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Abstract

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a highly adaptive pathogenic

bacteria with a serious public health concern due to its increasing resistance to antibiotics.

Therefore, identification of novel drug targets for S. Typhimurium is crucial. Here, we first

created a pathogen-host integrated genome-scale metabolic network by combining the met-

abolic models of human and S. Typhimurium, which we further tailored to the pathogenic

state by the integration of dual transcriptome data. The integrated metabolic model enabled

simultaneous investigation of metabolic alterations in human cells and S. Typhimurium dur-

ing infection. Then, we used the tailored pathogen-host integrated genome-scale metabolic

network to predict essential genes in the pathogen, which are candidate novel drug targets

to inhibit infection. Drug target prioritization procedure was applied to these targets, and

pabB was chosen as a putative drug target. It has an essential role in 4-aminobenzoic acid

(PABA) synthesis, which is an essential biomolecule for many pathogens. A structure based

virtual screening was applied through docking simulations to predict candidate compounds

that eliminate S. Typhimurium infection by inhibiting pabB. To our knowledge, this is the first

comprehensive study for predicting drug targets and drug like molecules by using pathogen-

host integrated genome-scale models, dual RNA-seq data and structure-based virtual

screening protocols. This framework will be useful in proposing novel drug targets and

drugs for antibiotic-resistant pathogens.

Introduction

S. Typhimurium, is a gram-negative invasive and facultative pathogen that can infect various

animal species [1]. Upon infection, it mostly causes food poisoning and leads to gastroenteritis

in humans [2]. Salmonella infection causes 130,000 deaths every year, and it mostly affects peo-

ple in low income countries [3]. S. Typhimurium is an intracellular pathogen, residing inside a

membrane-bound compartment within host cells during infection [4]. This compartment is

called Salmonella-containing vacuole (SCV), and it enables proliferation of S. Typhimurium

inside the host cell by escaping from the host defense mechanism. Although SCV is considered

a nutrition poor environment, this does not pose a problem for S. Typhimurium due to its
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highly adaptive lifestyle [1]. Besides being a highly adaptive pathogen, the increasing rate of

antibiotic resistance by S. Typhimurium has the potential to become a serious concern for

public health. Therefore, it is important to identify novel drug targets to eliminate S. Typhi-

murium infections [5]. Understanding the metabolic activities of a pathogen is an important

part of drug development process. Transcriptome data is a key data type that can elucidate

metabolic activities of an organism [6]. It reflects enzymatic activities of the organism via

mRNA levels that carry genetic information of those enzymes. One of the novel approaches in

transcriptomics is dual RNA-sequencing (dual RNA-seq), which can be used to elucidate path-

ogen-host relationship since it measures mRNA levels of pathogen and host simultaneously

during infection [7, 8].

Genome-scale metabolic network (GMN) models have shown utility in the analysis of meta-

bolic activities of pathogen and host during infections [7, 9] Analysis of GMN models with con-

straint-based techniques to predict novel drug targets has the advantages of (i) being cost

effective, (ii) being time efficient, (iii) providing a wide range of analyses of metabolic pathways

at the same time. There are several studies about the prediction of novel drug targets to elimi-

nate pathogen induced infections by analyzing GMN models [10]. Most widely used constraint-

based computational approach for the analysis of GMNs is Flux Balance Analysis (FBA). FBA is

a mathematical optimization technique that uses linear optimization to predict distribution of

metabolic fluxes at steady state conditions. It uses an objective function besides constraints to

select an optimum point from the flux solution space [11]. In silico gene deletion analysis is

another widely used constraint-based analysis technique, which is used to determine potential

drug targets [12–18]. Several GMN models were reconstructed so far for different Salmonella
strains [19–21]. But these models are generic models, and they do not represent the metabolism

of Salmonella inside a host cell. There are several techniques to create condition specific GMN

models by mapping transcriptome data on to the generic GMNs. One of the commonly used

transcriptome data mapping methods to generate condition specific GMNs is Gene Inactivity

Moderated by Metabolism and Expression (GIMME) algorithm [22], which predicts active and

inactive reactions in a GMN based on mRNA levels belonging to a particular condition.

Infection leads to a set of intricate interactions between pathogen and host cells, and these

interactions should be taken into account in the process of identification of novel drug targets

[9]. Pathogen-host integrated GMNs have potential to shed light on pathogen-host interac-

tions (PHI) when integrated with dual RNA-seq data [7]. Pathogen-host metabolic modeling

is a multi-cellular interaction modelling approach, where GMNs of both pathogen and host

organisms are integrated in the simulations of metabolic phenotypes. Even if not commonly

used yet, some pathogen-host GMNs are available in the literature [23, 24]. Here, we aim to

provide a better insight into S. Typhimurium and host interactions by taking advantage of

pathogen-host integrated GMNs and dual RNA-seq data in order to determine novel drug tar-

gets that can eliminate S. Typhimurium induced infections. We further report potential drugs

for the identified drug target candidates by using a drug repositioning based approach.

Through a prioritization criteria, pabB was selected as a high-ranked putative target, and a

structure-based screening of novel drugs for pabB was performed using molecular docking

simulations. To our knowledge, this is the first study that reconstructs a condition-specific

pathogen-host GMN model by mapping dual RNA-seq data to predict novel drug targets.

Results

Pathogen-host integrated genome scale metabolic network analysis

A pathogen-host integrated GMN model was reconstructed in this study for the first time in

literature for S. Typhimurium, with a total of 3586 genes from both organisms and 11,029
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reactions. This model was used to generate condition-specific pathogen-host GMN models by

mapping the dual RNA-seq data from 0th, 8th and 16th hours of infection [25]. GIMME was

used to integrate the model and the transcriptome data, and the number of reactions for the

corresponding condition-specific pathogen-host GMNs are given in Table 1.

Pathogen-host GMN was created by combining generic human and S. Typhimurium GMN

models, and the number of reactions decreased in the condition-specific pathogen-host GMN

models since they represent infected HeLa cell by S. Typhimurium in specific conditions.

