, we note that persistent differential flux values persist after
fatty acid treatment has been cleared, indicating an extended
regulatory effect following clearance of the agonist (i.e. a
regulatory ripple effect). Simulations with a regulatory naive
model (i.e. no PPARα-mediated regulation) showed no such
reconstitutive phase and far fewer altered fluxes in response to
fatty acid treatment (Fig. S6). This highlights the importance of
transcription factors, in particular PPARα, in coordinating adaptive
response to lipid loading in hepatocytes.

PPARα activation in silico and in vitro. To further explore the
biological impact of PPARα-mediated gene regulation in response
to lipid loading, we monitored metabolic fluxes towards TAG as a
representative endpoint in steatosis (Fig. 4a). We examined fluxes
through reactions involved in nutrient transport and fatty acid

Fig. 3 PPARα mRNA and protein expression in in vivo and in vitro models of NAFLD. a Hive plot summarising pathway enrichment analysis
against the KEGG and BIOCARTA databases ranked by clustering coefficient. Proteomics identified 31 enriched pathways (Alzheimer’s and
Parkinson’s excluded from analysis), 11 pathways identified in both the membrane and cytosolic fractions, only 15 mapped proteins identified
in both the membrane (blue) and cytosolic (red) fractions. Transcriptomics (orange) identified 10 enriched pathways; smaller plot identifies
transcripts and proteins contributing to the enrichment of PPARα protein. b Fluorescence micrograph (×100) of HepG2 cells treated for 24 h
with 400 μM oleate; control cells inset; c relative intracellular lipid quantified by Nile red fluorescence mean ± SEM (n= 5) data analysed using
one-way ANOVA with Tukey’s test post hoc, **P < 0.01, ****P < 0.0001 vs. 0 h timepoint; d relative expression of PPARα transcript determined by
qRT-PCR mean ± SEM (n= 3), data analysed using one-way ANOVA; e quantification of relative PPARα protein expression mean ± SEM (n= 2-3;
representative western blot shown), data analysed using one-way ANOVA
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metabolism, allowing an exploration of the wider, indirect effects
of the PPARα regulome on hepatocyte metabolism. Large
alterations in reaction fluxes were predicted in exchange reaction
fluxes that represent nutrient supply from the cell exterior,
specifically those associated with amino acid transport. Simula-
tions with the regulatory incompetent model predicted no
increased flux towards TAG in response to simulated treatment
with OA (Fig. 4b), consistent with the requirement for PPARα
regulation to support TAG production. This indicates that hepatic
steatosis is an emergent property of metabolic regulation, rather
than just a simple result of increased flux through the metabolic
network in response to the increased availability of substrate.
Furthermore, and possibly contrary to putative understanding,
PPARα activation by intracellular fatty acids would appear to result
in the increased production of TAG rather than clearing
accumulated lipid.
Using the in vitro HepG2 steatosis model, we proceeded to test

this hypothesis. Using the PPARα antagonist GW6471, we
repeated our previous experiments, treating cells with 400 μM
OA in the presence or absence of the antagonist. Consistent with
the in silico prediction, we observed a statistically significant
decrease in the level of lipid accumulated after 2 h of treatment
with OA and GW6471 compared with controls (Fig. 4c). After 24 h,
no difference in the level of lipid accumulation was seen with or
without GW6471 (Fig. S7). Thus, the acute regulatory response
in vitro can be inhibited through use of a competitive PPARα
inhibitor, however, this protective effect appears to be over-

whelmed within 24 h indicating the role of further regulatory
mechanisms to which the in silico model is currently naïve.
Complimentary to our investigations in to the role of carbohy-
drates in hepatic steatosis, we monitored the consumption of
glucose over the first 12 h of treatment with OA. The accumulation
of lipid within the cells has no statistically significant impact on
the rate of glucose consumption (Fig. 4d). This is consistent with
our simulated results that show minimal changes in glucose
consumption flux values over course of simulations (Fig. 4a, red
box highlights glucose bidirectional exchange).
Figure 4a (and Figure S5) illustrates an important characteristic

of the regulatory process; the biological response is not limited to
the duration of the signal and can be described as multi-phasic.
The acute regulatory phase is the immediate response seen in the
presence of agonist-activated PPARα. Here, PPARα-mediated
changes in gene expression alter the metabolic landscape of the
cell, resulting in an altered flux distribution. On loss of the agonist,
the system does not immediately return to the basal state. Instead
the system goes through a reconstitutive phase that extends
beyond the presence of the signal. This extended reconstitutive
phase may represent the decay time of produced proteins,
alterations in reaction fluxes to maintain cellular homoeostasis
under varying conditions, or a combination of the two. It should
also be noted that both the acute and reconstitutive phases of
regulation are not simply limited to fluxes directly linked to the
PPARα regulome (Fig. S5) but propagate through the metabolic
network causing indirect regulation (Fig. 4a). This represents the

