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Abstract
It is known that periods of intense social interaction result in shared patterns in collabora-

tors’ physiological signals. However, applied quantitative research on collaboration is hin-

dered due to scarcity of objective metrics of teamwork effectiveness. Indeed, especially in

the domain of productive, ecologically-valid activity such as programming, there is a lack of

evidence for the most effective, affordable and reliable measures of collaboration quality. In

this study we investigate synchrony in physiological signals between collaborating com-

puter science students performing pair-programming exercises in a class room environ-

ment. We recorded electrocardiography over the course of a 60 minute programming

session, using lightweight physiological sensors. We employ correlation of heart-rate vari-

ability features to study social psychophysiological compliance of the collaborating stu-

dents. We found evident physiological compliance in collaborating dyads’ heart-rate

variability signals. Furthermore, dyads’ self-reported workload was associated with the

physiological compliance. Our results show viability of a novel approach to field measure-

ment using lightweight devices in an uncontrolled environment, and suggest that self-

reported collaboration quality can be assessed via physiological signals.

Introduction
In modern knowledge work and in higher education many scenarios arise that require collabo-
rative problem solving—for example, complex programming assignments. The field of com-
puter-supported collaborative work (CSCW) addresses this need, and the increased popularity
of collaboration software (e.g., online editing tools) has led to increased interest in synchronous
collaboration benefits and challenges [1].

Ackerman [2] has argued that collaborative computer systems need to support the “flexible,
nuanced” social interaction patterns which underlie collaboration. However there remains a
lack of solutions to harness data from the patterns which arise between collaborating individu-
als. An abundance of studies suggest that periods of intense social interaction result in congru-
ent physiological response patterns in collaborators’ physiological signals [3]. Thus we argue
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that physiological patterns provide valuable data for CSCW systems, where highly synchro-
nized physiological signals may indicate collaborators whose interaction is more likely to be
productive. However there is a lack of such objective physiological indicators for effectiveness
of pair and team work in naturalistic settings.

Especially in the domain of a productive, ecologically-valid task such as pair-programming
in the classroom, there is an opportunity to discover and apply the most effective, affordable
and reliable of such measures. One example of such a measure is the extent of synchrony
between collaborators’ same physiological signals, e.g., heart-rate variability (HRV). We con-
tend that if the signal in question has a proven relationship to cognitive activity, then in the
context of a shared cognitive task, the degree to which such signals are synchronized can be
used as an efficient means to identify relevant parameters of collaboration. It has the added
benefit of working unobtrusively in real-time.

The aim of this paper is to evaluate the feasibility and relevance of synchronized physiolog-
ical signals between collaborating individuals during naturalistic pair-work. Such synchrony
has been termed physiological compliance [4]. In this study, we investigated physiological
compliance between dyads collaborating on a pair-programming task, in a classroom setting
with novice computer science students. This is a completely naturalistic setting since social
interaction is unconstrained, and the students worked on programming assignments taken
from their standard curriculum. We measured the classroom on four different occasions
using practical recording methods. Practicality implies a solution appropriate to the context:
wearable, affordable in multiple units, functionally reliable, and cost-effective to analyze.
Based on these criteria, physiological signals recorded were electrocardiography (ECG) and
electrodermal activity (EDA). HRV features were derived from the ECG and used in the anal-
ysis. For work-type applications, cardiac metrics such as HRV features tend to be reactive on a
time-scale of about a minute, and are useful for assessing activation and workload. Statistics of
phasic skin conductance responses (SCRs) from EDA are complementary to HRV—they react
on time-scale of seconds, are responsive mainly to external stimuli, and are commonly used to
index emotional arousal. Unfortunately excessive data was lost due to device failure and thus
EDA is not analyzed at a group level in the main paper. In the end of the paper, we discuss
EDA and the requirements of field recordings as issues for future work. Physiological compli-
ance was calculated as correlation between the same feature from each member of each pair.
We also analyzed physiological compliance in relation to individual’s subjective ratings of the
classroom session.

Outline In the rest of the paper, we first describe the related background literature. Then
the Methods section sets out the design of the study including participants, protocol, and a our
analysis approach. In the Results section we show that measuring physiological compliance in
an uncontrolled naturalistic setting is feasible, for a robust sensor; interesting, because compli-
ance is evident in collaborating dyads for a measure of mental workload but not for a measure
of physical activity; relevant, because compliance predicts the subjective rating of demand in
programming assignments. Finally we discuss the limitations of the results, and implications
for applied and future work.

