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Introduction

Biological aging is a complex process controlled by stochastic, 
environmental, and genetic traits. A multitude of theories have 
been put forward to explain aging. Common to a number of 
theories1-7 is an impact of the age-dependent accretion of damage 
leading to cumulative functional impairments and ultimately to 
cellular death. The accumulation of damaged cellular compo-
nents strongly depends on the rate of reactions leading to damage 
and the persistence of the resulting material. The first process 
can be modulated by controlling the abundance of reactive oxy-
gen species (ROS) via both their generation and by scavenging 
processes. Persistence of damaged compounds depends on the 
effectiveness of different types of surveillance systems including 

repair, degradation, and remodeling of damaged components (for 
a review see ref. 8). Autophagy is one of the pathways leading to 
the degradation of damaged biomolecules and organelles.

Podospora anserina is an established aging model to study basic 
mechanisms of organismic aging. This filamentous ascomycete 
is characterized by a limited, short life span which is depending 
on the genetic constitution and on growth conditions.9 Aging of 
individuals can be followed macroscopically, since hyphal mor-
phology changes during senescence of this fungus. P. anserina is 
accessible to experimental manipulation both by classical genet-
ics as well as by genetic engineering.10-12 The consequences of 
such manipulations can be analyzed by established techniques.13 
Over the years, various pathways including those linked to DNA 
instability and maintenance,14-16 copper homeostasis,17,18 and ROS 
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The filamentous ascomycete Podospora anserina is a well-established aging model in which a variety of different 
pathways, including those involved in the control of respiration, ROs generation and scavenging, DNA maintenance, 
proteostasis, mitochondrial dynamics, and programmed cell death have previously been demonstrated to affect aging 
and life span. here we address a potential role of autophagy. We provide data demonstrating high basal autophagy levels 
even in strains cultivated under noninduced conditions. By monitoring an N-terminal fusion of eGFP to the fungal Lc3 
homolog PaATG8 over the lifetime of the fungus on medium with and without nitrogen supplementation, respectively, 
we identified a significant increase of GFP puncta in older and in nitrogen-starved cultures suggesting an induction of 
autophagy during aging. This conclusion is supported by the demonstration of an age-related and autophagy-depen-
dent degradation of a PasOD1-GFP reporter protein. The deletion of Paatg1, which leads to the lack of the PaATG1 serine/
threonine kinase active in early stages of autophagy induction, impairs ascospore germination and development and 
shortens life span. Under nitrogen-depleted conditions, life span of the wild type is increased almost 4-fold. in contrast, 
this effect is annihilated in the Paatg1 deletion strain, suggesting that the ability to induce autophagy is beneficial for 
this fungus. collectively, our data identify autophagy as a longevity-assurance mechanism in P. anserina and as another 
surveillance pathway in the complex network of pathways affecting aging and development. These findings provide per-
spectives for the elucidation of the mechanisms involved in the regulation of individual pathways and their interactions.
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scavenging19-21 have been demonstrated to affect aging. More 
recently, different quality control pathways were investigated and 
found to be effective at different levels. In particular, it has been 
found that overexpression of PaLon encoding a mitochondrial 
matrix protease leads to an increased healthy life span22 while 
the deletion of the gene shortens life span.23 PaCLPP, another 
mitochondrial matrix protease, and PaIAP, the iAAA protease of 
the inner mitochondrial membrane of P. anserina, are involved in 
temperature-dependent protein quality control.24,25 Finally, the 
manipulation of reactions of the apoptotic cell death machinery, 
that brings the life of P. anserina to an end, has been found to 
strongly affect life span.26-28

In a recent computational study, published data have been 
used to integrate different pathways involved in the control of 
the quality of mitochondria. In this mathematical model, the 
generation of molecular damage, spread of damage, biogenesis 
of cellular components, mitochondrial fission and fusion, and 
mitophagy, as a type of selective autophagy, are modeled and 
simulated. The results indicate that the analyzed pathways effec-
tively cooperate in a regulated way to keep mitochondria func-
tional over time.29,30 While the role of mitochondrial dynamics 
on aging was first reported in P. anserina31 and the impact of 
the generation of damage has been previously demonstrated,32 
the impact of autophagy on aging has not been investigated 
yet although autophagy has been studied in the context of vegeta-
tive incompatibility between strains of different genotypes and 
found to protect cells against death.33-35

Here, we address the impact of autophagy on aging and life 
span of P. anserina. We report the adaptation and use of tools 
developed for autophagy studies in yeast and higher eukary-
otes and show that autophagy acts as a longevity-assurance 
mechanism.

Results

The abundance of autophagosomes increases under nitrogen 
starvation and during aging

In a first series of experiments, we set out to investigate whether 
autophagy is induced by nitrogen starvation and during aging of 
P. anserina. For these analyses, a Gfp-PaAtg8 strain was gener-
ated, which expresses an N-terminal fusion of the GFP protein to 
PaATG8, the fungal ATG8 ortholog (in mammals MAP1LC3, 
hereafter referred to as LC3). Labeling of ATG8/LC3 allows the 
visualization of the translocation of the fusion protein from the 
cytosol to the autophagosome to the vacuole, where the final deg-
radation of the autophagosome takes place in fungi.

Fluorescence microscopy revealed that in juvenile strains  
(4 d old, grown on nitrogen-replete medium) GFP-PaATG8 was 
mostly diffusely distributed within the cytoplasm. During nitro-
gen starvation on medium lacking urea as a nitrogen source, a 
well-known regime to induce autophagy in other systems,36-40 the 
fusion protein is localized in bright punctate structures in nearly 
all hyphae (Fig. 1A), indicating that autophagy is induced under 
these conditions also in P. anserina. Although autophagosomes 
are visible, the GFP signal is not seen in the vacuole after 1 d on 
nitrogen-replete medium, an observation consistent with earlier 

findings of Pinar et al.41 in Aspergillus nidulans. Surprisingly, 
and in contrast to A. nidulans, in P. anserina also under nitro-
gen depletion the GFP-stained vacuoles are not detectable after 
this short period of time. However, prolonged incubation on this 
medium leads to the accumulation of the GFP signal in the vacu-
ole (Fig. 1A).