Fig. 4 Indirect effects of PPARα-mediated metabolic adaption. a Single simulated trajectory heatmap of exchange set fluxes, treatment fluxes
and all fluxes where palmitate and oleate are primary metabolites or products. Positive flux values are shown in green, negative flux values in
red with simulated time progressing left to right. Glucose bidirectional exchange highlighted with red square. b Fraction of trajectories
showing increased flux towards TAG synthesis sampling 100 trajectories with single representative trajectory of TAG flux shown above as heat
map, data shown as fraction of trajectories ± binomial probability confidence intervals. c Relative intracellular lipid as quantified by Nile red
fluorescence in HepG2 cells treated with 400 μM oleic acid for 2 h ± PPARα antagonist GW6471 mean ± SEM (n= 4) relative to vehicle and
analysed using a two-tailed t-test with Welch’s correction. d Glucose concentrations in the culture media of HepG2 cells treated with vehicle or
400 μM oleic acid over mean ± SEM (n= 3)
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impact of altered levels of substrates and/or co-factors on the
metabolic landscape; for example, a reaction may be limited by
the depletion of a co-factor utilised by another reaction. The
simulation results presented here are not on a quantitative time
scale yet permit the exploration of the order in which events
occur, providing important insight into the design principles of
the biological system. For example, we can hypothesise that if the
PPARα regulome is activated at intervals such that the system
never completes the reconstitutive phase, then the metabolic
landscape will not be able to return to its basal steady-state. The
pathogenesis of metabolic disorders such as NAFLD may be a
resultant effect of such persistent disruptions observed.

DISCUSSION
Associated with the exponential rise in obesity, NAFLD has quickly
become the most common chronic liver disease in many
countries. Often undetected for many years, NAFLD increases
the risk of chronic diseases such as type 2 diabetes and
cardiovascular disease, and alters drug metabolism in the liver.2

While it is evident that NAFLD pathogenesis involves altered
hepatic lipid metabolism, likely stemming from a combination of
environmental insults (e.g. over nutrition) and genetic suscept-
ibility, the underlying mechanisms remain unresolved. This lack of
understanding has limited the ability to predict progression along
the NAFLD spectrum for an individual, or to design effective
therapeutic interventions and/or dietary advice. With this motiva-
tion, in this work we address two of the outstanding questions
within the NAFLD field: does fructose, commonly used as a
sweetener, have a greater lipogenic potential than glucose; and,
what is the biological impact of activation of PPARα by fatty acids
during NAFLD? To address these questions, we have reconstructed
hepatic regulatory models for both monosaccharide signalling
and transport and the PPARα regulatory network, then integrated
these to a genome scale model of hepatic metabolism utilising
QSSPN.
The potential differential effects of glucose and fructose on TAG

metabolism were investigated with a reconstruction comprising
monosaccharide transport, insulin signalling and hepatic metabo-
lism. The resulting multi-scale, hybrid model was used to perform
predictive, dynamic simulations of minimum and maximum flux
rates. No differential lipogenic effects were predicted between
fructose and glucose, a result verified by experiments in HepG2
cells. These results are important in the context of ongoing
disagreement in the literature about potential differential effects
of fructose on health and NAFLD.34 Studies using supra-
physiological doses of single monosaccharides suggest some
differential effects, but are difficult to reconcile with the diets of
free-living humans. In addition, meta-analyses of studies with
blood lipid and liver-related end points show no effect in trials
that controlled for energy.35–37 Studies in vitro also present
conflicting conclusions: some studies showing differential effects
of fructose at remarkably low (0.72 mM) concentrations of total
monosaccharide with increasing fructose:glucose molar ratios;38