Related work
Pair-programming background Collaboration in knowledge work in general is a well-studied
topic the findings suggest that group productivity and collective mood converges over time [5].
The subjective quality of the collaboration is important. For example, in a self-report based
study of N = 122 software projects from 29 companies, [6] found that intra-team social empa-
thy predicted project success. Social empathy was moderated by the existence of group norms.
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Thus, the degree to which team members understand and accept each others’ point of view is
important to collaborative function.

In our study collaboration is exemplified by pair-programming, the exercise of two pro-
grammers tackling on a task at a single computer [7]. Pair-programming is used both within
the academia as a collaborative learning approach for novices learning to program [8], as well
as within the industry to help produce higher quality code and to spread the tacit knowledge of
experienced programmers inside organizations [9]. However, it is not established that pair-
programming is always effective and useful. Pairing takes effort and has an adjustment period
during which the productivity of the pair is lower than the productivity of the individuals [10].
Dyads can also be malformed, such that skill differentials, task-understanding, individual
agreeableness, or some other factor will inhibit the productivity of one or both programmers
[11, 12]. Indeed the number of possible factors which can affect a socially-interacting working
partnership is so large that it may be better to look for measures of interaction success than to
identify causes of failure.

Chaparro et al [13] studied the question why is pair-programming sometimes ineffective?,
finding that matching by skill level and task demand are main contributing factors of success.
Additionally, as in the team study cited [6], the efficacy of pair-programming also relies on
good social interaction, as shown in [14]. The influence of subjective factors on collaboration
implies the value of and requirement for developing objective measurement of social compli-
ance, as enabled by physiological measurements. Such measurement could, for example, be
used in-situ to assess the functionality of the pair and to provide feedback and improvement
suggestions if needed.

HRV and cognition background HRV has been found to be reactive to mental workload
and stress [15] in multiple contexts, e.g., various tests requiring executive functions [16], during
aircraft piloting [17], and in computer work [18, 19]. Among others, Thayer et al [20] and
Lane et al [21] have described integrative models of neural structure and autonomic regulation,
and presented supporting studies which link cognition and HRV. These models suggest pre-
frontal cortical modulation on HRV parameters which is supported by the inhibitory role of
prefrontal cortex via the vagus [22].

HRV research typically focuses on either long- or short-term recordings, of 1+ days or min-
utes/hours, respectively. Our protocol is short-term and so our methods derive from that litera-
ture. HRV analysis can use time-domain and frequency-domain metrics [23]. The time
window recommended for short-term frequency-domain HRV metrics is 300 seconds [23]
which makes it difficult to assess HRV with respect to short duration events, such as program-
ming activity. On the other hand, frequency-domain metrics can reliably indicate the phenom-
enon of sympathovagal balance, that links HRV to cognition [23]. To use time-domain metrics
for the same purpose, they must be carefully chosen [24].

Here we use time-domain metrics that have been shown to give reliable results in as short as
60 second time windows [25, 26]. All metrics are based on finding peaks of the ‘QRS’ complex
wave that represents a heart beat in ECG, in the given time window. We calculate heart rate (HR)
as the inverse of mean interbeat-interval (IBI, i.e., peak to peak delay in QRS complex), to use as
an index of general activation. We use two other HRVmetrics, rMSSD [24, 27], and especially
SDNN [28], which have shown promise in expressing sympathovagal balance. SDNN is the stan-
dard deviation of IBI, where abnormal beats are not counted, thus giving the term NN for ‘nor-
mal-to-normal’. rMSSD is the mean square of successive differences between subsequent peaks.

Physiological compliance background It is well-known that social interaction tends to
induce imitative behavior [29], even when the meaning of the behavior is unknown to the imi-
tator [30, 31]. Imitative behavior has been proposed to fit within an ideomotor framework,
where an intention to act precedes the action, as opposed to a pure stimulus-response model
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[32]. This in turn implies that a) imitative behavior is paralleled by imitative psychology, and
b) such processes are reciprocal as each participant influences and is influenced by the other.

Gottman [33] provided an early overview and described methods to measure cyclicity in
social interaction, from qualitative data. The approach was developed further in succeeding
decades, and extended to include physiological signals. The term social psychophysiological
compliance (SPC) was coined by Henning [4], and proposed as an index of collaborative per-
formance [34]. Henning [4] suggests that due to their feed-forward influence of future behav-
iors, physiological changes during social interaction should be considered more than just a
response to ongoing social behaviors. [4] proposes that physiological compliance benefits a
social process in accordance with the social cybernetic model. This model asserts that SPC
occurs before behavior [35, 36], in agreement with the ideomotor model. Thus, SPC refers to
correlation between physiological measures of individuals, which arises over the course of
interaction due to reciprocal changes in participants’ internal physiology [35, 37].

