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Abstract

Background: Ischemic Stroke (IS) is the most common neurological emergency disease and has become the
second most frequent cause of death after coronary artery disease in 2015. Owing to its high fatality rate and
narrow therapeutic time window, early identification and prevention of potential stroke is becoming increasingly
important.

Methods: We used meta-analysis and bioinformatics mining to explore disease-related pathways and regulatory
networks after combining messengerRNA (mRNA) and miRNA expression analyses. The purpose of our study was to
screen for candidate target genes and microRNA(miRNA) for early diagnosis of potential stroke.

Results: Five datasets were collected from the Gene Expression Omnibus (GEO) database by systematical retrieval,
which contained three mRNA datasets (102 peripheral blood samples in total) and two miRNA dataset (59
peripheral blood samples). Approximately 221 different expression(DE) mRNAs (155 upregulated and 66
downregulated mRNAs) and 185 DE miRNAs were obtained using the metaDE package and GEO2R tools. Further
functional enrichments of DE-mRNA, DE-miRNA and protein-protein interaction (PPI) were performed and visualized
using Cytoscape.

Conclusion: Our study identified six core mRNAs and two regulated miRNAs in the pathogenesis of stroke, and we
elaborated the intrinsic role of systemic lupus erythematosus (SLE) and atypical infections in stroke, which may aid
in the development of precision medicine for treating ischemic stroke. However, the role of these novel biomarkers
and the underlying molecular mechanisms in IS require further fundamental experiments and further clinical
evidence.
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Background
Stroke is the most common neurological emergency dis-
ease and has become the second leading cause of death
after coronary artery disease in 2015, leading to 6.3 mil-
lion deaths [1]. In addition, stroke is also a leading cause
of long-term disability. The pathophysiological hallmarks

of ischemic stroke involve part of the brain losing blood
supply, which initiates the ischemic cascade. Brain tissue
ceases to function if oxygen deprivation persists for 60
to 90 s, and will suffer irreversible death of brain cells
occurs after approximately 3 h. The primary risk factor
for stroke is hypertension; other risk factors include
smoking, obesity, hyperlipidemia, diabetes, previous
transient ischaemic attack and atrial fibrillation [2].
Stroke is characterized by neurological defect signs and
symptoms, including hemiplegia, hemianesthesia,
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difficulty in speaking and understanding or loss of vision
on one side. Even after intensive therapy, certain symp-
toms can be permanent, affecting 75% of stroke survi-
vors and rendering them unable to manage their daily
lives [3].
Stroke was originally deemed to be a sporadic disease.

However, several epidemiology studies have shown that
the morbidity of stroke or transient ischaemic attack was
12.3% among first degree relatives of stroke patients (vs
7.5% in the control group) [4], and the prevalence of
stroke in offspring was shown to be three times higher if
a parent had a stroke before 65 years of age [5]. Cur-
rently, it is widely believed that stroke is a complex
multifactorial disease that is caused by interactions
among blood vessels and environmental and genetic fac-
tors. Pathogenic mutations, such as Neurogenic locus
notch homolog protein 3(NOTCH3) gene and HtrA
Serine Peptidase 1(HTRA1) gene, have been reported in
certain types of monogenetic stroke syndromes, such as
cerebral autosomal dominant arteriopathy with subcor-
tical infarcts and leukoencephalopathy(CADASIL) and
cerebral autosomal recessive arteriopathy with subcor-
tical infarcts and leukoencephalopathy(CARASIL). In
addition, certain molecular genetic variations have been
shown to be closely related to ischemic stroke, such as
Paired-like homeodomain transcription factor 2 (PITX2),
Histone deacetylase 9 (HDAC9), and Zinc finger homeo-
box protein 3 (ZFHX3) [5]. However, most of these gene
mutations may exist as susceptibility genes, cooperating
with other risk factors to cause the disease.
In addition to a single gene mutation, epigenetic