Next, we analyzed whether or not autophagy is upregu-
lated during aging of P. anserina. We compared the localiza-
tion of the fusion protein in young (4 d old) and senescent  
(20 d old) Gfp-PaAtg8 strains grown on nitrogen-replete (M2), 
as well as on nitrogen-depleted medium (M2-N), and quanti-
fied autophagosomes in the different cultures. In old cultures, a 
strong translocation of the fusion protein to punctate autophago-
some-like structures was observed suggesting a strong upregula-
tion of autophagy during aging (Fig. 1B and C). In senescent 
cultures, N-starvation was found to lead only to a slight increase 
of autophagosomes in comparison to senescent cultures grown 
on nitrogen-replete M2 medium (Fig. 1B and C). For visualiza-
tion of the vacuoles, differential interference contrast microscopy 
(DIC) was used in addition to fluorescence microscopy (Fig. S1A 
and S1B).

The autophagy-dependent degradation of a GFP fusion pro-
tein increases during aging

The determination of punctate GFP-ATG8 signals as a mea-
sure for the intensity of autophagy has to be viewed critically. An 
increase in number of autophagosomes may reflect an upregula-
tion of autophagy but as well it may result from an accumulation 
of autophagosomes due to an impairment of their translocation 
to the vacuole and the subsequent degradation. Consequently, 
in order to discriminate between the 2 possibilities, we used a 
modified experimental approach that originally was developed 
to monitor mitophagy in yeast.42,43 In this approach, in princi-
ple, the fate of a GFP fusion protein is followed. Upon degrada-
tion via autophagy, the processed GFP remains stable and can 
be detected by western blot analysis. To test whether this assay 
also works in P. anserina, 3 fusion proteins with different cel-
lular localizations were analyzed: PaSOD1-GFP, PaSOD2-GFP, 
and PaSOD3-GFP. The corresponding strains are described in 
Zintel et al.20 PaSOD1-GFP is localized in the cytosol, PaSOD2-
GFP in the perinuclear ER and PaSOD3-GFP in mitochondria. 
Total protein extracts were subjected to western blot analysis 
with a GFP antibody. As expected, the most prominent signal 
of processed GFP is found in PaSod1-Gfp, since this protein is 
highly abundant in total protein extracts. As a mitochondrial 
protein PaSOD3 is under-represented in total protein extracts of 
the PaSod3-Gfp strain. Thus, only the processed GFP is visible. 
Interestingly, while the PaSOD2-GFP is abundantly found in the 
extracts of the PaSod2-Gfp strain, no processed GFP is detectable 
(Fig. 2A). This suggests that the cytosolic as well as the mito-
chondrial PaSOD isoforms are degraded via autophagy but not 
the ER-located and presumably secreted PaSOD2.

To verify that the occurrence of processed GFP is indeed 
depending on a functional autophagy machinery, a strain lacking 
PaATG1, the serine/threonine kinase at the start of the autoph-
agy-induction cascade was constructed (Fig. S2A). Previously, 
Pinan-Lucarré et al.34 have reported, that in a P. anserina strain 
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lacking PaATG1, autophagy does not occur. To follow the fate of 
PaSOD1-GFP in the genetic background of the Paatg1 deletion, 
a double mutant was constructed (Fig. 2B). Total protein extracts 
of this strain (Paatg1Δ PaSod1-Gfp) were isolated and analyzed 
by western blot analysis using GFP antibodies. As expected, in 
the genetic background of a Paatg1 deletion strain, no processed 

Figure 1. comparative fluorescence microscopy analysis of juvenile vs. senescent P. anserina 
Gfp-PaAtg8 strains. (A) GFP-PaATG8 distributes diffusely to the cytoplasm in the juvenile (4 d 
old) hyphae on M2 medium while the number of punctate autophagosome-like structures is 
strongly increased during 1 d incubation on nitrogen-depleted medium (M2-N). Longer incu-
bation (2 d) leads to the delivery of GFP-PaATG8 to vacuoles and further degradation. (B) in 
senescent cultures (20 d), GFP-PaATG8 localizes to punctate autophagosome-like structures 
grown on M2-N and also on M2 medium indicating that autophagy increases with age. scale 
bar: 10 µm. (C) Quantification of punctate autophagosome-like structures per area for hyphae 
of juvenile and senescent P. anserina cultures, grown on M2 and M2-N. error bars correspond 
to the standard error (n = 10). P values were determined between juvenile and senescent wild 
type grown on M2 medium, respectively M2-N medium and also between juvenile wild-type 
strains grown on M2 and M2-N medium by 2-tailed Wilcoxon rank-sum test (P < 0.01). (A–C): 
Nitrogen-replete: M2 medium supplemented with nitrogen (0.5 g/L urea); nitrogen-depleted: 
M2-medium without nitrogen.

GFP is visible even under nitrogen-depleted 
conditions (Fig. 2C). Thus, the occurrence of 
processed GFP depends on autophagy and the 
amount of GFP is a measure for autophagy 
in P. anserina. Obviously, P. anserina is char-
acterized by a high level of basal autophagy 
because even under conditions with sufficient 
nitrogen a pronounced band of the processed 
GFP is visible in the PaSod1-Gfp strain.

Next, we tested the effect of nitrogen 
starvation on the amount of processed GFP. 
Short-time nitrogen starvation (4 to 6 h) 
results in a decline in the amount of processed 
GFP, while prolonged nitrogen starvation (24 
h) leads to a substantial increase (Fig. 2C). 
It is possible that this effect results from the 
activity of other factors, like an increased pro-
teasome activity or simply because this short 
period of time is not sufficient to induce a 
nitrogen starvation response. During aging, 
a pronounced and significant increase in the 
amount of processed GFP can be detected in 
strains of old age (i.e., 20 d), strongly sup-
porting the microscopic observations with 
the Gfp-PaAtg8 strain that aging in P. anse-
rina is accompanied by enhanced autophagy 
(Fig. 2D and E).