It has further been shown that SPC is dose-dependent on the intensity of social interaction.
Leeuwen [38] showed that fetal HR synchronizes with mother’s respiration. Compliance of
HRV and EDA were shown to react to intensity of social interaction in [39]. Compliance has
found to be higher during competitive computer game play than cooperative play in a study
by Chanel et al. [40], and the result has been replicated by Spape et al. [41]. Compliance is also
found during a movie watching protocol [42]. Elkins et al. [37] examined methods of measur-
ing SPC in HRV data as a predictor of team performance. They found that linear correlation
and directional agreement were the most sensitive to performance, and greater intra-team
SPC associated with better performance. This study is doubly relevant because the task itself
was not stationary but complex in nature.

To summarize our literature review, field-measurements of collaboration quality are sup-
ported by convergent evidence from prior work on pair-programming, HRV and cognition,
and physiological compliance.

Methods
Research Questions Ordinary everyday work is done in noisy, uncontrolled settings, so our
first research question RQ1 asks whether it is feasible to extract any SPC signal in such a setting
(using our methods)? To address RQ1, we recorded ECG in a noisy naturalistic setting using
wearable sensors. Based on correlations of ECG features, we contrast the correlations within
dyads with other possible combinations of the recorded physiological signals recorded in the
same class. This separates the influence of task related events from the stimuli irrelevant to the
phenomena under study (e.g., experimenter instructions).

Secondly, RQ2, we ask whether the extracted SPC signal is relevant to some interesting task,
or does the shared environment ‘drive’ the SPC to the exclusion of any detectable response to
shared work? To address RQ2, we use the same analysis as for RQ1, but now contrast the HR
correlation with correlation of SDNN and rMSSD features. This contrasts the relative compli-
ance of physical activation with specific cognitive activation or mental workload.

Collaboration is an essentially inter-subjective phenomenon [43]. Thus we pose RQ3 as a
supplement to RQ2: do participants themselves agree with the SPC signal? To address RQ3 we
ask the participants to individually report their task demands using the NASA Task Load
Index [44], and construct a regression model to predict the SPC (using HRV features).

Finally, it is also desirable to investigate the causes or task-based correlates of the observed
SPC, and thus say what is it useful for. However to remain naturalistic, the assignments were
taken from the course curriculum without manipulation. Thus participants’ development on
the assignments was uncontrolled and we lacked robust classifiers to study such relations.
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• H1.feas—correlation of HRV features will be greater for signals of collaborating dyads,
giving measurable SPC.

• H2.intr—measurable SPC will relate to activity of interest by the contrast of task-relevance
of ECG features HR (physical activation) versus SDNN or rMSSD (mental activation).

• H3.rele—participants’ self-assessment of task-relevant activity will predict the SPC of
interest, thus HRV features will predict items from NASA TLX.

Study Design
Our design takes place in a class room environment for novice student programmers, overseen
by experimenters using a single laptop for timing and notes. The study protocol has been
approved by the ethical review board of Hospital District of Helsinki and Uusimaa, Finland.
Study procedures followed the guidelines of the Declaration of Helsinki for human
experiments.

All students are first briefed together and give their written informed consent. Sensors are
then attached—every participant is fitted with a wearable medical grade device for recording
ECG (eMotion Faros 180°, Mega Electronics Ltd). The ECG electrode placements are on right
coracoid process and on the lower left rib-cage. The Faros device clocks are pre-synchronized
with the experimenter’s laptop that controls the timing of the measurement protocol. Physio-
logical measurements start immediately after attachment, and end only when sensors are
detached.

Participant dyads are seated together in order of arrival, then all students first watch a base-
line video together. Each dyad proceeds to work on standard assignments from their curricu-
lum, on one workstation, where dyad members swap roles between ‘driving’, i.e., active
programming, and ‘navigating’, i.e., guiding and commenting, in a typical pair-programming
design. The task requires cooperation between dyad members to accomplish a shared goal.