other studies show no differential effects until higher (25 mM)
doses of fructose were used.39 Such concentrations are generally
supra-physiological doses, being significantly higher than con-
centrations observed in portal blood, which rarely exceed 2mM.
As recently shown by Jang and colleagues (2018),40 the majority of
fructose is metabolised in the intestine with extensive fructose-
derived glucose, lactate and glycerate found in portal circulation.
While we did not simulate this metabolic interconversion in our
kinetic model, such metabolic fates are captured within the
hepatic model. We did not explore if these metabolic fates were
realised in silico by tracing the full metabolic fate of fructose. An
interesting future direction would be to expose the cell lines to
this mixture of metabolites and compare the response to when
the parent (fructose) is given. Additionally, in studies where very

small positive effects of fructose on intracellular lipid in HepG2
cells have been shown,41,42 there is uncertainty about the minimal
limit of detection of the lipid assay used.
Supporting our results are data from a recently published

kinetic model comprising 88 reactions and 81 metabolites of
hepatocyte core metabolism capable of simulating energy and
redox metabolism.43 The model of Fouget and colleagues was
parametrised with 13C labelled glucose and fructose based
experimental (GC-MS) data from primary rat hepatocytes treated
with 20mM of glucose supplemented with either 3 or 20 mM of
fructose for 2 h. The results show that while 20mM of fructose
inhibited glycogen synthesis, the addition of 3 mM of fructose, a
physiological relevant portal concentration (0.2–2 mM44), showed
no adverse effects on intracellular energy status. Moreover, the
authors observe there was very little flux going through fatty acid
synthesis in both experimental models of 3 and 20mM fructose.
The authors attributed this outcome to isolating primary
hepatocytes from fasted rats, plus the short experimental
incubation time. While the in vitro experiments performed here
did not take into account glycogen synthesis; similarly, our
experimental HepG2 cells fed glucose and fructose had no
differential effects in intracellular lipid over longer periods of
exposure. It might be of interest to implement the stoichiometric
data produced from Foguet and colleagues43 into our metabolic
model in order to incorporate specific rates of hepatic fructose
and glucose metabolism. However, whereas our data are from a
human hepatoma cell line, the Foguet data are derived from rat
primary hepatocytes; ultimately human kinetic data would be
preferable. In summary, through the use of a biologically realistic
computational model encompassing the key mechanistic modules
of monosaccharide processing, we conclude that there is no
differential effect on lipogenesis between glucose and fructose.
The identification of PPARα as a key regulatory network module

in liver adaptation to lipid loading was interesting given the
potential clinical role for PPARα activation in NAFLD treatment,
with dual and selective PPAR modulators currently in phase 2 and
phase 3 clinical trials.45 Activation of PPARα induces genes
involved in fatty acid binding, transport, and β-oxidation, thereby
promoting the uptake, utilisation, and catabolism of fatty acids. In
NAFLD patients, liver PPARα gene expression negatively correlates
with NASH severity, visceral adiposity and insulin resistance.46 The
serum lipid lowering fibrates are established weak agonists of
PPARα used to treat atherogenic dyslipidaemia. However, fibrates
have had disappointing results in trials examining their use in
NAFLD, with no improvement in histological NASH observed in
several pilot studies.47 Moreover, animal studies show that
fenofibrate treatment increases hepatic TAG synthesis and hepatic
steatosis suggesting an adverse effect of fibrates and PPARα
activation in NAFLD.48,49

The reconstruction of the PPARα regulatory network permitted
dynamic insights into the role of the PPARα regulome in both fatty
acid metabolism and NAFLD. Simulation of lipid loading using just
the GSMN (i.e. without PPARα-mediated regulation of gene
expression) showed no increase in flux towards TAG synthesis.
In contrast, addition of PPARα signalling to the GSMN predicts an
increase in TAG synthesis. Such data is consistent with previous
studies identifying PPARα as a key regulatory node in lipid
metabolism and in diseases manifesting steatosis.50,51 However,
the specific role of PPARα in the pathogenesis and progression of
steatosis is confounded by conflicting reports in the literature. The
finding that PPARα activation appears to have a detrimental role
in hepatic steatosis may go some way to explaining the lack of
success in trying to exploit PPARα as a therapeutic target in NAFLD
treatment.49,52,53 However, if one considers that the function of
the complement of genes regulated by PPARα is largely
associated with fatty acid metabolism, de novo lipogenesis and
lipid transport it becomes clear that a PPARα naive system would
have a reduced capacity for TAG accumulation. Activation of
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PPARα results in the induction of expression of multiple genes
with direct and indirect roles in TAG synthesis. As such, the
regulatory competent model adapts to the increased concentra-
tions of fatty acids in such a way that it can store this excess as
relatively safe TAG within lipid droplets.54