Nearly 2500 reactions were discarded from the generic Pathogen-Host GMN model since they

were not active at the beginning of infection based on mRNA levels. On the other hand, the

reaction profile of condition-specific pathogen-host GMN is different between the beginning

and the late stages of infection. As infection progresses, the number of HeLa reactions remains

almost the same while S. Typhimurium reactions dramatically increase (Table 1). The reaction

profiles at the beginning of infection (0th hour) and at late stage of infection (16th hour) were

compared. Even if there is not a considerable change in the number of HeLa reactions, the

reaction profiles are different between the two conditions (Fig 1). During the infection, S.

Typhimurium must adapt to the nutrition environment and physical conditions to survive

inside the host [26]. Therefore, the increase in the number of S. Typhimurium reactions dur-

ing the infection can be attributed to the activation of genes that might be necessary for the

adaptation and proliferation of the pathogen. The reaction profiles of condition-specific patho-

gen-host GMNs were compared to each other in order to identify alterations in metabolic

pathways based on the progress of infection. For host and pathogen separately, reactions only

active in the condition-specific GMN at the beginning of infection (GMN0th) and only active

in the post-infection condition-specific GMN at the 16th hour (GMN16th) were identified and

grouped by their pathways. The identified metabolic pathways and corresponding number of

infection-time specific reactions are given in Fig 1.

Fig 1. shows that there is severe modulation in the lipid related pathways of host in infec-

tion. Lipid related pathways of the host are known to be subjected to modulation during the

invasion of bacteria [27]. On the other hand, multiple metabolic pathways of S. Typhimurium

are altered during infection based on Fig 1. Most dramatic change is in glycerophospholipid

metabolism, which is one of the most important pathways for dual-membrane envelope of

gram-negative bacteria [28]. There is also a dramatic change in alternate carbon metabolism,

implying the utilization of different carbon sources other than glucose in the late stage of infec-

tion. Even if glucose is major carbon source for S. Typhimurium, it utilizes different carbon

sources during infection [29]. Cofactor and prosthetic group biosynthesis, which is tightly

related to enzymatic activities, is also altered as expected since enzymatic activities become var-

ied as infection progress.

The first step in the validation of GMN models is comparing predicted flux rates with

experimental data from literature. FBA was performed to predict flux rates of GMN models by

maximizing TB (see Material and Methods). Ethanol and succinate production rates were set

Table 1. The reaction and metabolite numbers of condition specific pathogen-host GMN models.

Condition-specific GMN at the beginning

of infection

Post-infection condition specific GMN

at 8th hour

Post-infection condition specific GMN

at 16th hour

Number of Reactions 8773 8933 9089

Number of Metabolites 6941 6982 6979

Number of HeLa reactions 6595 6681 6536

Number of S. Typhimurium

Reactions

2178 2252 2553

https://doi.org/10.1371/journal.pone.0268889.t001
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Fig 1. The differences in reaction profiles of condition-specific pathogen-host GMNs grouped by pathways. Pathways with at least 2

differential reactions are given. Red and green bars represent the number of HeLa cell reactions that are only active in 0th hour and 16th
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to zero based on literature information [30], and the other constraints were set as detailed in

the section Materials and Methods. Predicted secretion rates of major by-products for S. typhi-

murium are given in Table 2 together with the literature-reported secretion rates at infection.

The relative rates of by-products predicted by the pathogen-host integrated condition-specific

model at 16th hour are in perfect agreement with the experimental data from HeLa-infecting S.

Typhimurium cells [30]. Repeating simulations by using the non-reduced model leads to rates

about 20% higher than the reduced model predictions. The use of only reduced Salmonella
model without the host network, on the other hand, led to 25% higher acetate secretion rates.

Predicted acetate, formate, and lactate secretion rates at 8th hour of infection, on the other

hand, are very close to the rates predicted for the beginning of infection (Fig 1). Therefore, for

the rest of the study, we used the model reconstructed for the 16th hour of infection as the

model representative of the infectious state of the organism.

Identification of potential drug targets

Prediction of essential genes (EG) for the survival of pathogen inside host organism is the pri-

mary step for most of the drug discovery processes. Enzymes produced from EGs are potential

drug targets that can be targeted with chemical molecules to eliminate the pathogen. EGs for

the infection were predicted by using GMN16th, which represents the infectious state. Here,

140 EGs were predicted for the infection. Predicted 140 EGs were compared with literature by

using Database of Essential Genes (DEG) [31], which reports data from three experimental

gene deletion studies from rich medium experiments [32–34] Data were available for 137 of

140 predicted EGs, 93 of which were reported as essential genes in at least one study (68%). (S1

Table). The genes falsely predicted as essential can be attributed to the fact that the experi-

ments were performed in rich medium conditions with no host cells involved while the simu-

lations were performed by the pathogen-host integrated genome-scale metabolic network.

Drug targets should not show high amino acid sequence similarity with human proteins in

order to prevent side effects. Therefore, homology analysis was performed to identify drug tar-

gets that are similar to human proteins. The similarity was determined based on the predefined

cutoff value detailed in Materials and Methods. Out of 140 potential drug targets, 52 proteins

were discarded since they have high similarity with human proteins (S2 Table). Pathway

enrichment analysis was performed with non-homologous 89 proteins in order to characterize

hour respectively. Purple and blue bars represent the number of S. Typhimurium reactions that are only active in 0th and 16th hour

respectively. The pathway names are listed on the left side of figure.

https://doi.org/10.1371/journal.pone.0268889.g001

Table 2. Predicted flux rates obtained by FBA analysis of condition-specific pathogen-host integrated GMNs are compared with the experimental results.

Infection (0th hr) Flux Values

(mmol/gDW/h)

Infection (8th hour) Flux Values

(mmol/gDW/h)

Infection (16th hour) Flux Values

(mmol/gDW/h)

Experimental (nM/cell/h)

[30]

D-Lactate

Secretion

0 0 11.29 10 ± 3

Acetate

Secretion

1.94 2.17 6.80 4 ± 2

Formate

Secretion

10.86 9.14 3.55 2 ± 1

Succinate

Secretion

0 0 0 0

Ethanol

Secretion

0 0 0 0

https://doi.org/10.1371/journal.pone.0268889.t002
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potential drug targets (Fig 2). The most enriched pathway is the lipopolysaccharide biosynthe-

sis pathway, which is critical for the survival of S. Typhimurium since it maintains the func-

tionality of the outer membrane of the pathogen [35]. Another enriched pathway is the

biosynthesis of amino acids, and it is a reasonable metabolic pathway that can be targeted

since it is indispensable for pathogens [36]. Like lipopolysaccharides, peptidoglycans are also

indispensable molecules for the functionality of bacterial cell wall [37], and their biosynthesis

pathway was also captured (Fig 2). Consequently, the general composition of enriched path-

ways indicates that targeted proteins serve in the pathways that are crucial for amino acid and

cell membrane metabolisms.