Each dyad sets their own pace for processing the assignment. This implies that the degree of
cooperation is left to participants, allowing for a variety of SPC and performance scores.
Whereas if the pace is forced by the protocol, this ‘artificial influence’ would be likely to
account for some of the observed SPC. Dyads swap the role of driver and navigator every 7
minutes, the baseline video lasts 7 minutes, and with preparation total experiment time is
about 90 minutes. Timestamps for all such activity is recorded on the central experimenters’
laptop.

The task in the class consists of two separate assignments. The programming assignments
are counter balanced within each class, so half the dyads started with one and half with the
other assignment. Assignments are completed using the NetBeans for Java integrated develop-
ment environment (IDE, https://netbeans.org/). The experiment protocol for one dyad is illus-
trated in Fig 1.

Participants and Recordings
46 student participants were recruited by advertisement through class mailing list, and remu-
nerated with movie tickets. After examining the ECG data for artefacts data of 38 participants
remained for subsequent analysis. In this set of 38, there were 16 females, 22 males, three left-
handed, with age range: 28 from 18–23 years, 9 from 24–29 and one was over 34.

Recording sessions were conducted by authors 1 and 3 with assistance from the course
instructor, author 5. The class participated is part of the programming course and differed
from ordinary programming session only by the physiological measurements. The participants
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were told not to pay attention to the measurement devices or experimenters. After the experi-
ment, participants were asked to report on their state: hours slept M = 7.6 (SD = 1.64), hours
awake M = 4.8 (SD = 1.53), current sleepiness (by KSS Karolinska Sleepiness Scale, 9-points
1 = alert 9 = sleepy) M = 4.5 (SD = 2.19). They were also asked to rate the exercise according to
the NASA Task Load Index (TLX) [44], a validated instrument with 11 point scales for various
aspects of task effort (physical demand is excluded from reporting as irrelevant):

• ‘mental demand’ (MD) M = 6.0 (SD = 2.05) (0: not demanding, 10: demanding)

• ‘temporal demand’ (TD) M = 6.0 (SD = 1.88) (0: not demanding, 10: demanding)

• ‘frustration’ (Fr) M = 4.2 (SD = 2.91) (0: not frustrated, 10: frustrated)

• ‘performance’ (Pe) M = 6.4 (SD = 2.50) (0: performed badly, 10: performed well)

• ‘effort’ (Ef) M = 6.3 (SD = 2.62) (0: did not need effort, 10: needed effort)

Finally an extra item was asked alongside TLX to assess the concentration while navigating
(partner was driving), on an 11-point scale:

• ‘concentration while navigating’ (Na) M = 8.1 (SD = 1.69) (0: no collaboration, 10: intensive
collaboration)

For every collaborating dyad we also compute the sum of all self-report items. These are
shown in Table 1 together with information whether the pair was all-male (MM), all-female
(FF), or mixed (MF).

SPC calculation and testing
The ECG signal was preprocessed in R [45] using Colibri R-package [46]. The R-peaks were
automatically detected from ECG and used to form the IBI series that were used as a basis for
HRV analyses. The calculation of HRV features was performed in sliding time windows with a
length ranging from 60 to 300 seconds, using an overlap of 1/3 of the window length. The win-
dow lengths were chosen according to Smith et al, who suggested that shortest reliable window
for time-domain HRV features is 60 seconds [27].

Features extracted were HR, SDNN, and rMSSD. These were computed according to their
standard definitions. For a given window length, we obtain three feature vectors for every par-
ticipant, denoted xHRi , xSDNNi , and xrMSSD

i , where i 2 {1, 2, . . ., 38} is a participant identifier. We
will omit the feature name from the superscript unless these are unclear from the context. For
every feature, xi(t) is the value of the feature in the t:th time window.

Fig 1. The pair-programming protocol. 7min baseline video. Segments labeled A, 7mins: participant A drives, participant B navigates. Segments
labeled B, 7mins: participant B drives, participant A navigates.

doi:10.1371/journal.pone.0159178.g001
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We used the permutation testing framework to test H1.feas and H2.intr, see, e.g., [47]
for details and discussion. As test statistics we used Pearson’s product-moment correlation
coefficients of the feature vectors within the dyads, i.e., pairs of participants that collaborated
in the classroom, with randomly generated pairs of physiological signals, as follows. Every
dyad consists of two participants, denoted by identifiers (i, j), where i ranges from 1 to 19, and
j = i + 19. I.e., the dyads are the pairs (1, 20), (2, 21), . . .(19, 38). We compute the values
corðxFi ; xFj Þ for every dyad, where F is either HR, SDNN, or rMSSD, and cor(�, �) is Pearsons’
correlation coefficient. The average correlation of the dyads, denoted μtrue, is the arithmetic
mean of these pairwise correlations. We use μtrue as an estimate of SPC for collaborating mem-
bers of pairs in the subsequent analysis. The pair-specific values of HR, SDNN, and rMSSD for
window lengths of 60 and 300 seconds are shown in Table 1.