The in vitro experiments, designed to test the hypothesis
generated by the in silico experiments with the PPARα regulome
model, are in agreement with simulated results. In the presence of
the PPARα antagonist GW6471, a reduced accumulation of lipid
droplets in the early stage of the steatotic response was observed
in the cultured hepatocytes. We note that while the model
simulations show a stark difference between the regulated and
unregulated systems, the in vitro cell system exhibits a subtler, but
statistically significant, difference. This is not unexpected given the
qualitative nature of this model, driven by the scarcity of kinetic
parameters to describe the induction and turnover of 91 PPARα
target genes. As such, the in silico model accurately reproduces
the behaviour of the network, but not the absolute quantitative
changes. The endpoints that are being monitored in both the
in vitro and in silico models are subtly different but allow us to
compare the response of the two systems. Finally, while our in
silico model is limited to PPARα-mediated regulation of gene
expression, our in vitro system is regulated through the activity of
an interlinking network of transcription factors. PPARα is not the
only mediator of an adaptive response to excess fatty acid in
hepatocytes.52,55 Future work to reconstruct other critical reg-
ulatory systems will allow us to explore the role of each of these
transcription factors through simulations such as those shown
here with PPARα. However, a significant advantage of the use of
modelling and simulation, and the QSSPN approach, is the facility
to not only study these regulatory factors in isolation, but also as
integrated, cross-talking networks of transcription factors.
It is often considered that the emergence of NAFLD is the result,

at least in part, of dysregulation of critical metabolic/transporter
mechanisms. Dysregulation implies that the system is no longer
being regulated correctly either through interference in agonist
binding to the transcription factor or through suppression of
transcription factor expression.52,55 However, two conclusions
from our work suggest that this is not the case for PPARα
signalling during the hepatocyte response to lipid stimulation.
First, the in vitro data shows that although PPARα pathways are
identified in our omics pathway analysis, this is due to activation
of these pathways and not due to regulation of PPARα protein
expression itself. Second, the in silico simulations integrating the
PPARα regulatory network cause an increased flux towards TAG.
Rather than the traditional interpretation of dysregulation, we
suggest that, in the case of lipid loading, dysregulation of PPARα
signalling is a result of persistent and repeated activation of the
receptor. Given that the model predicts a continuing regulatory
‘ripple effect’ even after the clearance of the agonist, it is clear that
regulation is not simply an ‘on’ ‘off’ response limited by interaction
of agonist and receptor. It should be noted that the presented
simulations are not in real time and so it is not possible to
determine how long the reconstitutive phase persists. However, if
this phase persists sufficiently that the basal state is not reached
before the next signalling event, then repeated signalling would
result in a form of dysregulation that could lead to disease.56 The
current model only simulates regulation through a single
transcription factor. In reality, nuclear receptors form a complex
interactome that acts to coordinate the biological response to
chemical challenge. As such, expansion of the current model to
include multiple transcription factors may enhance the prediction
robustness. Likewise, both in silico and in vitro models represent
isolated hepatocytes; hence, their ability to reproduce a systemic
disease that affects other tissues as well may be limited. Future
work should replicate the interplay of multiple cell types that
reside in the liver, such as hepatic stellate cells and Kupffer cells, as
well as the interaction between different organs.

In summary, this work demonstrates that QSSPN permits both
integration of qualitative and quantitative regulatory models with
GSMNs. The multi-scale models herein, reproduce sugar and fat
metabolism in silico, generating hypotheses that can be
confirmed in vitro. Our data supports the absence of a differential
lipogenic effect between glucose and fructose. In addition, we
have provided mechanistic insight into the role of the PPARα
regulome in the early metabolic reprogramming of hepatocytes
following lipid loading.