Autophagy is involved in development 
and functions as a longevity-assurance 
mechanism

In an earlier publication34 the Paatg1Δ 
mutant was studied in detail with respect to its 
role in the vegetative incompatibility reaction 
between fungal strains of unlike genotype. In 
this study several developmental defects of the 
mutant were observed compared with the wild 
type including a slightly reduced growth rate, 
a lower density of aerial hyphae on rich media, 
a decreased pigmentation of the mycelium 
and the inability to form protoperithecia (the 
female reproductive organ) leading to female 
sterility. These different phenotypic character-
istics were fully restored by complementation 
with a wild-type copy of the Paatg1 gene.34 
In our study, we constructed an independent 
Paatg1 deletion strain based on a protocol 
described in Hamann et al.12 (Fig. S2A) and 
observed similar phenotypic characteristics of 
the mutant as described earlier (Fig. S2B and 
S2C). In addition, we tested the germination 

capability of monokaryotic spores isolated from a cross between 
2 wild-type strains, and a cross between the wild type and the 
deletion mutant (Fig. 3A). The spores of the latter cross showed 
a significant decrease in germination rate. To test whether both, 
the wild-type spores as well as the spores carrying the deletion are 
affected, the resistance of the germinated spores was determined. 
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From 236 germinated ascospores of a cross of the wild-type strain 
and Paatg1Δ, theoretically 50% (= 118) should possess the allele 
with the deletion, detectable as phleomycin resistance. However, 
only 33 (= 14% of all spores) formed phleomycin-resistant myce-
lia and are therefore carrying the Paatg1 deletion (Fig. 3B). This 
is a smaller number than the expected 50% phleomycin-resistant 
offspring, indicating impairment in germination of the Paatg1Δ 
spores. As described before, the deletion strain is virtually female 
sterile, however, male fertility is not impaired, since spermatiza-
tion of wild-type mycelium with Paatg1Δ spermatia (the male 
gametes) does not significantly reduce the amount of fruiting 
bodies (Fig. S2D).

The ascospores themselves display clear morphological aber-
rancies. Since spores are only formed in crosses between the 

wild type and Paatg1Δ, in each ascus the wild-type as well as 
the mutant allele is equally present. If no crossing-over occurs 
during meiosis between the centromer and the Paatg1 locus (pre-
reduction), 2 of the 4 dikaryotic ascospores contain exclusively 
the wild-type allele, while the other 2 contain the Paatg1Δ allele. 
These latter 2 spores are bigger, darker and possess a clearly visi-
ble appendix (Fig. 3C). Normally, the appendix becomes hyaline 
during ripening of the spores and this process is delayed in the 
mutant, which implies that autophagy is involved in this process.

In accordance with the findings of Pinan-Lucarré et al.,34 we 
also observed a slight but significant reduction of the growth rate 
of the Paatg1Δ strain (Fig. 3D). Next, we analyzed the growth 
rate of the Paatg1Δ strain compared with wild type during heat 
stress (37 °C) and exogenous oxidative stress conditions applied 

Figure 2. Autophagy-induced protein degradation during aging. (A) Western blot analysis of total protein extracts from different PaSod-Gfp strains. GFP 
processing was monitored by immunoblotting with anti-GFP and anti-sOD1 (loading control) antibody. (B) southern blot analysis of hindiii digested 
genomic DNA from PaSod1-Gfp and the Paatg1Δ PaSod1-Gfp double mutant. The Gfp-specific hybridization probe in the upper part detects a ~9.5 kb 
fragment containing Gfp in both strains. The PaAtg1-specific hybridization probe in the middle part detects the 6.5 kb fragment of the PaAtg1 gene only 
in the genomic DNA of the PaSod1-Gfp strain. The gene encoding the phleomycin resistance gene (Ble) is only present as a 6.5 kb fragment in the genomic 
DNA of the double mutant (lower part). (C) Monitoring autophagy by western blot analysis using the cytosolic protein PasOD1-GFP during starvation. 
Wild-type (WT) and Paatg1Δ strains expressing PasOD1-GFP were cultured in cM medium then shifted to cM-N medium for 0, 4, 6, and 24 h. GFP process-
ing was monitored by immunoblotting with anti-GFP and anti-sOD1 (loading control) antibody. The positions of molecular mass markers are indicated 
on the right. (D) Monitoring autophagy by western blot using the cytosolic protein PasOD1-GFP of juvenile and senescent cultures. six and 20 d old 
wild-type (WT), and middle-aged (m.a.) Paatg1Δ strains expressing PaSod1-Gfp were cultured in cM medium for 2 d. GFP processing was monitored by 
immunoblotting with anti-GFP and anti-sOD1 antibody (loading control). The positions of molecular mass markers are indicated on the right. (E) The 
GFP protein levels of the PaSod1-Gfp strains (n = 7) were normalized to the level of sOD1, and the protein amount present in the 6 d old strain was set 
to 1. The 20 d old strain possesses a nearly 5-fold higher protein amount than the 6 d old PaSod1-Gfp strain. error bars correspond to the standard error.  
P values were determined between juvenile (6 d old) and senescent (20 d old) PaSod1-Gfp (P < 0.001) by 2-tailed Wilcoxon rank-sum test. The arrow marks 
the processed GFP. (A), (C–E): cM medium = supplemented with nitrogen (Nh4cl: 3.7 g/L); cM-N medium = cM medium without nitrogen.
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Figure 3. characterization of the Paatg1Δ strain. (A) The germination rate of ascospores from perithecia of fertilized Paatg1Δ (n = 10) and WT cultures 
(n = 10). P values (P < 0.001) were determined in comparison with the wild-type sample by 2-tailed Wilcoxon rank-sum test. (B) Determination of the 
genotype (BleR resistance) of ascospores of a Paatg1Δ × WT cross (n = 10). colonies grown from germinated ascospores were transferred to phleomycin 
containing BMM medium. Grey/bright = spores germinated (BleS); red/dark = BleR spores germinated with Paatg1 deletion background. (C) Ascospore 
phenotype of spores from WT × WT and WT × Paatg1Δ crosses. scale bar: 20 µm. (D) Growth rates of the WT (n = 27) and the Paatg1 deletion strain (n 
= 27; P < 0.001). P values were determined in comparison with the wild-type sample by 2-tailed Wilcoxon rank-sum test. (E) Life span of monokaryotic 
wild-type (n = 27; median life span = ~25 d) and Paatg1Δ (n = 27; median life span = ~21 d; P < 0.001) isolates on M2 medium at 27 °c. P values were 
determined in comparison with the wild-type sample by 2-tailed Wilcoxon rank-sum test. (F) Western blot analysis of total protein extracts from the 
Paatg1 deletion mutant and WT strains grown on cM or cM-N media, respectively. incubation with anti-PaPRe3 (corresponding to the β1 subunit of the 
20s proteasome) and anti-PaGLO1 antibody (glyoxalase 1) showed different protein amounts in the WT and Paatg1Δ strain and in response to nitrogen 
starvation compared with anti-sOD1 (loading control). (G) Life span of monokaryotic wild-type (n = 11; median life span = ~80 d) and Paatg1Δ (n = 20; 
median life span = ~25 d; P < 0.001) isolates at 27 °c on M2-N medium. P values were determined in comparison with the wild-type sample by 2-tailed 
Wilcoxon rank-sum test. (H) Growth rates of the WT (n = 11) and the Paatg1 deletion strain (n = 20; P < 0.01) on M2-N medium at 27 °c. P values were 
determined in comparison with the wild-type sample by 2-tailed Wilcoxon rank-sum test. M2 medium: supplemented with nitrogen (0.5 g/L urea); N: 
M2-medium without nitrogen.
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by paraquat treatment, a widely used redox cycler to stimulate 
superoxide production. Heat stress applied to either 3 or 17 d old 
Paatg1Δ isolates results in the same growth retardation as with 
wild-type isolates of the same age (Fig. S3A and S3B). In contrast, 
after paraquat treatment, 3 d as well as 17 d old Paatg1Δ isolates 
displayed a significantly increased sensitivity against higher para-
quat concentrations (from 200 µM on in 3 d old cultures and 
from 250 µM on in 17 d old cultures) compared with the corre-
sponding wild-type isolates (Fig. S3C and S3D). This increased 
sensitivity against oxidative stress is not unexpected, since auto-
phagy is important for the clearance of damaged proteins.