Our null hypothesis was that the average correlations of dyads, as defined above, would not
be affected if the pairs would be randomly shuffled within the class room and the correlations
would be computed for the shuffled pairs. The pairs of signals are formed by permuting the
second signal across all possible signals measured. More formally, the set of signals are the
pairs (1, r1), (2, r2), . . ., (19, r19), where the values r1, r2, . . ., r19 form a permutation of the inte-
gers 20, 21, . . ., 38, with restrictions for second signal to be in the same class. The permutation
r is drawn uniformly at random. Given a permutation r, we compute the values cor(xi, xri) for
every shuffled pair, and use their arithmetic mean, denoted μr, as a sample from the null
hypothesis.

The pairs in the null distribution thus all contain one driving and one navigating partner
from the same room. Any evidence of SPC that we observe for the the pairs sampled from null
hypothesis should be caused by confounders in the environment instead of collaboration. The

Table 1. Sum of TLX questionnaire results in each dyad, with corresponding HR, SDNN and rMSSD correlation in 60 and 300 second windows.
Sorted in decreasing order of SDNN in 300 second window. MD is mental demand, TD temporal demand, Pe performance, Ef effort, Fr frustration, and Na
concentration while navigating.

60 300

Sex MD TH Pe Ef Fr Na HR SDNN rMSSD HR SDNN rMSSD

MM 10 11 16 15 6 17 0.56 0.18 0.22 0.77 0.65 0.64

FF 10 12 10 14 11 13 0.19 0.38 -0.04 0.18 0.64 -0.02

MM 9 8 15 8 6 16 0.14 0.11 0.26 0.03 0.58 0.71

MF 11 11 12 15 14 17 0.63 0.38 0.18 0.80 0.56 0.23

MF 16 12 9 17 15 17 0.30 0.09 0.12 0.61 0.53 -0.22

MM 16 11 14 11 3 17 0.47 0.14 0.18 0.73 0.43 0.47

FF 13 11 9 15 17 16 -0.13 0.18 -0.05 -0.26 0.42 -0.24

MM 15 9 18 10 2 17 0.47 0.25 0.28 0.67 0.42 0.77

MF 10 10 9 10 7 15 0.32 0.04 0.14 0.37 0.41 0.06

FF 8 16 19 6 2 17 0.12 0.25 -0.18 -0.07 0.33 -0.54

MF 16 14 14 14 10 19 0.25 0.37 0.08 -0.09 0.33 0.18

MM 7 13 13 4 1 18 0.35 0.03 0.29 0.43 0.24 0.50

MF 14 11 10 16 11 12 0.01 0.28 0.17 -0.34 0.19 0.40

MF 12 11 15 17 10 20 0.11 0.22 0.15 0.02 0.15 0.50

MF 13 13 14 13 11 17 -0.20 0.09 -0.28 -0.42 0.15 -0.35

MM 13 14 18 11 4 19 -0.13 -0.01 -0.06 -0.60 0.00 -0.37

MF 11 11 9 10 9 10 0.37 0.16 0.31 0.67 -0.02 0.63

MF 13 14 12 15 8 17 0.34 0.13 -0.17 0.38 -0.11 -0.33

MF 12 16 6 18 14 15 0.31 -0.17 -0.16 0.35 -0.39 -0.27

doi:10.1371/journal.pone.0159178.t001
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random set of correlations was computed 10000 times to generate the distribution of μr. This is
done by generating a different permutation r 10000 times. The obtained distribution sets confi-
dence intervals (CIs) for the μr and allows us to compute our two-tailed p-values for the true
correlation averages (μtrue) [47]. This process is conducted in the same manner for all three fea-
tures (HR, SDNN, rMSSD) and several window lengths (from 60 to 300, in 40 second steps).