Druggability analysis was performed to identify potential drug targets that can be targeted

with chemical molecules. The druggability analysis aims to identify proteins that have a high

affinity to bind to drug-like molecules since some proteins do not have this property [18].

Here, 43 potential drug targets that have high affinity to bind drug-like molecules were deter-

mined among 89 non-homologous pathogen proteins (S3 Table). Determining potential drug

targets that are broadly distributed among other harmful bacteria is one of the important steps

of the prioritization process. [18]. To identify such potential drug targets, broad-spectrum

analysis was performed. Finally, 28 potential drug targets that are non-homologous to human

proteins, druggable and broadly distributed among other bacteria were determined. The list of

final potential drug targets is given in Table 3 and S4 Table. Of 28 predicted potential drug tar-

gets, 20 were reported as essential in the DEG database. When we ranked the drug target list in

terms of broad spectrum score, i.e. number of pathogenic bacteria with significantly similar

sequence of the gene, 16 of the top 20 genes were essential based on DEG (80%).

Analysis of the prioritized drug targets

The prioritized drug targets (Table 3) were clustered into pathways that are crucial for the sur-

vival of the pathogen. There are four proteins, pabB, folA, folK, folP, that take part in folate

biosynthesis pathways. For nearly all organisms, the folate biosynthesis pathway is one of the

indispensable pathways in order to maintain life. Folates are necessary for the production of

Fig 2. Pathway enrichment analysis result. The values on the x axes indicates number of drug targets in the related pathway with no

homology to human proteins.

https://doi.org/10.1371/journal.pone.0268889.g002
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essential biomolecules such as nucleic acids and amino acids. Most bacteria, fungi and plants

can synthesize folate, while animal cells take it up from external sources [38]. This pathway is a

potentially promising drug target since human cells do not have a folate synthesis mechanism

that might be manipulated by a pathogen. Five of the prioritized drug targets have functional-

ity in the biosynthesis of amino acids (dapB, dapD, mtnN, aroB, aroC). dapB and dapD take

place in L-lysine biosynthesis via diaminopimelic acid (DAP) pathway, and the side product of

this pathway is m-DAP, which is an essential biomolecule for peptidoglycan cell wall for gram-

negative bacteria [39]. glmU has a role in the production of UDP-N-acetyl-alpha-D-glucos-

amine, which is essential for bacterial cell wall [40]. rmlC has an important role in the synthesis

Table 3. Model-derived potential drug targets that obey three criteria: No homology to human proteins, druggable, and broad-spectrum behaviour.

Locus

Names

Gene

Symbol

Protein Name Pathway Reported at

DEG

STM1824 pabB Aminodeoxychorismate synthase component 1 Folate biosynthesis Yes

STM0087 folA Dihydrofolate reductase Folate biosynthesis Yes

STM0183 folK 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase Folate biosynthesis No

STM3295 folP Dihydropteroate synthase Folate biosynthesis No

STM0064 dapB 4-hydroxy-tetrahydrodipicolinate reductase Biosynthesis of amino acids, L-lysine

biosynthesis via DAP pathway

Yes

STM0213 dapD 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase Biosynthesis of amino acids, L-lysine

biosynthesis via DAP pathway

Yes

STM0207 mtnN 5’-methylthioadenosine/S-adenosylhomocysteine nucleosidase Biosynthesis of amino acids, Cysteine and

methionine metabolism.

No

STM3486 aroB 3-dehydroquinate synthase Biosynthesis of amino acids, Phenylalanine,

tyrosine and tryptophan biosynthesis

No

STM2384 aroC Chorismate synthase Biosynthesis of amino acids, Phenylalanine,

tyrosine and tryptophan biosynthesis

No

STM3862 glmU Bifunctional protein GlmU UDP-N-acetyl-alpha-D-glucosamine

biosynthesis

Yes

STM2094 rmlC dTDP-4-dehydrorhamnose 3,5-epimerase Polyketide sugar unit biosynthesis,

Streptomycin biosynthesis

No

STM1772 kdsA 2-dehydro-3-deoxyphosphooctonate aldolase Lipopolysaccharide biosynthesis Yes

STM3316 kdsC 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase KdsC Lipopolysaccharide biosynthesis No

STM0988 kdsB 3-deoxy-manno-octulosonate cytidylyltransferase Lipopolysaccharide biosynthesis Yes

STM0310 gmhA Phosphoheptose isomerase Lipopolysaccharide biosynthesis No

STM0228 lpxA Acyl-[acyl-carrier-protein]—UDP-N-acetylglucosamine O-acyltransferase Lipopolysaccharide biosynthesis Yes

STM0134 LpxC UDP-3-O-acyl-N-acetylglucosamine deacetylase Lipopolysaccharide biosynthesis Yes

STM1200 tmk Thymidylate kinase Pyrimidine metabolism Yes

STM1707 pyrF Orotidine 5’-phosphate decarboxylase Pyrimidine metabolism Yes

STM1426 ribE Riboflavin synthase, alpha chain Riboflavin metabolism Yes

STM0417 ribH 6,7-dimethyl-8-ribityllumazine synthase Riboflavin metabolism Yes

STM0045 ribF Riboflavin biosynthesis protein Riboflavin metabolism Yes

STM3307 murA UDP-N-acetylglucosamine 1-carboxyvinyl transferase Peptidoglycan biosynthesis. Amino sugar and

nucleotide sugar metabolism

Yes

STM0129 murC UDP-N-acetylmuramate—L-alanine ligase Peptidoglycan biosynthesis. D-Glutamine and