The increase of autophagosomes in old P. anserina cultures 
suggests a role of autophagy in aging. In order to investigate this 
possibility further, we analyzed the impact of a Paatg1 deletion on 
life span. We found that the genetic disruption of the autophagy 
pathway leads to a significant decrease in life span even under 
noninduced conditions, which is an indication for the important 
role of selective autophagy in P. anserina (Fig. 3E). Moreover, the 
absence of autophagy and nitrogen limitation results in a slight 
upregulation of PaPRE3 (proteasome core particle subunit β1) 
(Fig. 3F), suggesting that the proteasome-dependent protein deg-
radation acts as an alternative, compensatory mechanism in the 
mutant.

Recently, a link between autophagy and the glyoxalase sys-
tem was reported.44 This pathway is involved in the detoxifica-
tion of methylglyoxal, a byproduct of glycolysis which modifies 
proteins, lipids, and DNA. Therefore, in order to test whether 
failure to undergo autophagy leads to impairments in the deg-
radation of damaged proteins, the glyoxalase I (PaGLO1) abun-
dance was determined. Indeed, at the protein level, we found a 
slight upregulation in the abundance of PaGLO1 in the deletion 
mutant (Fig. 3F).

Since nitrogen starvation is known to induce autophagy, we 
next tested the impact of nitrogen starvation on the life span of 
the P. anserina wild-type and the Paatg1Δ strains. We found that 
both strains are characterized by an increased life span under 
nitrogen-depleted conditions. Remarkedly, this increase is much 
more pronounced in the wild-type background. The median life 
span in the Paatg1Δ strain was 21 d on M2 (Fig. 3E) and 25 d 
on M2-N (Fig. 3G) compared with a median life span of WT  
25 d (Fig. 3E) on M2, and 95 d on M2-N (Fig. 3G). The growth 
rate of the deletion mutant under nitrogen depletion is slightly 
decreased compared with the wild type (Fig. 3H). The life span 
of WT is nearly 4-fold increased under nitrogen starvation, sug-
gesting that the induction of autophagy indeed is highly benefi-
cial for P. anserina and providing additional data supporting a 
longevity assurance function of autophagy.

Finally we investigated the effect of rapamycin on life span 
of P. anserina. This immunosuppressant drug is known to selec-
tively inhibit the serine/threonine kinase target of rapamycin 
(TOR) and thereby stimulating autophagy in a variety of organ-
isms comparable to starvation.45-48 First, we tested the effect of 
the drug on the growth rate of the fungus (Fig. S4A). Addition of 
rapamycin to the growth medium resulted in a dose-dependent 
reduction in growth rate indicating that the drug is taken up by 
the hyphae from the medium. Next, we determined the median 

life span on media containing different amounts of rapamycin. 
A clear life span increasing effect was observed in medium con-
taining 10 and 20 ng/ml rapamycin (Fig. S4B). Surprisingly, 
lack of PaATG1 does not prevent life-span extension by rapamy-
cin demonstrating that this effect is not autophagy-dependent 
(Fig. S4C).