Finally, H3.rele was tested by fitting a linear regression model to study the association
between SPC and the self-report items in the dyads. This was done for all three features (HR,
SDNN, rMSSD) and two window lengths (60 and 300). Predictors in each model are pairwise
sums in the dyads of the self-report items (shown in Table 1). SPC, i.e., the Pearson correlation,
is the dependent variable. We have thus

corðxFi ; xFj Þ � b0 þ bm MD ij þ bt TD ij þ bp Pe ij þ be Ef ij þ bf Fr ij þ bn Na ij ð1Þ

over all dyads (i, j), with F being one of HR, SDNN and rMSSD, and Xij denotes the sum of the
corresponding self-report item X for participants i and j and βx its coefficient.

Results
We found support for H1.feas from the result that the SDNN correlation for dyads is signifi-
cantly greater than that for the null hypothesis. The result is robust across all tested window
lengths (the data and examples can be found in S1, S2 and S3 Files). Table 2 shows the position
of mean dyad correlations with respect to the 95% confidence intervals (CIs) in the null
hypothesis. For SDNN the highest correlations and greatest difference from the null hypothesis
occur in 300 second window length with a Holm-Bonferroni corrected p-value of 0.007.

Table 2 also illustrates support for H2.intr. As compared to SDNN correlations, all mean
dyad HR correlations are well inside the 95% CIs for the null hypothesis. This shows that in
each recording session, the correlation of HR-indexed physical activation was insensitive to the
pairing of individuals, contrasting with SDNN-indexed cognitive activation. Therefore the only
feasible measure of SPC comes from SDNN, a HRV feature related to cognition, and not from
physical activation.

Support for H3.rele is clear from the contrast between models for HR versus SDNN and
rMSSD features, as shown in Table 3. The mean HR did not express linear dependencies on
self reports. Self-reported performance explains some of the variance in SDNN at 60 second
window, however, the adjusted R2 is small. In the 300 second window the model explains some
variation for SDNN (R2 = 0.20) and is significant for self-reported temporal demand. The rela-
tionship of rMSSD to self-reported temporal demand (check the Table 1) was highly significant
and explains a large fraction of the variation (R2 = 0.42 for the 60 second time window and
R2 = 0.50 for the 300 second window).

Discussion
We have demonstrated support for three hypotheses regarding the feasibility, interest and rele-
vance of recording an SPC signal in a noisy, naturalistic setting.

The SDNN correlation shows significant difference in collaborating participants compared
to the average over the classroom, across all window lengths from canonical 300 to minimum
60 seconds (only marginal, however, for 220 seconds window). This contrasts with the HR
parameter which is high for all pairs regardless if the participants worked together or not. Also
for rMSSD there is some effect in correlations for collaborating participants. The effect is
smaller than for SDNN, and does not test as significant, but the collaborating dyad average cor-
relation lies in the highest quartile of the shuffled pair correlation distribution across all

Cognitive Collaboration Found in Cardiac Physiology

PLOS ONE | DOI:10.1371/journal.pone.0159178 July 14, 2016 8 / 16



windows. This could be relevant to expanding these results to the time-domain correspondent
of sympathovagal balance [25] in further work.

Our use of time domain alternatives to the classical frequency space HRV parameters allow
us to calculate the feature with a shorter time window. We validate that the compliance find-
ings, i.e., feasible, interesting, and relevant correlations, apply across different window lengths.
Our results thus develop the study of collaboration in ecologically valid setups with no fixed-
time design (as is usual in ECG-paradigms).

Interpretations The high correlations in HR, over all dyads and shuffled pairs, could be
explained by a decreasing trend in HR data during the session for 79% of the dyads. In contrast,
for SDNN less than half of the participants expressed negative linear trend during the measure-
ment session. Figs 2 and 3 show HR and SDNN correlations for all 300 second time windows
during the session, separately for each dyad. Each point represents the advancing time windows
across the practice session using a color spectrum from blue in the beginning to green at the
end. Subplots are sorted by the linear regression fit lines (although note that axis scaling
varies).

The contrast of time-dependent physical activation with time-independent cognitive activa-
tion suggests distinct sources of influence. In other words, pairwise HR correlations may be (at
least partly) driven by a generally shared linear physiological process, e.g., becoming more
physically relaxed over time. The elevated SDNN synchrony within the collaborating

Table 2. For HR, SDNN, rMSSD across window lengths from 60 to 300 seconds in 40 second increments: 95% CIs for shuffled pair correlation dis-
tribution, means for the collaborating dyad correlation, and tests of significance.

shuffled pairs dyad

Window length ECG feature 2.5% 97.5% Mean cor p -value adj.