METHODS
Model reconstruction and QSSPN simulation
Multi-scale modelling of hepatic monosaccharide metabolism. This model
integrated three components: a hepatocyte-specific GSMN,19 biologically
realistic monosaccharide transport kinetics, and insulin signalling.26 To
represent in vivo-like transportation of glucose and fructose,
Michaelis–Menten kinetics were utilised to map substrate concentrations
to fluxes within the activity list of the monosaccharide constraint places. All
parameters for the kinetics were sourced from the literature with a greater
weight given to values derived from whole-cell uptake experiments, as
opposed to recombinant systems; further detailed in the Supplementary
Methods. Monosaccharide transport rates were converted to mmol/g DW/
h based on the assumptions outlined in Tables S1 and S2, and the activity
list for glucose and fructose transport constraint places were set as
symmetrical.
As further detailed in the supplementary methods, a Petri net formalism

was used to represent the insulin signalling network26 using the Petri net
editor software Snoopy 257 (Fig. S1). The Petri net formalism was validated
in the following manner: the original BioModels SBML file
(MODEL1204060000) was implemented in COmplex PAthway SImulator
(COPASI)58 and compared to QSSPN simulations, with consistent results
across simulators (Fig. S2).

Genome-scale metabolic network. The transport and signalling network
was integrated with a hepatocyte-specific GSMN, HepatoNet1,19 using
QSSPN24 with the multi-formalism interaction network simulator (MUFINS)
software.25 As described previously,23 specific adjustments were made to
better detail metabolic pathways of interest accurately (Table S3). Within
the modified GSMN, the total number of metabolites and reactions totalled
778 and 2542, respectively. A biomass function was used as a simulation
constraint, representing the basic metabolic requirements of a human cell,
including glucose and ATP (Table S5). Additional flux constraints were set
to represent physiological relevant kinetic activity of the first steps of
monosaccharide metabolism (Table S3). The external metabolite export set
was also modified to represent the nutrient composition of cell culture
medium (Table S4), and constrained by using maximal and minimal
consumption/release values from NCI-60 cell lines,27 as done previously.23

Impact of the PPARα regulome on hepatocyte lipid loading. This model was
reconstructed using the paradigm described above for the monosacchar-
ide model, integrating a hepatocyte-specific GSMN and a de novo PPARα
gene regulatory network. The putative complement of PPARα target genes
was reconstructed using a Petri net formalism, based upon the published
literature and online data repositories (KEGG, IUPHAR, PID). PPARα-
regulated genes were represented using a rule-based model of gene
expression, expanding on our previously described gene expression model
(Figure S3).24 PPARα target genes were then systematically coupled to
HepatoNet1, with the status of protein PN nodes modulating the flux
bounds of corresponding metabolic network fluxes (Table S7). As
described above, a biomass function was used as a simulation constraint,
and the HepatoNet1 physiological import and export sets were modified to
represent the nutrient composition of cell culture medium for better
comparison with our in vitro model (Table S4).
The reconstructed QSSPN model was used to simulate a dynamic, PPARα

competent regulatory model and a fixed gene expression model. The
number of simulation steps was optimised so that the metabolic network
returned to a basal, steady-state flux after treatment.

In vitro experiments
Cell Culture. Human hepatocellular carcinoma-derived cell lines (Huh7,
JCRB, Japan; HepG2, ATCC, UK) were maintained at 37 °C in a 5% CO2 air,
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humidified environment and regularly confirmed mycoplasma-free
through a PCR assay. Cells were routinely seeded at 30,000 cells/cm2

and sub-cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% foetal bovine serum, 1% non-essential amino
acids, 2 mM L-glutamine, and 100 U/mL penicillin and 100 U/mL
streptomycin (Lonza, UK) for 72 h prior to treatment, and passaged by
trypsin treatment to represent independent experiments. After supple-
mentation, final glucose concentrations of the media were estimated as
0.87 g/L (4.8 mM) and 3.92 g/L (21.7 mM) representing low and high
glucose exposure, respectively. For the monosaccharide assays, glucose-
free DMEM was supplemented with either 25mM glucose or 25mM
fructose, with and without 100 nM insulin. In addition to the routine
supplements listed above, these media also contained 1mM sodium
pyruvate (Gibco, Fisher Scientific, UK).
For pAKT measurements, cells were treated with vehicle (n= 3), 1, or

100 nM of insulin (n= 4) in serum-free DMEM for 15min. For the fatty acid
treatments, fatty acids were first solubilised in dimethyl sulfoxide (DMSO)
and conjugated to 5.56% (v/v) fatty acid-free bovine serum albumin in a 1-
h incubation at 37 °C with periodic vortex mixing prior to addition to
serum-free DMEM. Final concentrations of DMSO in treatment media were
maintained at 2% (v/v); a dose determined experimentally not to be
cytotoxic by both LDH and MTT assays (in contrast, 2% DMSO is toxic to
HuH7 cells, Fig S8). Cells were cultured with fatty acids for up to 24 h and
sampled at required intervals. In the antagonist experiments, cells (n= 4)
were concomitantly treated with 400 µM OA in the presence or absence of
10 µM PPARα antagonist GW6471 (Sigma Aldrich, UK) for 2 h.