mechanisms, such as DNA methylation, histone modifi-
cations and regulation by miRNAs, can also influence
gene expression, which makes it difficult to analyze this
disease, particularly sporadic stroke. Moreover, miRNA
has been reported as a vital regulatory mechanism for
the recovery of stroke [6] and has also been associated
with the death of neurons and the repair of damaged tis-
sue in the case of cerebral infarction [7]. Since the rela-
tionship between a given mi-RNA and its target genes is
one-to-many rather than one-to-one, the mutual regula-
tory network between them may offer us a unique per-
spective to understand the disease and may provide
potential therapeutic targets.
The massively parallel microarray technique can be

applied to identify variant gene expression and pathways.
This technique is used to investigate the relationship be-
tween gene expression and phenotypic differences and
to gain deeper insights into the pathogenesis of complex
diseases [8]. Bioinformation mining allows for the
categorization and detection of large-scale genetic data
according to phenotypic characteristics, potentially lead-
ing to novel hypotheses about the underlying mecha-
nisms [9]. However, genome-wide expression data have

limitations, such as small sample sizes, including poor
repeatability and contradictory results. To take advan-
tage of the big data era and reduce the limitations due
to a small sample size, data from multiple datasets and
platforms were collected in our integrated analysis.
The purpose of our study was to screen for candidate

target genes and miRNAs in stroke using meta-analysis
and bioinformatic mining and to explore disease-related
pathways and regulatory networks after combining the
mRNA and miRNA expression analyses.
Our study identified six core mRNAs and two regu-

lated miRNAs in the pathogenesis of stroke, and we
elaborated the intrinsic role of SLE and atypical infec-
tions in stroke.

Methods
Data collection and pre-processing
Expression profile data associated with stroke were ob-
tained from Gene Expression Omnibus (GEO), which is
a public functional genomic data repository. Ischemic
stroke-related datasets were retrieved using the keyword
“stroke” of Homo sapiens (organisms). Using the cutoff
date August 15, 2018, 1037 datasets were retrieved. The
inclusion criteria were as follows: (1) original experimen-
tal studies; (2) peripheral blood sample data provided;
(3) mRNA expression profile provided; (4) access to the
raw data (CEL files); and (5) the required diagnostic cri-
teria for ischemic stroke are fulfilled. The exclusion cri-
teria were as follows: (1) non-ischemic stroke sample; (2)
repeated uploading of datasets; and (3) retrospective
analysis. All of the included analyses were verified by the
ethics committee. Pre-processing programs (including
background adjustment, normalization, summarization,
gene chip probe annotation) were executed using R lan-
guage. CEL files were loaded using library (affy) to read
the signal diagrams. We use the RMA algorithm on Bio-
conductor software to process all raw data files to obtain
the expression value of each gene chip. For the miRNA
microarray, qualified human plasma miRNA datasets
were imported into the online tool GEO2R.

Quality control and DE-mRNA screening
For quality control (QC), we used the Relative Log Ex-
pression (RLE) method to load the included mRNA ex-
pression datasets. RLE establishes a reference array that
is generated from the median of all arrays for each probe
set, and the expression value of each sample was nor-
malized. Most of the expression values are supposed to
be stable with respect to the median and should be
approximately 0, accordingly.
The “Batch effect” is a type of non-biological expres-

sion variation that is found across multiple batches of
microarray analysis, making it difficult to combine data
for an integrated analysis.
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Johnson WE et al. proposed parametric and nonpara-
metric empirical Bayes frameworks to adjust data for
batch effects that are robust to outliers in small sample
sizes, making them comparable to large sample methods
[10]. We used this method to remove the batch effects
using the Surrogate Variable Analysis (SVA) package in
R studio to make the data more suitable for
comparisons.
The Linear Model for Microarray (LIMMA) package

was used to pool the eligible microarray data to acquire
DE-genes in stroke. In LIMMA, P-values were extrapo-
lated with a modified two sample t-test, and Fisher’s
method was implemented to analyze differences between
two groups [11]. A corrected P-value (P < 0.05) and log
Fold Change > 1.4 were considered to be statistically sig-
nificant for DE mRNAs in stroke, and a false discovery
rate (FDR) of 0.05 was used to correct for multiple test-
ing. For visualization, DE mRNAs were plotted using the
MetaDE package.