60 sec HR 0.108 0.308 0.235 0.309

rMSSD -0.061 0.083 0.076 0.081

SDNN 0.017 0.146 0.162 0.022 *

100 sec HR 0.118 0.357 0.273 0.302

rMSSD -0.088 0.099 0.078 0.121

SDNN 0.005 0.17 0.181 0.049 *

140 sec HR 0.113 0.378 0.253 0.503

rMSSD -0.103 0.134 0.108 0.125

SDNN 0.008 0.209 0.243 0.009 **

180 sec HR 0.085 0.392 0.24 0.530

rMSSD -0.111 0.134 0.103 0.140

SDNN 0.008 0.226 0.246 0.031 *

220 sec HR 0.054 0.389 0.222 0.529

rMSSD -0.13 0.146 0.125 0.089

SDNN 0.002 0.23 0.239 0.051 •

260 sec HR 0.083 0.427 0.251 0.531

rMSSD -0.11 0.2 0.156 0.155

SDNN -0.034 0.219 0.269 0.007 **

300 sec HR 0.046 0.398 0.221 0.522

rMSSD -0.141 0.19 0.145 0.157

SDNN -0.04 0.232 0.289 0.007 **

Holm-Bonferroni corrected p-values test whether the collaborating dyad correlation average is from average correlation distribution for the shuffled pairs;

significance levels indicated as p<0.1 •, p<0.05 *, p<0.01 **

doi:10.1371/journal.pone.0159178.t002
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Table 3. Regression model of computed HRV features and self-reports. Collaborating dyad correlations were computed for 60 and 300 seconds, and fit-
ted by self-report scores summed for each dyad. Column headers, from left:Win.window length of analysis; HRV Feature; adj. R2 adjusted R-squared value
for the linear model; Fitted linear model parameter, i.e., the questionnaire item; Est.model estimate; Std.Err.model standard error; and confidence intervals
for model predicted linear dependency.

Win. Feature adj. R2 Fitted Est. Std.Err. 2.5% − 97.5%

60 HR -0.09 (Intercept) 0.96 0.56 -0.26 2.17

Mental -0.01 0.03 -0.07 0.04

Performance -0.04 0.03 -0.10 0.02

Effort 0.03 0.03 -0.03 0.10

Temporal -0.03 0.03 -0.09 0.03

Frustration -0.05 0.03 -0.10 0.01

Navigating 0.02 0.03 -0.05 0.09

300 HR -0.07 (Intercept) 1.93 1.04 -0.34 4.20

Mental -0.02 0.05 -0.13 0.09

Performance -0.08 0.05 -0.20 0.03

Effort 0.05 0.05 -0.07 0.17

Temporal -0.07 0.05 -0.18 0.05

Frustration -0.08 0.05 -0.18 0.02

Navigating 0.03 0.06 -0.10 0.16

60 SDNN 0.04 (Intercept) 0.03 0.32 -0.66 0.72

Mental 0.00 0.01 -0.03 0.04

Performance 0.04 0.02 0.00 0.07*

Effort -0.00 0.02 -0.04 0.03

Temporal -0.01 0.02 -0.05 0.02

Frustration 0.02 0.01 -0.01 0.05

Navigating -0.02 0.02 -0.06 0.02

300 SDNN 0.20 (Intercept) 0.77 0.57 -0.48 2.02

Mental -0.01 0.03 -0.07 0.05

Performance 0.03 0.03 -0.03 0.09

Effort -0.02 0.03 -0.08 0.05

Temporal -0.08 0.03 -0.14 -0.01*

Frustration 0.03 0.03 -0.03 0.09

Navigating 0.01 0.03 -0.06 0.08

60 rMSSD 0.42 (Intercept) 1.09 0.32 0.39 1.78

Mental 0.00 0.02 -0.03 0.03

Performance -0.02 0.02 -0.05 0.02

Effort 0.00 0.02 -0.03 0.04

Temporal -0.06 0.02 -0.10 -0.03**

Frustration -0.02 0.01 -0.05 0.01

Navigating 0.01 0.02 -0.03 0.05

300 rMSSD 0.50 (Intercept) 2.48 0.70 0.96 3.99

Mental -0.01 0.03 -0.09 0.06

Performance -0.02 0.04 -0.10 0.06

Effort 0.04 0.04 -0.04 0.12

Temporal -0.15 0.03 -0.22 -0.07**

Frustration -0.06 0.03 -0.13 0.01

Navigating -0.01 0.04 -0.09 0.08

Adjusted model CIs that do not include 0 denote a linear dependency is found.