Discussion

Autophagy is a cellular degradation and recycling process 
that is highly conserved in eukaryotes. It is strictly regulated 
and affects various processes and pathways including the adap-
tation to starvation, turnover of damaged organelles, immunity 
and modulation of host defense, cell growth, aging, and devel-
opment.49-58 Depending on the cellular conditions, excessive 
autophagy may lead to a special kind of programmed cell death, 
referred to as the “autophagic cell death.”59,60 However, this term 
describes cell death accompanied by autophagy, not necessarily 
the execution of cell death by autophagy.61 Overall experimen-
tal data rather support the prosurvival role of autophagy, since 
it has only very rarely been shown that downregulation of auto-
phagy genes reduces cell death, while a huge number of studies 
describe an acceleration of cell death upon genetic suppression of 
autophagy.61

In filamentous fungi it has been shown that the deletion of 
basic autophagy related genes like Atg1, Atg4, or Atg8 affect mor-
phogenesis and development leading to a decrease in the formation 
of aerial hyphae, impaired conidiation, delayed spore germina-
tion, and defects in the formation of sexual organs and fruiting 
bodies.33,34,62-65 Moreover, SmATG7 involved in the ATG8 and 
ATG12 conjugation pathway as well as the autophagic kinases 
SmVPS34 and SmVPS15 are required for viability in Sordaria 
macrospora.66,67 The results of our current study with P. anserina, 
which identified impairments in female fertility, spore differen-
tiation, and germination in an atg1 deletion strain are consistent 
with these earlier findings and provide additional evidence for an 
essential role of autophagy in fungal development.68

With its activity to degrade damaged molecules and impaired 
organelles, autophagy is a component of a network of pathways 
involved in quality control.8,69 In the past, we have demonstrated 
a number of different pathways to be part of such a network to 
affect aging and life span control in P. anserina (reviewed in refs. 
8, 69, and 70). Until now, we had no experimental evidence for 
such an impact of autophagy. The microscopic identification 
of increased autophagosome numbers in senescent cultures and 
the biochemical demonstration of an increased degradation of 
GFP-labeled SOD1 during aging, reported in the current study, 
provides the first evidence. Here, we report for the first time, 
an impact of impaired autophagy on aging and life span of the 
fungal aging model P. anserina. This role is supported by the 
observation that the life span of the Paatg1 deletion strain is 
not increased under nitrogen starvation to the same extent as 
in the wild type. Similarly, it is reported that the inactivation 
of different autophagy relevant genes like unc-51, bec-1, or Igg-1 
(Atg1, Beclin1, Lc3 in mammals) lead to a reduced life span in  
C. elegans.48,71-75
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The effects on aging, observed after perturbation of the auto-
phagy machinery, can partially be explained by impairments in 
the degradation of damaged cellular components. However, a 
known “crosstalk” with the ubiquitin-proteasome system com-
plicates the situation. While macroautophagy and the ubiquitin-
proteasome system were formerly regarded as 2 separate cellular 
pathways with distinct functions, it is now clear that a number 
of proteins can be degraded by both autophagy and the protea-
some.76-79 Recent work suggests that the 2 systems “communi-
cate” with each other under certain circumstances.80-83 Different 
studies with yeast, Drosophila, and mammalian cells report that 
proteasome inhibition leads to the upregulation of autophagy.83-90 
Moreover, the observed increase in glyoxalase 1 (lactoylglutathi-
one lyase, PaGLO1) is indicative for increased molecular stress 
due to a lack of autophagy, identifying a link of this cellular 
protection pathway to autophagy. In P. anserina, the glyoxalase 
system is relevant for aging.91 In mammals, Glo1 is transcription-
ally controlled by NRF2 (also known as NFE2L2) and represents 
a stress-responsive system that protects proteins and DNA from 
damage.92

Another relevant link is the interaction of autophagy to the 
activity of TOR, a central regulator of multiple cellular responses 
(reviewed in ref. 93). TOR inhibits autophagy via phosphory-
lation of ATG13 and is itself inactivated by low amino acid 
levels. In yeast it has been previously described that autophagy 
deficiency leads to the reduction of the total free amino acid 
pool and subsequent impaired protein synthesis under nutrient 
starvation conditions.94 Thus, autophagy deficiency can lead to 
TOR inactivation and thereby results in numerous pleiotropic 
effects. In previous studies, a life-span-prolonging effect originat-
ing from TOR inactivation via rapamycin is reported in differ-
ent organisms.95-98 However, only in a few cases, this increase is 
unequivocally correlated with Atg genes.99,100 Surprisingly, in P. 
anserina the life-span-prolonging effect of rapamycin treatment 
of the wild type turns out to be autophagy-independent and the 
result of other rapamycin or TOR-influenced pathways or cel-
lular functions, such as cell growth and proliferation, ribosome 
biogenesis, transcription, mRNA translation, cytoskeletal reorga-
nization, and others.101

In our current study, we observed an induction of autophagy 
to occur during aging of P. anserina that is supported by a recent 
longitudinal genome-wide transcriptome analysis in which tran-
scripts of autophagy-related genes have been found to increase in 
abundance during aging.102 This was a rather unexpected find-
ing. In other systems like rats, mice, and human fibroblasts, a 
decrease in autophagy is reported.52,103-108 In contrast, in aged 
primary fibroblasts and in aged mouse brain, macroautophagy 
is increased.109 The reasons for these seemingly contradictory 
findings are not clearly understood but may reflect species-, tis-
sue- and cell type-specific differences in the age-related regula-
tion of autophagy. However, it appears to be the consensus that 
upregulation or maintenance of autophagy until advanced age 
is beneficial for cells and whole organisms by improving quality 
control and mitigating accumulation of altered cellular compo-
nents within the aging cell.110-112 Keeping a high activity of auto-
phagy and of other quality control pathways at very old age may, 

however, be impaired after passing a critical threshold of cellular 
damage. This scenario is supported by the observation that—
unlike in mammalian systems—nitrogen limitation is not able to 
increase formation of autophagosomes at old age (Fig. 1B), sug-
gesting that the capacity of the autophagy machinery is at its limit 
in old P. anserina cultures. Consequently, the system finally dies.

In conclusion, with the development of appropriate tools and 
the demonstration of a clear impact of autophagy as a longev-
ity-assurance mechanism, as well as the earlier demonstration 
of other quality control pathways to be effective in aging and 
life-span control in P. anserina, we are now in the position to 
specifically address important issues with the aim to integrate 
autophagy into the network of quality control pathways in this 
organism. One question we are currently addressing is the poten-
tial contribution of mitophagy as part of the longevity-assurance 
mechanisms active in P. anserina. An impact of this type of selec-
tive autophagy is likely since this aging model is characterized 
by a strong mitochondrial etiology of aging.113,114 Another point 
of special interest is to elucidate the regulation of autophagy as 
a potential compensatory mechanism in situations when other 
pathways fail. Such mechanisms may explain unexpected and 
counterintuitive experimental data as they are found in the litera-
ture and may unravel yet unknown regulatory circuits in which 
autophagy and other pathways play a key role.