Enrichment analysis of stroke-related DE genes
Online tools, such as Database for Annotation,
Visualization and Integrated Discovery (DAVID), Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways,
Gene Ontology (GO) terms and Genetic Association
Database (GAD) were used to predict the prospective
function and further functional categories [12–14]. P < 0.05
was considered significant in the enrichment analysis.
Given that proteins are the biomacromolecules that
execute functions in our bodies, the STRING database
[15] was applied for the critical assessment by visual-
izing the Protein-Protein Interactions (PPI) using
Cytoscape [16].

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA) is an advanced
method for determining whether an a priori defined set
of genes shows statistically significant, consistent differ-
ences between two biological groups [17]. This method
has advantage due to focusing on gene sets, that is,
groups of genes that share a common biological func-
tion, chromosomal location, or regulation. This method
can avoid the limitations of the common enrichment
approach, which focuses on a handful of genes at the
top of L, that is, those genes which exhibit the largest
difference.

Analysis of the miRNA expression dataset and target
prediction
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) is an
easy-to-use online tool for identifying differential expres-
sion in miRNA series. GEO2R automatically calculates
the false discovery rate (FDR) and detects statistically

significant genes (p < 0.05) simultaneously with FDR cor-
rection by using multiple t-test.
The target genes of miRNAs were predicted using

miRNet, which is a comprehensive tool suite that en-
ables the statistical analysis and functional interpretation
of data generated from current miRNA studies.
A simplified flowchart (Fig. 1) illustrates the above-

described process.

Results
Coanfluence analysis of ischemic stroke gene expression
datasets
Three primary datasets with available mRNA expression
data for PBL samples in stroke patients were identified
by searching the GEO database (GSE66724, GSE58294,
GSE22255). The detail of the participants are provided
in additional file 2. After quality control using RLE and
the removal of the batch effect (Fig. 2), a total of 102
PBL samples (51 patients and 51 controls, Table 1) were
pooled into the DE-gene analysis. Approximately 221
DE mRNAs were identified (155 upregulated mRNAs
and 66 downregulated mRNAs). A heatmap of the top
20 DE mRNAs was generated by setting a specific FDR
and fold change value (Fig. 3). The details of each DE
mRNA are given in Supplementary table (see additional
file 1).

Enrichment analysis of the DE-mRNAs
Through the enrichment analysis of Genetic Associ-
ated Disease, type 2 diabetes, chronic renal failure,
Alzheimer’s disease, coronary artery disease, athero-
sclerosis, myocardial infarction, lung cancer, asthma,
high-density lipoproteincholesterol(HDL-C) level,
asthma and obesity were deemed important in stroke
(Fig. 4a). In the KEGG pathway enrichment analysis,
DE-mRNAs were primarily involved in viral carcino-
genesis, alcoholism, the tumor necrosis factor(TNF)-
signal pathway, the Nuclear Factor-KappaB(NF-kap-
paB) pathway and the SLE pathway. The enrichment
results using the Gene Ontology(GO) database in
three categories were as follows: (1) biological pro-
cesses: plasma membrane, extracellular exosome and
neuron projection (Fig. 4b); (2) cellular component:
inflammatory response, negative regulation of cell
proliferation and positive regulation of angiogenesis
(Fig. 4c); (3) molecular functions: calcium ion binding,
carbohydrate binding and protease binding (Fig. 4d).
The above-mentioned enrichment analysis revealed
that DE-genes were primarily related to common risk
factors, such as type 2 diabetes, coronary artery dis-
ease and atherosclerosis, and the general event was
the activation of the TNF-signaling pathway (Fig. 4e).
Furthermore, we identified a pathway (the SLE path-
way) that has seldom been reported to be closely
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associated with stroke, which was consistent with the
results of the GO enrichment with immune response
biological process.
In the GSEA, we identified six pathways that were