D-glutamate metabolism

Yes

STM0123 murE UDP-N-acetylmuramoyl-L-alanyl-D-glutamate—2,6-diaminopimelate

ligase

Peptidoglycan biosynthesis.Lysine biosynthesis Yes

STM0128 murG UDP-N-acetylglucosamine—N-acetylmuramyl-(pentapeptide)

pyrophosphoryl-undecaprenol N-acetylglucosamine transferase

Peptidoglycan biosynthesis Yes

STM0124 murF UDP-N-acetylmuramoyl-tripeptide—D-alanyl-D-alanine ligase Peptidoglycan biosynthesis.Lysine biosynthesis Yes

STM3725 coaD Phosphopantetheine adenylyltransferase Pantothenate and CoA biosynthesis Yes

https://doi.org/10.1371/journal.pone.0268889.t003
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of L-rhamnose, which is an important saccharide for the virulence of some pathogens includ-

ing S. Typhimurium. The absence of L-rhamnose biosynthesis pathway in human cells makes

this drug target more appealing [41]. The survival of bacterium depends on the integrity of cell

envelope. kdsA, kdsC, kdsB, gmhA, lpxA and LpxC have roles in the production of lipopoly-

saccharides, which is critical for the formation of cell envelope [42]. tmk and pyrF are involved

in pyrimidine metabolism, which is crucial for all living organisms. tmk catalyzes the phos-

phorylation of thymidine 5’-monophosphate, which is an essential reaction for pyrimidine

synthesis [43]. ribE, ribF and ribH are required for the production of riboflavin, which is a pre-

cursor of flavin mononucleotide (FMN) and flavin adenin dinucleotide (FAD). Riboflavin syn-

thesis is a pathway required for the survival of gram-negative bacteria in the absence of

external riboflavin synthesis [18]. murA, murC, murE, murG and murF are involved in the

synthesis of peptidoglycans, which is an essential ingredient for bacterial cell wall biogenesis

[44]. murA catalyzes the first step of peptidoglycan biosynthesis, and deletion of murA leads to

death of Escherichia coli and Streptococcus pneumoniae. Fosfomycin is an antibiotic that targets

murA in order to kill bacteria [45]. Mur ligases are known to be attractive drug targets because

of their role in bacterial cell wall formation [46]. Pantothenate is a main precursor of coenzyme

A, and its absence leads to deficiency in bacterial growth. coaD is involved in the fourth step in

the coenzyme A biosynthesis pathway, which was investigated before as a suitable antibiotic

target [47].

Identification of potential drugs for pabB

4-aminobenzoic acid (PABA) synthesis is an attractive antibiotic target since it is an essential

biomolecule for many pathogens and it does not have a human counterpart. PABA has two

main functionalities in the bacteria; (i) it is a substrate for folic acid pathway, which is critical

for survival of pathogen, (ii) it is a precursor in coenzyme Q biosynthesis, which is essential for

virulence [48, 49]. PABA is synthesized in two steps, and the first step is catalyzed by pabA and

pabB enzymes by converting chorismate to 4-amino-4-deoxychorismate [50]. And, the second

step is the production of PABA from 4-amino-4-deoxychorismate. pabB was detected as one

of the putative drug targets in this study by our drug target prioritization pipeline. We specifi-

cally focused on pabB in the rest of our study as a drug target to eliminate Salmonella infec-

tions since it has critical functionality in PABA synthesis pathway, which is not represented in

human cells. pabB was reported to be essential experimentally in the DEG database, and,

among the identified drug targets with experimental validation (Table 3), it ranks 7th in terms

of the number of pathogenic bacteria strains that carry a gene with high sequence similarity

based on our broad-spectrum analysis. Additionally, we investigated the importance of pabB

in the pathogen-host integrated GMN model. Interactions of the metabolites of the pabB reac-

tion (chorismate, 4-amino-4-deoxychorismate, L-glutamate, L-glutamine) with the metabo-

lites of other reactions were visualized by creating a metabolite-metabolite interaction network

(S1 Fig). L-glutamate is directly related to numerous amino acids such as alanine, leucine and

asparagine. On the other hand, 4-amino-4-deoxychorismate is indirectly related with the pro-

duction of thymidine through tetrahydrofolate. It is also linked with the production of adenine

through R-Pantoate. Therefore, DNA synthesis is dependent on the production of 4-amino-

4-deoxychorismate through adenine and thymine synthesis which cannot be synthesized

when pabB is inhibited.

There is a very similar protein to this putative target in Escherichia coli, which is also called

pabB. Formic acid, which is widely used as an antibacterial agent in fodders, was reported in

DrugBank as a compound that targets pabB in Escherichia coli (strain K12) [51]. To our knowl-

edge, pabB was not offered or examined as a drug target for Salmonella species before. Hereby,
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protein docking and molecular dynamic analysis were performed to determine novel mole-

cules that can inhibit S. Typhimurium growth by binding pabB. The protein Aminodeoxy-

chorismate synthase component 1, which belonged to S. Typhimurium (strain LT2 /

SGSC1412 / ATCC 700720) with a UniProt ID: P12680 (PABB_SALTY), was taken for elabo-

rative structural and functional studies. The 3D structure of the protein is the core requirement

to carry out protein molecular docking studies and its unavailability necessitated the modeling

of the three-dimensional structure. Herein, first step was the comparative 3D modeling of the

query protein with the application of MODELLER Software. The crystal structure of 4-ami-

no4-deoxychorismate (ADC) synthase (PDB ID: 1K0E) was chosen as a template as its percent

identity was 76.38% and query coverage was 99% against P12680. The MODELLER yielded

five 3D structures of P12680 protein, out of which the best model with higher accuracy was

selected (S2 Fig) after thorough quality assessment using PROCHECK server. The Verify3D

passed the modelled structure with 87% indicating 80% amino acids of the built model having

score > = 0.2 in the 3D/1D profile. Further, the Ramachandran plot (S3 Fig) showed 92.7%

residues in the most favoured region whereas only 0.3% residues were reported in disallowed

region. Once the model was finalized, Mg2+ ion was incorporated into the built 3D structure

as magnesium ion is reported as the cofactor within the target protein in the UniProt indicat-

ing its role in the catalysis activity. Therefore, Mg2+ ion was complexed near the active site resi-

dues reported in UniProt and in literature [48].