Lipid and sugar assays. The fluorescent, lipophilic dye, Nile red (Sigma-
Aldrich, UK) was used to detect intracellular lipid after OA and sugar
treatments (both, n= 5). Briefly, an automated cell counter (T20; Biorad,
UK) was used to count and collect 500,000 cells after trypsin treatment.
Cells were centrifuged for 5 min at 500 × g at room temperature and the
supernatant was removed. Cells were re-suspended in 500 μL of 1 μM Nile
red in PBS pre-warmed to 37 °C and incubated for 10min in darkness at
37 °C. Cells were centrifuged again and the supernatant removed
before adding 500 μL of pre-warmed PBS. Three technical replicates of
100 μL of Nile red stained cells suspended in PBS per well were incubated
for 2 min and shaken for 30 s at 37 °C before reading fluorescence (λex
485–12 nm, λem 520 nm) on a multi-mode plate reader (BMG LABTECH,
Germany).
Sugar consumption was monitored by sampling the culture media at 0 h

(n= 3) and at 24 and 48 h of 25mM glucose (n= 5) and fructose (-insulin,
n= 5;+ insulin, n= 4) containing media, or after OA treatment (n= 3); and
quantified by using glucose and fructose assay kits (Abcam, UK).

RNA and protein analyses. For qRT-PCR measurement of PPARα expres-
sion, cells (n= 3) were homogenised in Trizol (ThermoFisher, UK) and total
RNA isolated as per the manufacturer’s instructions. Quantity and purity
was assessed by absorbance spectroscopy (λ 260 nm, 280 nm and 230 nm);
integrity was confirmed via gel electrophoresis. RNA samples were DNase
treated prior to first strand synthesis (SuperScript III; ThermoFisher, UK) and
SYBR green based PCR run using custom designed primers (MWG Eurofins,
Germany; Supplementary Table S6) on an ABI7500 (ThermoFisher
Scientific, UK).
For protein isolation, treated cells (OA, n= 3; insulin, n= 3–4) were

homogenised in radio immunoprecipitation assay buffer (Sigma, UK)
containing protease and phosphatase inhibitors (Pierce, UK). Cell homo-
genates in RIPA buffer were spun through a Qiashredder column (Qiagen,
UK) to break up insoluble cellular debris. Protein was quantified by a BCA
assay (Pierce, UK) and 20 µg from each sample subjected to SDS-PAGE and
subsequent immunoblot analysis. Blots were probed for PPARα (1:250;
15540-1-AP Proteintech, UK), COXIV (1:5000; Ab16056 Abcam, UK), pAKT or
AKT (pAKT #4060; AKT #2920; both: 1:2000; Cell Signalling Technology, The
Netherlands). Immobilised proteins were quantified using secondary
antibodies conjugated to near infra-red flurophores and visualised using
the odyssey system (LI-COR, UK). All blots within each respective
experiment were processed in parallel.

Data analysis. Data were represented as mean ± standard error of the
mean (SEM), unless otherwise specified. One-way ANOVA with Tukey’s or
Dunnett’s test post hoc; two-way ANOVA with either Tukey’s or
Bonferroni’s test post hoc; and two tailed t-test with Welch’s correction
were performed, as appropriate, to detect statistical significance between
groups. The level of statistical significance was set at P < 0.05.

Software and Code
All models were built using the Petri net edition software Snoopy (http://
www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy) and imple-
mented by QSSPN (original implementation http://sysbio3.fhms.surrey.ac.
uk/qsspn/index.html; now expanded within MUFINS25 package). All files
that support the findings of this study are available from the correspond-
ing author upon reasonable request.

Data availability
The MS proteomics data have been deposited to the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE
partner repository with the dataset identifier PXD001442.31 All other data
that support the findings of this study are available from the correspond-
ing author upon reasonable request.
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