enriched (Fig. 5). These pathways included epithelial
cell signaling in HP infection, vibrio cholerae infec-
tion, histidine metabolism, complement and coagu-
lation cascades, systemic lupus erythematosus and
the toll-like receptor signaling pathway. Notably, the
SLE pathway (Fig. 6) was identified in both the DE-
gene analysis and the GSEA analysis, indicating that
this pathway may be strongly related to stroke.
To further investigate the functions and interactions of

the upregulated DE-mRNAs (Fig. 7) and all DE-mRNAs,
we used the STRING database to construct two PPI net-
works, and the results were imported into Cytoscape
and visualized. Interestingly, six genes (PTGS2, IL1B,
STAT3, MMP9, SOCS3 and CXCL1) were located in the
central position of the PPI networks. The significance
level is shown in Table 2. Of these core genes, five of
them (excluding STAT3) were linked to the TNF signal-
ing pathway.

Analysis of the stroke miRNA expression dataset
Dataset GSE86291 and GSE55937 were available miRNA
expression datasets containing 59 plasma samples. 31
samples were from stroke patients, and 28 were from
control groups. After QC (Fig. S1), a total of 185 DE-
miRNAs were identified using the online tool GEO2R(74
DE-miRNAs from GSE86291 and 111 DE-miRNAs from
GSE55937). Since they were generated from different
platform, we were not supposed to compare the data
directly. But they actually shared one miRNA in com-
mon, that is has-miR-3135b. Among GSE86291, the top
six most significant DE-miRNAs were hsa-miR-140-3p,
hsa-miR-320b, hsa-miR-320d, hsa-miR-320e, hsa-miR-
5100 and hsa-miR-30d-5p (Table 3). An experimentally
supported miRNA database (miRBase) was used to pre-
dict the target genes of the identified miRNAs base on
experimental verification and various prediction algo-
rithms. Target genes that were regulated by two or more
DE-miRNAs were included to form the miRNA-target
gene-pathway network (Fig. 8 and Fig. 9). Through this
network, three pathways, including the Neurotrophin
signaling pathway, Mitogen-activated protein

Fig. 1 Flowchart illustrating the bioinformatic analysis process
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Fig. 2 Relative Log Expression (RLE) signal graph

Table 1 Baseline characteristics of datasets

Study Country GEO
accession

Platform Sample
type

Experiment
type

Case/Control

Number Age (mean ± SD) Male%

Allende M Spain GSE66724 GPL570 PBLa mRNA 8/8 / /

Stamova B USA GSE58294 GPL570 PBL mRNA 23/23 71.7 ± 7.9/57.9 ± 3.3 52.2/52.2

Krug T Portugal GSE22255 GPL570 PBL mRNA 20/20 60.2 ± 10.6/58.7 ± 11.0 50.0/50.0

Tian C China GSE86291 GPL18402 Plasma microRNA 7/4 64.4 ± 16.5/59.8 ± 4.0 85.7/75.0

Jickling GC USA GSE55937 GPL16384 PBL microRNA 24/24 62.4 ± 8.1/63.8 ± 8.5 50/50
aPeripheral blood lymphocytes
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kinase(MAPK) signaling pathway and Shigenllosis infec-
tion were presented. Notably, miR-320b and miR-320d
had the most common target genes, which made these
miRNAs the center of the regulatory network.

Comprehensive analysis of DE genes and miRNAs
Overall, we identified potentially useful biomarkers, six
mRNAs and two miRNAs, as well as several novel path-
ways (the SLE pathway and atypical infection pathways)
as a matter of priority.