The DoGSiteScorer produced 10 probable binding pockets, out of which pocket number

one was selected as the binding site to utilize for molecular docking. The selected pocket has a

druggability score of 0.83, suggesting the prime region for drug binding. The binding pocket

was analyzed in Chimera software [52], and validated as it covers the active site amino acid res-

idues reported in the UniProt along with the amino acid residues coordinating with the Mg2+

ion. The predicted binding site can be seen in (S4 Fig).

Once all the 54,000 drug-like compounds were screened against the target protein

(P12680), the lowest binding energy conformation of each single 54,000 compound(s) was

obtained. The overall binding energies ranked against the P12680 are represented through a

histogram in Fig 3.

The thorough analysis of the results suggested that 1659 compounds showed promising

binding free energy ranging from -12.42 kcal/mol to -9.04 kcal/mol, while 22,231 compounds

having binding free energies within the range of -5.66 kcal/mol to -2.28 kcal/mol. Moreover,

top ten compounds that were docked near the active site of the target protein were (having

binding free energy of -12.42, -12.02, -11.92, -11.90, -11.91, -11.98, -11.77, -11.73, -11.42,

-11.72) retrieved to further investigate their chemical interactions with amino residues of tar-

get protein. The aforementioned top ten compounds with their ZINC IDs are reported in

(S5 Table).

The protein-ligand complex of each top ten compound was explored to inspect the chemi-

cal bonds and interactions occurring within the protein-ligand complex. LigPlot+ generates

the atomic interactions taking place among the target protein and ligand (drug) through

hydrogen bonds and hydrophobic contacts. Each of the ten protein-ligand complex analyzed

in LigPlot+ has shown ligand interactions with the Mg2+. The reported active site residues

from UniProt (i.e. Lys275 and Glu259) were found to be interacting with the top ten ligands,

out of which Lys275 can be seen making hydrogen bond with five ligands and hydrophobic

contacts with two ligands. (Table 4). On the other hand, Glu259 makes hydrophobic contacts

with six of the ligands. The most common amino acid residues interacting with top ten ligands

through hydrogen bonding were identified as Thr277, Gly427, Glu440, Lys444, Lys275,

Arg411 and Glu259. Finally, each of the amino acid residues making hydrogen bonds and

hydrophobic contacts interaction with the top ranked 10 compounds is presented in Table 4
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and visualized in S5–S7 Figs. There is not any report in literature about the use of these com-

pounds against pathogenic bacteria. Therefore, they remain open to experimental validation.

Conclusions

Analysis of pathogen-host integrated GMN models is a well-suited approach in terms of iden-

tifying novel drug targets by considering pathogen-host interactions. It allows tracking the

response of pathogen and host simultaneously during infection by mapping infection-induced

dual-transcriptome data. There are some pathogen-host GMN models published [23, 24], but

to our knowledge, this is the first study in the literature that determines drug targets by analys-

ing condition-specific pathogen-host integrated GMNs created by mapping dual-

Fig 3. Histogram illustration of the overall binding energy retrieved through virtual screening.

https://doi.org/10.1371/journal.pone.0268889.g003
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transcriptome data. We here reconstructed and analyzed condition-specific integrated GMN

models to identify novel drug targets for S. Typhimurium induced infections. We used priori-

tization steps to identify best suitable novel drug targets. After prioritization processes, we

identified 28 putative drug targets, and pabB was chosen as a high ranked drug target based on

our prioritization pipeline, literature information and novelty. Subsequently, homology and

molecular docking analyses were performed to identify candidate compounds that inhibit

pabB. The top ten compounds in terms of binding free energy were identified and reported.

Consequently, analysing S. enterica metabolism inside the host cell has enabled us to compre-

hend metabolic alterations in both HeLa cells and S. enterica along with determining novel

drug targets. Future studies may provide more arguments for the proposed drug targets and

inhibitors in this study. This study can be used as a guideline for creating and analysing condi-

tion specific pathogen-host GMN models.

Materials and methods

The flowchart of the pipeline followed in this study is given in Fig 4. Each step is detailed in

the sections below.

Transcriptome data

The dual RNA-seq data of infected HeLa cells and S. Typhimurium strain SL1344 [25] was

downloaded from NCBI Gene Expression Omnibus (GEO) Database [53]. The dataset ID in

the GEO database is GSE117236. The samples collected at the beginning of infection and the

post-infection data at 8th and 16th hours were used in this study. Each time point included

duplicate samples. Principal component analysis (PCA) was used to identify any possible outli-

ers in the data, and no outliers were detected (S8 Fig).

Table 4. Protein residues involved in the hydrogen and hydrophobic interactions with top ten best ranking compounds (ligands), analyzed through LigPlot+.

S.

No

ZINC IDs Residues making hydrogen bond interaction Residues making Hydrophobic contacts

1 ZINC7879733 Thr277(A), Gly427(A) Lys444(A), Arg411(A)

Lys275(A)

Ile410(A), Ala424(A), Gly427(A) Asn214(A) Trp391(A), Ser423(A), Gly426(A), Glu259(A)

Ile368(A), Cys422(A), Gly425(A), Gly276(A), Ile274(A)

2 ZINC15179659 Gly427(A), Arg411(A), Lys444(A), Thr277(A),

Glu440(A)

Lys275(A), Trp391(A), Val445(A), OThr277(A) Ala424(A), Ser367(A), Ile410(A), Gly425

(A) Ser423(A), Ile368(A), Ile448(A), Asn214(A), Gly426(A) Thr412(A), Cys422(A), GIle274

(A), ly276(A)

3 ZINC14880941 Thr277(A), Ser423(A) Gly427(A), Gly276(A)

Glu440(A), Trp391(A) Asn214(A)

Lys444(A), Arg411(A), Val445(A), Ile410(A) Lys275(A), Ile274(A), Gly425(A), Ala424(A),

Ile368(A) Gly426(A), Ile448(A), Glu259(A), Cys422(A)

4 ZINC58542694 Arg411(A), Thr277(A), Glu440(A), Lys275(A),

Gly427(A),

Lys444(A), Gly276(A), Trp391(A), Ile410(A), Ser423(A), Ala424(A), Ile274(A), Asn214(A),