Confidence levels shown as * p<0.05, ** p<0.01.

doi:10.1371/journal.pone.0159178.t003
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participants is more likely to reflect dyad-specific processes, i.e., each dyad’s own task-related
progress and behavior.

SPC for SDNN and rMSSD depended linearly on self-reported temporal demand, with neg-
ative relation, i.e., less demand is felt when SPC increased. With SDNN this dependence
appears only in longer analysis window lengths. The mild positive relation with performance
and SDNN correlation was only observed in short 60 second time-window, which in general
provided less stable results.

Fig 2. Pairwise correlations for mean HR in 300 second windows over the session. Line in each subplot depicts the regression between each
dyad. Color changes blue to green from the beginning to the end of the session.

doi:10.1371/journal.pone.0159178.g002
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Limitations and future work The results demonstrate the efficacy of ECG and the relevance
of other HRV parameters over HR for SPC. However, the current analysis cannot account for
why the SPC was observed.

SPC did relate to self-reported performance and temporal demand. Thus the results are at
least influenced by relevant subjective processes. Nevertheless, tasks presumably also contain
features that influence SPC but are unrelated to relevant processes. Such latent variables could
include, for example, the dyads’ history of collaboration, because we did not control for self-

Fig 3. Pairwise correlations for SDNN feature in 300 second windows over the session. Line in each subplot depicts the regression between each
dyad. Color changes blue to green from the beginning to the end of the session.

doi:10.1371/journal.pone.0159178.g003
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selection of pre-acquainted dyads by the participants. To address the issue properly, future work
needs more rigorous control or at least observation of task-dyad interaction features, such as
history and relative programming skill per participant. Also, the SPC relations to self-reported
items should be further studied by including more check-points during future recordings.

To investigate productivity, we attempted to analyze assignment completion rates with
respect to all HRV features. However analysis was exploratory, as we had no hypothesis for
task-physiology relationship in a naturalistic setting with a novel design. Analysis gave no
results of interest, perhaps because only half of dyads completed at least one assignment which
resulted in a lack of variance in the data. This could be resolved if, in future work, assignments
are broken into smaller components which can be individually assessed.

High-resolution behavioral data can be obtained with keyloggers, for example the ‘Test My
Code’ (TMC) plugin [48] for the NetBeans IDE. The TMC plugin records the timestamp and
change for each key-press within the programming environment, and automatically links the
information to the programming task at hand. However, the raw signal from this behavioural
data is rapidly changing, and as noted the time resolution of HRV parameters is insufficient to
study such rapid changes. To relate physiology to a task like pair-programming requires a bet-
ter match between resolutions of each signal, and better contingency of the physiological
signal.

EDA is a good candidate signal for phasic analysis of programming, because the phasic
component has time resolution of*1 second, and is contingent to external stimuli. Loss of
data prevented such analysis on a group level in this study. However the sparse data retrieved
already justify further work, as discussed in S1 Appendix. This supplement is included, not to
claim additional results, but instead show the potential of the EDA approach to address the
issues not addressed in the reported experiment. The potential is clear from the few successful
EDA measurements illustrated in S1 Fig. It therefore serves as both a motivation and a guide-
line for future work.

The data lost in behavioral and physiological modes (eight ECG sets and almost all EDA)
illustrates the fragility of naturalistic paradigm to recording issues, motivating more efforts to
create robust integrated field-ready setups. Thus future work will focus on these problems and
establishing a link between SPC and task performance. If greater SPC is found to be associated
with better performance, the result could lead to applications for improved team training and
assessment.

Conclusion The current paradigm suggests that by measuring HRV with simple ambulatory
ECG device in an ecologically valid pair-programming setting, physiological signals can pro-
vide information on SPC. Specifically, it is reasonable to extract the SPC signal; given such a
signal, we can differentiate between environmental influence and task-relevant influence. The
SPC resulting from collaboration can be detected from the physiological signals and the signals
also depend on self-reported demands of the session. Future work will add insight into the rela-
tionship between physiology and behavior by also recording EDA and keylogger data, and add-
ing granularity in assignment structure, to increase the number of data points in time.

Supporting Information
S1 Appendix. Report on EDA data recorded in the measurements. Information on four (two
dyads) successful EDA recordings in the paradigm. Appendix exemplifies the potential in
using EDA signals for compliance assessment in field studies.
(PDF)

S1 Fig. EDA results from example dyads.
(TIF)
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