Discussion
Cross-country studies of ischemic stroke gene expres-
sion datasets were standardized and integrated in our
study using a precise method for further integrated ana-
lysis. The purpose of our work was to reduce the bias of
sample studies and to screen for significant susceptibility
genes that may be used to predict the potential for
stroke. We used the MetaDE package in R language to
merge and filter gene expressions [18]. A total of 155
upregulated DE mRNAs in PBL samples of stroke and
185 DE miRNAs were identified. Of these, we identified

Fig. 3 Heatmap of the top 20 differentially expressed genes (for the sake of space, only a portion of the figure is shown here)
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Fig. 4 Functional enrichment analysis of meta-DE genes. (A) GAD-disease analysis. (B) KEGG pathway enrichment analysis. (C) Cellular
components of GO enrichment analysis. (D) Biological processes of GO enrichment analysis. (E) Molecular functions of GO enrichment analysis

Fig. 5 KEGG pathway enrichment by GSEA
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Fig. 6 Systemic lupus erythematosus pathway in KEGG. The core enrichment genes identified in GSEA are shown in red

Fig. 7 PPI networks. (A) PPI network of upregulated DE-mRNAs. (B) PPI network of all DE-mRNAs. The size and color of the map nodes are
determined by the degree value; a small size with a low degree is shown in blue, and a large size with a high degree is shown in red
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six genes (PTGS2, IL1B, STAT3, MMP9, SOCS3 and
CXCL1) and two miRNAs (miR-320b and miR-320d) as
worth exploring due to their core position in the
network and the functional enrichment.
Some of the above-mentioned DE-miRNAs were con-

firmed to be involved in the pathophysiological process
of stroke, including neurogenesis (miR-30-5p [19]), neu-
roprotection (miR-223 [20], miR-424 [21] and miR-106-
5p [22]) and angiogenesis (miR-130a [23]). To verify the
identified DE-miRNAs in depth, we predicted the target
genes and enrichment pathways of the top five DE-
miRNAs. ultimately, we speculated that miR-320b and
miR-320d were more likely to compensate the patho-
physiological process of stroke through the neurotrophin
signaling pathway.
The enrichment analysis from the GAD database re-

vealed that traditional risk factors play an important role

in the onset of stroke, including type 2 diabetes, heart
disease, atherosclerosis, high HDL-C levels and Obesity.
In addition, the KEGG enrichment and GSEA revealed
that DE genes were primarily involved in the TNF and
SLE pathways as well as in atypical microbial infection
(virus, amoebiasis, legionellosis, vibrio cholerae); these
findings were consistent with the inflammatory and im-
mune dysfunction categories in the results of the GO
enrichment with biological process. Inflammation and
immunity are key elements of the pathobiology of stroke.
The immune system gets involved in the cerebral ische-
mic damage, and the damaged brain in turn suppresses
immunity, thereby increasing the incidence of infections
and poor outcomes. Inflammation signaling participates
in the overall process of the ischemic cascade, from the
initial damaging events triggered by arterial occlusion to
the late regenerative process underlying post-ischemic
tissue repair [24]. Combining the results of the two PPI
networks, five core genes (PTGS2, IL1B, SOCS3, MMP9
and CXCL1) were linked to inflammation and immunity.
In the early stage of stroke, damaged neurons and

endothelial cells produce COX-2 (encoded by PGTS2),
which is an important source of prostaglandin. Prosta-
glandin is a vital inflammatory mediator that launches
inflammation and alters the permeability of the blood
brain barriers [25]. Subsequently, the microglia in the
central nervous system and macrophages in the perivas-
cular space release cytokines, such as TNF and IL-1β
(encoded by IL-1B, providing further signals to guide
leukocyte migration across the vascular wall) [26]. The
chemokine (C-X-C motif) ligand 1 (CXCL1) is a small
cytokine belonging to the CXC chemokine family and is
expressed in epithelial cells, macrophages and neutro-
phils, helping to recruit leukocytes to the damaged endo-
thelial cells [27]. When leukocytes migrate from the
open blood brain barriers to the vessel extracellular
matrix, Matrix metallopeptidase 9 (MMP-9) is activated
to break down the extracellular matrix and remodel it to
facilitate the migration of leukocyte to the focus. In the
period following stroke, the inflammation responses that
clear the dead cells also cause tissue damage and the ac-
tivation of innate and adaptive immunity [28]. Moreover,
recent research shows that vascular endothelial growth
factor (VEGF) is crucial for post-ischemic angiogenesis

Table 2 Significance levels of the six core genes

Probe ID Gene logFC AveExpr t P.Value adj.P.Val B

1554997_a_at PTGS2 −1.24882193 7.442496698 −4.80511919 5.16876E-06 0.000540758 3.864008467