Ile368(A), Val445(A), Gly425(A), Gly426(A), His340(A), Ser367(A),

5 ZINC1201089024 Trp391(A), Lys275(A), Asn214(A), Arg411(A),

Glu440(A), Thr277(A), Gly427(A),

Lys444(A), Gly276(A), Ile410(A), Ile274(A), Gly425(A), Ile368(A), Val445(A), Glu259(A),

Ser423(A), Gly426(A) Cys422(A), Ile448(A),

6 ZINC27071723 Lys444(A), Trp391(A), Lys275(A), Glu440(A),

Thr277(A), Gly427(A),

Arg411(A), Gly276(A), Ile274(A), Val445(A), Ser423(A), Gly425(A), Ile410(A), Cys422(A),

Gly426(A), Thr412(A), Ala424(A), Ile448(A), Asn214(A), Glu259(A), Ile368(A),

7 ZINC7133393 Arg411(A), Gly425(A), Glu440(A), Thr277(A),

Gly427(A)

Lys444(A), Gly276(A), Trp391(A), Ile410(A), Ala424(A), Val445(A), Ser423(A), Glu259(A),

Asn214(A), Gly426(A)Ser367(A)

8 ZINC7879735 Gly427(A), Lys444(A), Arg411(A), Glu440(A),

Thr277(A),

Lys275(A), Gly425(A), Gly276(A), Asn214(A), Ile274(A), Ala424(A), Ile410(A), Ser367(A),

Trp391(A), Ser423(A), Gly426(A), Cys422(A), Val445(A),

9 ZINC58542238 Gly427(A), Gly425(A), Glu440(A), Lys275(A),

Thr277(A)

Arg411(A), Lys444(A), Gly276(A), Trp391(A), Ser423(A), Val445(A), Ile274(A), Ile410(A),

Asn214(A), Ala424(A), Gly426(A), His340(A), Ile368(A), Thr412(A), Cys422(A), Ile448(A),

10 ZINC7538530 Arg411(A), Glu440(A), Thr277(A), Gly427(A), Lys444(A), Gly276(A), Lys275(A), Ile274(A), Gly425(A), Trp391(A), Ile410(A), Ser423(A),

Ala424(A), Gly426(A), Asn214(A), Glu259(A), Cys422(A), Val445(A)

https://doi.org/10.1371/journal.pone.0268889.t004

PLOS ONE Dual RNA-Seq based Salmonella-human integrated metabolic network to screen drug targets

PLOS ONE | https://doi.org/10.1371/journal.pone.0268889 May 24, 2022 11 / 21

https://doi.org/10.1371/journal.pone.0268889.t004
https://doi.org/10.1371/journal.pone.0268889


Pathogen-host integrated genome scale metabolic network

Two different genome-scale metabolic models from the literature were used to reconstruct an

integrated pathogen-host genome scale metabolic network (GMN). A genome-scale metabolic

network of S. Typhimurium, called stm_v1.0, consisting of 2,545 reactions controlled by 1,271

genes was used as the pathogen metabolic network [21]. As the host GMN, a recent recon-

struction of human metabolism with a substantial amount of curation, called iHsa, was used,

which covered 8,336 reactions and 2,315 genes [54]. S. Typhimurium is an intracellular patho-

gen. Therefore, the GMN of the pathogen was placed inside the cytoplasm of the host GMN as

a separate compartment to create the pathogen-host integrated GMN. Here, an extensive liter-

ature research was performed to identify cytosolic host metabolites that can be consumed by

the pathogen during infection. An exchange reaction with the extracellular environment must

be available for these metabolites in the S. Typhimurium metabolic network. 38 such metabo-

lites were identified [26, 29, 55–57], and they were allowed to be taken up by the S. Typhimur-

ium GMN from the cytoplasm of the host (S6 Table). In addition, the pathogen was allowed to

secrete all its exchange metabolites to the host cytoplasm as defined by the model secretion

reactions (S7 Table). As a result, the pathogen-host integrated GMN consisting of 11,029 reac-

tions controlled by 3,586 genes was created by using COBRA Toolbox v.3.0 on MATLAB pro-

gramming platform [58].

Flux balance analysis

Pathogen-host integrated GMN was analyzed using flux balance analysis (FBA) method to pre-

dict fluxes associated with the infection times studied. FBA searches the solution space defined

Fig 4. The flowchart of the pipeline followed in this study.

https://doi.org/10.1371/journal.pone.0268889.g004
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by mass balance and reaction reversibility constraints to find an optimal solution with the help

of an objective function. FBA assumes that the system is at steady state, i.e. the concentrations

of intracellular metabolites do not change over sufficiently long time, leading to linear mass

balance constraints [59]. The objective function of pathogen-host integrated GMN was defined

based on a weighted relationship between host and pathogen biomass, and the biomass com-

position formulas were taken from iHsa and stm_v1.0 models (Eq 1) [21, 54, 60]. HB, PB and

TB are host biomass, pathogen biomass and total biomass respectively in Eq (1), where α and β
are maximum host and pathogen biomass production rates in order. Using the constructed

pathogen-host GMN, α and β were calculated first with FBA via maximization of HB and PB

reactions separately. Later, maximum host and pathogen biomass production rates (α and β),

which were calculated as 0.39 and 0.28 respectively, were added to the equation as weights of

HB and PB to get TB, which represents the balanced effect of HB and PB. Eq 1 was added as a

reaction to the pathogen-host integrated GMN and later set as the objective function.

/ �HBþ b� PB ¼ TB ðEq1Þ

The upper bound of glucose uptake rate of S. Typhimurium was set to 5 mmol/gDW/h in

simulations based on the studies of Thiele and her coworkers [21]. The maximum uptake rate

of other available carbon sources for S. Typhimurium inside the host cell was limited to 20% of

its glucose uptake rate. Oxygen uptake rate of S. Typhimurium was set to 1 mmol/gDW/h to

mimic the hypoxic environment during infection [61]. The host cell was allowed to utilize only

metabolites that were found in the Dulbecco’s Modified Eagle’s Medium (DMEM) since the

infection experiment for the dual RNA-seq data, which was used in creating condition-specific

integrated GMN models, was carried out in this medium (S8 Table). In GMN models, alter-

nate optima can be an issue in interpreting the results of FBA since there might be multiple

flux distributions that result in the same value for the objective function. Minimization of the

sum of squares of all flux values was applied to prevent alternate optima [62]. The principle of

this method was proposed based on the accomplishment of the cellular goals with minimal

resource expenditure since the flux values are an indication of the amount of depletion of

resources [63].