Materials and Methods

Cloning procedures and generation of Podospora anserina 
mutants

The generation of the Gfp-PaAtg8 strain was performed by a 
4-fragment ligation using a Gfp-containing plasmid (pSM4). The 
plasmid pSM4 is based on pSM2115 which contains an eGfp gene 
without promoter region. Restriction of the pSM4-plasmid with 
NcoI (Thermo Scientific, ER0571) and NotI (Thermo Scientific, 
ER0591) leads to the removal of the eGfp. The PaAtg8 own pro-
moter region (1052 bps) was amplified by PCR from a cosmid 
carrying the PaAtg8 genomic region116 using oligonucleotides 
Atg8-1 (5′-GGAAGCTTTT CGGTACTTGG GATCAG-3′, 
Biomers, Ulm, Germany) with restriction site for HindIII 
(Thermo Scientific, ER0501) and Atg8-2 (5′-TTGCCGGCGG 
GTTGGTTGTT GCT-3′, Biomers) with restriction site for 
EheI (Thermo Scientific, ER0441). Restriction sites were under-
lined. Together with the Gfp gene, the PaAtg8 promoter region 
was then ligated with the pKO6 plasmid. This plasmid contains 
the phleomycin resistance cassette of pKO412,22 restricted with 
EcoRI and Eco72I (Thermo Scientific, ER0361) ligated into 
EcoRI/EcoRV (Thermo Scientific, ER0271/ER0301) digested 
pBSSK (Agilent Technologies, 212205). Important for the cre-
ation of the Gfp-PaAtg8 plasmid is the unusual N-terminal 
fusion of the Gfp gene to the PaAtg8 gene, preventing proteo-
lytical removal of Gfp by processing through the protease ATG4 
during autophagy induction. Therefore Gfp had to be ligated in 
front of the PaAtg8 gene but behind the PaAtg8 own promoter. 
The open reading frame of PaAtg8 with the PaAtg8 termina-
tor region was amplified by PCR from the cosmid using oli-
gonucleotides Atg8-4 (5′-GGCTCGAGAA GCAATGAGGA 
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ACAAGAGG-3′, Biomers) with restriction site for XhoI 
(Thermo Scientific, ER0691) (underlined) and phosphorylated 
Atg8-5 (5′-GGGATGAGAT CCAAGTTTA-3′, Biomers). These 
2 fragments were cloned in the vector backbone of plasmid pKO6 
(SalI [Thermo Scientific, ER0641], HindIII), which carries an 
ampicillin-resistance gene for selection in Escherichia coli and a 
phleomycin resistance gene for selection in P. anserina. Ligation 
of these fragments resulted in a plasmid called pAtg8eGfp2 
which was finally used to transform P. anserina wild-type sphe-
roplasts according to Osiewacz et al.11 and Stumpferl et al.117 
Transformants were selected on phleomycin resistance (Ble) and 
used for fluorescence microscopy to analyze the localization of 
the GFP-PaATG8 fusion protein in hyphae.

The PaSod1-Gfp, PaSod2-Gfp, and PaSod3-Gfp strains used 
in this study for different western blot analysis are previously 
described by Zintel et al.20

The generation of a Paatg1 deletion strain was performed as 
described previously12 based on a method originally described by 
Chaveroche et al.118 Small flanking regions of the PaAtg1 gene 
were amplified using the 5′-flank oligonucleotides Paatg1-KO1-1 
(5′-CCGGTACCCC ACTTTCCTACA CCACCC-3′, Biomers) 
and Paatg1-KO1-2 (5′-CCCTGCAGGG CTACCTGCTG 
ATGTTGG-3′, Biomers), introducing KpnI (Thermo Scientific, 
ER0521) and PstI (Thermo Scientific, ER0611) restriction sites 
(underlined), and the 3′-flank oligonucleotides Paatg1-KO1-3 
(5′-GGACTAGTCA AAGCTGACGA TTAACG-3′, Biomers) 
and Paatg1-KO1-4 (5′-GGGCGGCCGCA AAAAGAAAAA 
CGCGC-3′, Biomers), introducing NotI and BcuI (Thermo 
Scientific, ER1251) restriction sites (underlined). The 5′ fragment 
was digested with KpnI and PstI and the 3′ fragment was digested 
with BcuI and NotI. Meanwhile, deletion plasmid pKO412,22 was 
digested with all 4 restriction enzymes (KpnI, PstI, BcuI, and 
NotI) and a 4-fragment ligation was performed, resulting in the 
plasmid patg1KO1, containing both fragments flanking a phleo-
mycin and blasticidin resistance cassette for fungal and bacterial 
selection. The resistance cassette with the flanking regions was 
excised by restriction with NotI and KpnI and transformed into 
the E. coli KS272 strain, containing the plasmid pKOBEG,118 and 
a cosmid bearing the PaAtg1 gene.116 The homologous recom-
bination between the flanks of the resistance cassette and the 
cosmid causes the generation of a Paatg1Δ cosmid, containing 
the phleomycin-blasticidin cassette with large flanking genomic 
regions. Subsequently, the Paatg1Δ cosmid was transformed into 
the P. anserina wild-type spheroplasts. Selection of received trans-
formants, were realized by growth on phleomycin (Genaxxon, 
M3429) containing medium. Successful deletion of PaAtg1 
was indicated by phleomycin resistance accompanied by hygro-
mycin (Calbiochem, 400051) sensitivity. The correct replace-
ment of the PaAtg1 gene was verified by Southern blot analysis 
using a PaAtg1-specific probe and a phleomycin-specific probe 
(Fig. S2A). Positive strains, lacking the PaAtg1 gene and possess-
ing the phleomycin gene instead, were finally termed Paatg1Δ.