205067_at IL1B −0.698039222 10.48159159 −3.076232156 0.002673054 0.027765348 −1.836198698

243213_at STAT3 −0.577032001 6.221396911 −4.567697671 1.34764E-05 0.000947071 2.97764575

203936_s_at MMP9 −0.605072277 8.96615712 −3.402170393 0.000946897 0.014217238 −0.90791425

227697_at SOCS3 −0.688732269 9.644451144 −3.821735382 0.000224833 0.005527334 0.394351896

204470_at CXCL1 −0.665002791 7.462440332 −3.129305647 0.002268543 0.025006572 −1.690241743

Table 3 DE-miRNAs

miRNA ID P.Value t B logFC Regulation

hsa-miR-140-3p 0.00194 4.12368 −2.43 4.81174 up

hsa-miR-320b 0.0024 3.9932 −2.51 4.83185 up

hsa-miR-320d 0.00309 3.83947 −2.61 4.96841 up

hsa-miR-320e 0.00438 3.63176 −2.75 4.64221 up

hsa-miR-5100 0.00654 −3.39579 −2.91 −1.86679 down

hsa-miR-30d-5p 0.00683 3.37023 −2.93 5.55511 up

hsa-miR-320a 0.00717 3.34187 −2.95 4.38005 up

hsa-miR-4454 0.00893 −3.21442 −3.05 −2.17604 down

hsa-miR-3195 0.00959 3.17256 −3.08 4.14651 up

hsa-miR-6090 0.0112 3.08296 −3.15 1.03161 up

hsa-miR-2392 0.01162 3.06168 −3.16 3.29409 up

hsa-miR-642b-3p 0.01246 3.02149 −3.19 4.24362 up

hsa-miR-106b-5p 0.01257 3.01629 −3.2 4.97951 up

hsa-miR-4687-3p 0.01307 2.99373 −3.21 0.33535 up

hsa-miR-149-3p 0.01621 −2.86985 −3.31 −0.34278 down

hsa-miR-345-5p 0.01659 −2.85646 −3.32 −0.34535 down

hsa-miR-3135b 0.01675 2.85072 −3.33 3.88918 up

hsa-miR-622 0.01766 −2.82032 −3.35 −0.35244 down

hsa-miR-513c-5p 0.01849 −2.79399 −3.37 −0.35776 down

hsa-miR-583 0.01901 −2.7779 −3.38 −0.36108 down
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and is produced by activated astrocytes; fully functional
VEGF may require MMPs, suggesting a link between in-
flammatory cells and angiogenesis [29]. As for signal
transducer and activator of transcription 3 (STAT3), this
neuroprotective factor is essential for the differentiation
of Th17 cells and for maintaining the ability to generate
antibodies of adaptive immunity.
However, high expression of STAT3 in microglia was

shown to play a critical role in mediating Hcy-induced
microglia activation and neuroinflammation in a rat middle
cerebral artery occlusion (MCAO) model [30]. Therefore,
the role of SATA3 in stroke is still controversial. In addition,
suppressor of cytokine signaling 3 (SOCS3) has been identi-
fied to have an emerging role linking central insulin resist-
ance and Alzheimer’s disease, but the relationship between
SOCS3 and stroke has not been studied sufficiency [31].
The KEGG and GAD enrichment analyses for DE-

genes revealed that the DE-genes related to the following
three types of diseases: (1) type 2 diabetes, atheroscler-
osis and coronary artery disease, which all represent vas-
cular endothelial injury caused by metabolic disorders
and fatty acid accumulation; all are considered high risk
factors for stroke; (2) SLE and asthma, which both in-
volve excessive inflammation and immune response; and
(3) microbial infections (helicobacter pylori, virus,
amoebiasis, legionellosis, vibrio cholerae), which are all a
direct consequence of immunosuppression in late post-

ischemic stroke. The prevailing conclusion is that stroke
is a polygenic condition made our integrated analysis
more effective and valid.
Here, we proposed that the SLE pathway may be a rare