Integrating transcriptome data with pathogen-host integrated GMN

Condition specific GMNs were generated by mapping dual RNA-seq data on the pathogen-host

GMN to simulate infection states at different time points. Gene Inactivity Moderated by Metab-

olism and Expression (GIMME) algorithm was used as the mapping algorithm to generate con-

dition specific GMNs [22]. GIMME determines active reactions based on a threshold put on the

mRNA levels in the data, where reactions below the thresholds are set as inactive. GIMME gen-

erates a GMN with the desired functionality using the objective fraction parameter, and it adds

the reactions in the inactive set back if their removal affects the desired functionality [22]. The

threshold value was determined as the quarter of the mean of the transcriptome data. Since the

average gene expression values were much higher in HeLa cell compared to S. Typhimurium in

the utilized dual RNA-seq data (S9 Fig), the threshold value was separately determined for both

organisms. Then, since GIMME algorithm accepts a single threshold, the difference between

the organism-specific threshold values were added to the reaction scores of S. Typhimurium,

and the threshold value obtained from the human transcriptome was used as the threshold

value in GIMME simulations. The objective fraction parameter was set to 0.2 in order to ensure

that the condition specific integrated GMN produces at least 20% of the maximum TB. Three

different condition specific GMNs were produced as a result to represent the start of infection

(0th hour) and infections at 8th and 16th hours.
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Identification of drug targets

Gene deletion analysis is a widely used approach in constraint-based metabolic modeling to

predict potential drug targets, and it is performed by in silico deletion of genes in the GMN

[10]. The analysis aims to obtain essential genes for the desired functionality of a GMN, such

as preventing growth of pathogen. FBA can be used to predict essential genes in an organism

by setting the rate of the associated reaction(s) to zero for each gene. If inactivation of the reac-

tion(s) lead to zero growth rate, the gene is essential for the pathogenic organism and it can be

used as a drug target. In this study, gene deletion analysis was performed to identify potential

drug targets that can restore the metabolic changes in the host cell caused by S. Typhimurium

induced infection. GIMME-based condition-specific GMNs were used in the analysis. A non-

zero rate for the production of HB together with zero rate for PB was used as the desired func-

tionality of the condition specific GMNs in gene deletion analysis. Using the FBA technique to

maximize HB and PB separately, essential genes were obtained, and the enzymes that catalyze

these reactions were chosen as potential drug targets.

The identified drug targets were further filtered based on the approach applied elsewhere

[18]. Briefly, the steps in the approach followed are as follows: (i) Homology analysis is a criti-

cal part of drug target selection process, and the aim of the analysis is determining drug targets

that are not similar to host proteins in order to avoid side effects of drugs. Homology analysis

was performed using BLASTp algorithm, and drug targets that are not similar to human pro-

teins were identified [64]. As BLASTp parameters, cut off for the expected value (E-value) was

chosen as 1x10-4, and the maximum sequence identity for the determination of human-non-

homolog drug targets were chosen as 30% [18]. Pathway enrichment analysis was performed

with the identified human-non-homolog drug targets by using KOBAS V3.0 [65] to elucidate

pathways that are expected to be crucial for the survival of S. Typhimurium inside the host. (ii)

Another important step in the model-based drug target selection process is the determination

of druggable proteins, and the goal of this selection is identifying drug targets that can be tar-

geted with drug-like chemical compounds. Druggable targets were identified using BLAST

algorithm in Drugbank database [51], and the E-value was chosen as 10−25 [18]. (iii) Broad

spectrum analysis was performed for the identification of drug targets that are broadly distrib-

uted among other bacteria. Broad spectrum analysis is very beneficial in order to determine

drug targets that can be effective against co-infections or multiple infections. In addition, the

proteins that are broadly distributed among other bacteria may indicate low mutation rate, so

developing antibacterial resistance can be harder for the targeted bacteria. Broad spectrum

analysis was performed using PBIT web browser [66], which contains protein sequences of

181 pathogenic organisms. E-value cut-off of 1x10-5, bit score of 100 and sequence identity of

35% were chosen as parameter values [18, 66]. For the broad spectrum target determination

criteria, targets available in at least 40 pathogenic strains were chosen [18].

Homology modeling of target protein and active / binding pocket

prediction

As the 3D structure of target protein was not available in the Protein Data Bank (PDB) [67],

the homology modeling was performed to model the target protein’s 3D structure. In the first

step, the appropriate template protein was searched by BLASTp against the PDB database. The

template that matches the criteria of query coverage� 90% and percent identity� 70% was

selected. The Modeller software v9.20 was used to perform comparative protein structure

modelling [68–71]. The Modeller works by satisfying the spatial restraints along with employ-

ing specific geometrical calculations generating possible coordinate(s) for the location of each

single atom of target protein [70]. The homology modeling was performed through Modeller
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by implementing a series of python script(s), which resulted in generating five models with

their Discrete Optimized Potential Energy (DOPE) values. The 3D model with the lowest

DOPE value was selected as the predicted 3D structure of the target protein. The predicted 3D

model was then validated through verify3D and Ramachandran Plot via PROCHECK server

to ensure its reliability and quality. The Verify3D program was used to interpret the quality of

the built model, as Verify3D computes the compatibility of 3D model of target protein against

its amino acid sequence [72]. Further, Ramachandran Plot was analyzed to assess the stereo-

chemical properties of the predicted 3D model [73].

The built target protein model was subjected to DoGSiteScorer to identify potential binding

pockets. The DoGSiteScorer is an automated grid-based program which utilizes difference of

Gaussian filter to identify the potential binding pocket present within the protein [74, 75]. The

program provides ten potential binding pockets with druggability scores. Out of the ten pre-

dicted pockets, the one with the highest druggability score is supposed to be a rich binding

pocket and therefore, selected for study. The program also evaluates the depth, surface area

and volume for each predicted binding pocket.