Transformation of P. anserina spheroplasts
Production, regeneration, and the integrative transforma-

tion of P. anserina spheroplasts were performed as previously 
described.11,117

P. anserina strains and cultivation
In the present study the P. anserina wild-type strain “s”,9 the 

newly generated Paatg1-deletion (Paatg1Δ) and the Gfp-PaAtg8 
strain were used as well as the Gfp strains PaSod1-Gfp, PaSod2-
Gfp, and PaSod3-Gfp20 and the newly generated PaSod1-Gfp 
Paatg1Δ double mutant. All strains were constructed in the 
genetic background of the wild-type strain “s”. Strains were grown 
on standard cornmeal agar (BMM) at 27 °C under constant light 
conditions.10 For spore germination, the BMM medium was 
added with 60 mM ammonium acetate and the spores incubated 
at 27 °C in the dark for 2 d. All used strains originated from 
monokaryotic ascospores isolated from irregular asci.

Fertility and germination analysis
Female fertility was assessed as previously described.25 In prin-

ciple, freshly isolated monokaryotic wild-type or Paatg1Δ isolates 
of both mating types were allowed to overgrow the surface of 
M2 agar (M2 medium: 0.25 g/L KH
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after sterilization of the basal medium) plates at 27 °C under con-
stant light. Spermatia (corresponding to male gametes) of these 
strains with the opposite mating type were harvested by flooding 
the plates with 5 ml of sterile water. The suspension was diluted 
1:1 with sterile H

2
O and drops of 100 µl were pipetted onto 

mycelium of each wild type and Paatg1Δ. After 5 min, the drops 
were removed carefully and the strains were incubated for 4 d at  
27 °C under constant light. The number of perithecia was 
counted and the resulting values were divided by the area of the 
drop. The number of perithecia developing on plates overgrown 
with the wild-type “s” were set to 100% fertility.

To determine the germination rate of spores from wild-type 
(s− × s+) crosses and wild-type × Paatg1Δ crosses (female steril-
ity of the Paatg1Δ strain allowed only fertilization of Paatg1Δ− × 
s+, respectively Paatg1Δ+ × s−) monokaryotic spores were isolated 
from irregular asci. After 2 d incubation on germination medium 
(BMM medium added with 60 mM ammonium acetate) at  
27 °C in the dark, the number of germinated spores was counted.

Southern blot analysis
Isolation of total DNA of P. anserina was realized by the 

protocol developed by Lecellier and Silar for rapid extraction 
of nucleic acids from filamentous fungi.119 DNA digestion, gel 
electrophoresis, and Southern blotting were performed accord-
ing to standard protocols. For Southern blot hybridization 
and detection, digoxigenin-labeled hybridization probes (DIG 
DNA Labeling and Detection Kit, Roche Applied Science, 
11175033910) were used according to the manufacturer’s pro-
tocol. The PaAtg1-specific hybridization probe was amplified 
by PCR using the oligonucleotides Atg1-3 (5′-TCAGCCATCT 
ACTTCAGC-3′, Biomers) and Atg1-4 (5′-TGCTTGTACT 
TGACCTCG-3′, Biomers). The PaAtg8-specific hybridization 
probe was amplified by PCR using the oligonucleotides Atg8-
for (5′-CCCGCCAAAA TGAGATCC-3′, Biomers) and Atg8-
rev (5′-CCAAAGGTGT TCTCGCCC-3′, Biomers) and the 
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respective cosmids as template. As a hybridization probe specific 
for the phleomycin resistance gene (Ble), the 1293 bp BamHI-
fragment (ER0051, Thermo Scientific) of the plasmid pKO4 was 
used. The 737 bp BcuI-/NcoI-fragment of the plasmid pSM4 
was used as a hybridization probe specific for the Gfp gene.

Growth rate and life-span determination
Life span and growth rate of monokaryotic isolates on M2 

medium were determined as described.120 The life span of P. anse-
rina is defined as the time period (d) of linear hyphal growth 
whereas the growth rate is defined as the measured growth (cm) 
per time period (d). To determine the life span and growth rate 
under nitrogen starvation, the monokaryotic isolates were placed 
on race tubes containing M2 medium lacking the nitrogen source 
urea (M2-N). The determination of growth rates under stress 
conditions was performed on M2 medium added with different 
concentrations (0, 10, 50, 100, 200 and 250 µM) of paraquat 
(Sigma-Aldrich, 856177) at 27 °C, by incubation of the strains 
under heat stress conditions (37 °C) at constant light or on M2 
medium to which different concentrations (0, 2.5, 5, 10, and  
20 ng/mL) of rapamycin (Sigma-Aldrich, R8781) is added.

Light sheet-based fluorescence microscopy (LSFM)
In order to image P. anserina with the LSFM, pieces of P. anse-

rina cultures (Gfp-PaAtg8: 4 respectively 20 d old) were grown on 
a coverslip, immersed in M2 or M2-N medium, and incubated in 
a “wet chamber” for 1 d at 27 °C and under constant light. The 
“wet chamber” consists of a petri dish filled with sterile wet tis-
sue paper. Imaging was performed with a light sheet based fluo-
rescence microscope, in its implementation monolithic digitally 
scanned light sheet-based fluorescence microscope (mDSLM) 
developed in Ernst Stelzer’s laboratory (Frankfurt, Germany). It 
is an improved and compact version of the DSLM described in 
Keller et al.121 The specimen was prepared as following. First, a 
5 mm × 5 mm glass coverslip was glued with nail polish onto 
the custom mDSLM specimen holder (Fig. S5). Shortly before 
imaging, a 5 mm × 5 mm square portion of mycelium was cut 
with a scalpel out of the agarose slab. The square portion was 
then deposited onto the glass coverslip. In order to ensure a stable 
adhesion between glass and specimen, a small quantity of liquid 
low-melting agarose was deposited on the glass coverslip. Finally, 
the mounted specimen was vertically inserted in the mDSLM 
chamber containing the M2 or M2-N medium. The fluores-
cence in the specimen was excited by a light sheet generated by 
scanning a thin (FWHM—full width at half maximum—of 
the beam waist: 2 µm) laser light beam. The light sheet illumi-
nates the specimen from the side. In order to resolve individual 
autophagosomes in the hyphae, we employed a pair of CZ Plan-
Neofluar 5×/0.16 objective lens (Carl Zeiss Microscopy, Jena, 
Germany) for the illumination (thickness of light sheet ~2 µm) 
and a CZ Plan-Apochromat 63× /1.0 W objective lens (Carl Zeiss 
Microscopy) for the detection. Green fluorescent protein (GFP) 
was excited at 488 nm by a diode laser and detected between 
500 and 550 nm. Images were acquired by a CCD camera (pixel 
pitch 6.45 µm, Neo, Andor, Ireland). The specimen mounted on 
the mDSLM holder was placed vertically in the medium-filled 
chamber close to the common focal point of the 2 excitation and 
detection objective lenses. Image stacks consisting on average of 