Docking-based virtual screening

To carry out the rigorous virtual screening of drug-like molecules against the target protein, a

library of chemical compounds was curated. The ZINC15 database was used to retrieve the

drug-like molecules following certain criteria of compound’s molecular weight and logP values

[76]. The drug-like compounds having logP value� 5 and Molecular Weight� 375 Daltons

were obtained from the database in SDF format. A total of 54,000 drug-like compounds were

compiled and prepared into the required PDBQT format by using Open Babel. All the 54,000

compounds were minimized with force field MMFF94 via Open Babel [77].

The AutoDock-GPU [78] was chosen to execute molecular docking and virtual screening

of curated drug-like molecules (ligands) library against the target protein (P12680). The Auto-

Dock GPU was chosen because of the prolonged execution times whilst using AutoDock4.

AutoDock-GPU, which is an OpenCL and cuda based implementation of Autodock4, was cre-

ated to utilize large number of GPU cores and speed up docking by using parallel processing

[79, 80]. So, to execute molecular docking, the target protein’s modelled 3D structure was pre-

pared by adding hydrogens and its conversion into the required format of PDBQT. After-

wards, the grid search box dimensions were set carefully to cover the predicted binding site

retrieved from the DoGSiteScorer. Further docking steps were carried out to create docking

parameter files, and, eventually, the grid maps FLD file, docking parameters files, GPF and

DPF were made. Once the necessary files were created, the molecular docking was performed

to screen all the 54,000 compounds with 20 Genetic Algorithm (GA) runs against target recep-

tor’s binding site. The virtual screening yielded binding free energy for 20 runs of all the

54,000 compounds. Ultimately, the lowest binding energy of each compound was extracted for

structural and functional evaluation. Moreover, re-docking step was performed by execution

of all the Autodock4 steps utilizing only one ligand against the target protein to validate pre-

dicted binding site.

LigPlot+ program was used to generate 2D diagrams of the target protein and ligand

complex. For the LigPlot+ analysis, protein-ligand complex in PDB format was taken. The

atomic interaction(s) within the diagram is shown, where ligand and protein’s interactive

residues are represented in ball-stick format. From the diagram, the amino acid residues of

the target protein making chemical interactions with the ligand can be identified. The Lig-

Plot+ highlights the hydrogen bonding within the atoms of protein and ligand with green

dotted lines.
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Supporting information

S1 Fig. Metabolic network of pabB related metabolites. The red arrows indicate the reaction

controlled by pabB (L-Glutamine + chorismate -> L-Glutamate + 4-amino-4-deoxychoris-

mate).

(TIF)

S2 Fig. The predicted 3D structure of P12680.

(TIF)

S3 Fig. Ramachandran plot of the predicted 3D structure of target protein (P12680).

(TIF)

S4 Fig. The predicted binding pocket is shown as surface in sand brown color while the

protein chain as ribbon in blue color. From the figure, it can be seen that Mg2+ ion is sub-

merged within the predicted binding pocket.

(TIF)

S5 Fig. A) is representing the LigPlot+ of P12680 showing atomic interaction between protein

(residues/ Mg2+ ion) and ligand (ZINC7879733). The atomic linkages due to hydrogen bond-

ing can be identified from the diagram. Similarly, B) represents the LigPlot+ analysis of

P12680 and ligand (ZINC15179659), C) represents the LigPlot+ for P12680 and ligand

(ZINC14880941), and D) represents the LigPlot+ for P12680 and ligand (ZINC58542694).

(TIF)

S6 Fig. A) is the LigPlot+ for P12680 and ligand (ZINC1201089024), all the atomic linkages

occurring between the protein-ligand complex can be analyzed. Likewise, B) represents the

LigPlot+ for P12660 and ligand (ZINC27071723), C) is LigPlot+ for P12680 and ligand

(ZINC7133393) and D) is LigPlot+ for P12680 and ligand (ZINC7879735).

(TIF)

S7 Fig. A) is the LigPlot+ for P12680 and ligand (ZINC58542238) complex and B) is the Lig-

Plot+ for P12680 and ligand (ZINC7538530) complex. The overall amino acid residues of

P12680 which interact with each of the top ten compounds (ligands) making hydrogen bonds

and hydrophobic contacts.

(TIF)

S8 Fig. Principal component analysis (PCA) of GSE117236. The red, blue and green dots

represent beginning of infection, 8th hour of infection and 16th hour of infection respectively.

(TIF)

S9 Fig. Box plots of gene expression values of HeLa cell and S. Typhimurium.

(TIFF)

S1 Table. 140 essential genes based on DEG database.

(DOCX)

S2 Table. 89 potential drug targets that are not similar to human proteins.

(DOCX)

S3 Table. Potential drug targets that have high affinity to bind drug-like molecules.

(DOCX)

S4 Table. The list of final potential drug targets. The last column indicates broad spectrum

analysis results.

(DOCX)
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Writing – original draft: Kadir Kocabaş, Alina Arif.

Writing – review & editing: Reaz Uddin, Tunahan Çakır.
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57. Götz A, Goebelt W. Glucose and glucose 6-phosphate as carbon sources in extra- And intracellular

growth of enteroinvasive Escherichia coli and Salmonella enterica. Microbiology. 2010; 156: 1176–

1187. https://doi.org/10.1099/mic.0.034744-0 PMID: 20075042

58. Heirendt L, Arreckx S, Pfau T, Mendoza SN, Richelle A, Heinken A, et al. Creation and analysis of bio-

chemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc. 2019; 14: 639–702.

https://doi.org/10.1038/s41596-018-0098-2 PMID: 30787451

59. Varma Amit & Palsson Bernhard O. Metabolic Flux Balancing: Basic Concepts, Scientific and Practical

Use. Nat Biotechnol. 1994; 12: 994–998.

60. Jamshidi N, Raghunathan A. Cell scale host-pathogen modeling: Another branch in the evolution of

constraint-based methods. Front Microbiol. 2015; 6: 1032. https://doi.org/10.3389/fmicb.2015.01032

PMID: 26500611
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