100 16-bit-TIFF (tagged image file format) individual images 
(slices) were recorded. Each slice in a stack represents a plane 
of the 3-dimensional specimen volume. The spacing between 
the slices was 0.4 µm. The image stacks were first deconvolved 
by employing the parallel iterative deconvolution plugin of the 
freeware image software Fiji (http://fiji.sc/Fiji), by choosing 
the WPL algorithm and performing 5 iterations. The absence 
of deconvolution artifacts was verified by visual inspection of 
the de-blurred stacks. The point-spread function (PSF) was cal-
culated with the Fiji plugin diffraction PSF 3D by inserting the 
experimental imaging parameters. The deconvolved stacks were 
segmented by employing the manual threshold function of Fiji. 
The resulting segmented stacks were processed with the open 3D 
morphological plugin. Next, a z-projection of the stacks was gen-
erated by choosing the sum slices option. Finally, the total number 
of autophagosomes in the stack was determined from the z-pro-
jected stack with the analyze particles function. The area of each 
individual hypha was determined manually with the segmented 
line selection tool. Finally, the density of autophagosome was cal-
culated for each image stack.

Wide-field fluorescence and differential interference con-
trast (DIC) imaging

A Carl Zeiss Axio Imager.Z2 upright microscope equipped 
with a CZ AxioCamMR3 (image size 1388 × 1040, pixel pitch 
6.45 µm, 12 bits) (Carl Zeiss Microscopy) and the ZEN 2012 
(blue edition) acquisition software was employed for imag-
ing. A CZ oil immersion Plan-Apochromat 63× 1.4 N.A. DIC 
objective lens objective lens (Carl Zeiss Microscopy) was used 
for both wide-field fluorescence and DIC imaging. After prop-
erly setting the Köhler illumination, the matching DIC-Prisma 
II HC 63× (Carl Zeiss Microscopy, 426924-9030-000) as well 
as the DIC-analyzer were inserted. Both the DIC shift and azi-
muth were adjusted in order to achieve maximum contrast. The 
GFP fluorescence was excited with a Colibri.2 LED light source, 
equipped with a 474/28 band-pass excitation filter (Carl Zeiss 
Microscopy). The filter set HE BFP/GFP/HcRed (Carl Zeiss 
Microscopy, 489062-9901-000) was employed.

Western blot analysis
For extraction of total protein extracts, mycelia from different 

P. anserina strains was allowed to overgrow a cellophane foil cov-
ered M2 surface for 2 d at 27 °C and constant light. Afterwards, 
the grown mycelia was transferred into CM-liquid medium (CM 
medium: 1 g/L KH

2
PO

4
, 0.5 g/L KCL, 0.5 g/L MgSO

4
 × 7 H

2
O, 

10 g/L glucose-monohydrate, 3.7 g/L NH
4
Cl, 2 g/L trypton,  

2 g/L yeast-extract, 0.001 g/L ZnSO
4
, 0.001 g/L FeCl

2
, 0.001 g/L 

MnCl) (nitrogen re- or depleted) for 2 further d at 27 °C under 
constant light and shaking conditions. Harvested mycelia were 
pulverized in liquid nitrogen and the protein was isolated from 
the powder as described.91 100–300 µg total protein extracts 
of P. anserina strains, were fractionated by 2-phase SDS-PAGE 
(12% separating gels) according to the standard protocol.28 After 
electrophoresis, proteins were transferred to PVDF membranes 
(Millipore, IPFL00010). Blocking, antibody incubation, and 
washing steps were performed according to the Odyssey western 
blot analysis handbook (LIC-OR Biosciences, Bad Homburg, 
Germany). The following primary antibodies were used: 
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Anti-GFP (mouse, 1:10000 dilution, Sigma-Aldrich, G6795), 
anti-PaGLO1 (1: 2000 dilution, NEP, Frankfurt, Germany) 
raised against a specific peptide ([AC]-CVQNERFADKANF-
[OH]) of PaGLO1 (glyoxalase1) previously described in 
Scheckhuber et al.,91 anti-SOD1 (1:2000 dilution) from Biomol 
Stressgen (Hamburg, Germany) (SOD100) and Anti-PaPRE3 
(1:2500 dilution) raised against a specific synthetic peptide 
([H]-LYLPDTDYKVRHEN-[OH]; Sigma) of PaPRE3 (corre-
sponding to the β1 subunit of the 26S proteasome). In all analy-
ses, secondary antibodies conjugated with IRDye 680 (1:15000 
dilution, goat anti-mouse 680RD: 926-68070; goat anti-rabbit 
680LT: LIC-OR Biosciences, 926-68021) or IRDye CW 800 
(1:15000 dilution, goat anti-mouse 800: 926-32210; goat anti-
rabbit 800: LIC-OR Biosciences, 926-3221) were used. The 
Odyssey infrared scanner (LIC-OR Biosciences) was used for 
detection and quantification using the manufacturer’s software.

Statistical analysis
For statistical analyses of life span, growth rate, and female 

fertility as well as germination rate 2-tailed Mann-Whitney-
Wilcoxon U test was used. The respective samples were compared 

with the appropriate wild-type sample. For all analyses the mini-
mum level of statistical significance was set at P < 0.05 (not sig-
nificant different means P > 0.05; significant different (*) means 
P < 0.05; high significant different (**) means P < 0.01; very high 
significant different (***) means P < 0.001).
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