stroke-related pathway. This pathway has been report-
edly linked to cerebral lupus, especially epilepsy and
acute psychotic disorder [32]. It has been reported that
stroke represents one of the most severe complication,
with an occurrence rate between 3 to 20%, particularly
in the first 5 years of diseases [33]. The mechanisms
underlying SLE and stroke involve the expression of aPL
(a common SLE antibody) on endothelial surfaces, which
leads to the release of pro-inflammatory cytokines and
the upregulation of adhesion molecules [34]. However, it
is not clear how these antibodies trigger thrombosis. In
our study, we outlined the upregulated proteins of the
SLE pathway. In the generation stage of auto-antibodies,
the overexpression of CD80/86 in antigen-presenting
cells accelerates the transduction from Th0 cells to Th2
cells. Then, Th2 cells assist the B cells in producing
more antibodies. In the effective stage, on the one hand,
C4/C1q/C5 in the complement pathway is activated by
the antigen-antibody complex to form the MAC (mem-
brane attack complex), leading to vascular endothelial
injury. On the other hand, recruited neutrophil granulo-
cytes and macrophages secrete cathepsin, leading to
tissue damage in the brain [35].

Fig. 8 Intersection of the target genes of the top five miRNAs
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Another issue we would like to explore is the atypical
infections found in our study. Infection occurrence is an
critical trigger that precedes up to one third of ischemic
strokes, and infections that present subsequent to ische-
mic stroke also complicate one third of the cases and
bring about worse outcomes [36]. One of the largest
studies, which included 19,063 first-time stroke patients,
indicated that the risk of stroke was highest during the
first 3 days after the diagnosis of respiratory tract
infection (IR = 3.19 95%CI 2.81–3.62) or urinary tract
infection (IR = 2.72 95%CI 2.32–3.20). However, in the
following PASS (preventive antibiotics in stroke study),
preventive ceftriaxone did not improve functional out-
comes in patients with acute stroke [37]. In our study,
the most significant infections were Helicobacter pylor-
i(HP), virus and certain atypical microorganisms, includ-
ing amoebiasis, legionellosis and vibrio cholerase, which
were not covered by ceftriaxone. Several retrospective
analyses have shown that HP infection is associated with
stroke, but their conclusions were contradictory [38]. In
addition, several viral infections (cytomegalovirus,
Herpes simplex virus 1, varicella zoster virus, hepatitis C
virus and human immunodeficiency virus) have been

implicated in increasing the risk of ischemic stroke.
However, the more atypical infections found in our
study were not covered by ceftriaxone, which may ac-
count for the negative results in PASS. Notably, there is
a lack of research on the relationships between these in-
fections and stroke. With the rise in research on the gut-
brain axis, it has been shown that stroke promotes the
translocation and dissemination of selective bacterial
strains that originate from the host intestinal microbiota
[39]. Moreover, the velocity of stroke induces intestinal
barrier dysfunction and permeability more rapidly than
the dissemination of orally ingested bacteria to
peripheral tissues. These studies raised our awareness
that we should pay more attention to the relationship
between stroke and inapparent infections of the
digestive system [40].
Our study has several limitations. The first was the

sample types of mRNA datasets. In the original protocol,
we aimed to obtain data from blood, cerebrospinal fluid
and brain samples in order to restore the differences in
gene expression from the periphery and center to path-
ology. However, due to the limitation of datasets and the
inaccessibility of the raw data, the sample type was

Fig. 9 Outline of the interactions among the significant KEGG pathways, DE genes and miRNAs
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restricted to blood sample data only. The second was
the lack of compare of two miRNA datasets from differ-
ent platform. We just listed the results of the individual
analysis together but could not overcome the differences
between the platforms to do the fusion analysis. Jung KC
and Daniel R [41, 42] developed a random effects model
shown to be appropriate for gene express datasets, inde-
pendent of the method and technology used(ie, spotted
cDNA versus oligonucleotide). What’s more, By using
this method, dataset from different experiment type and
platform could cross-verify each other, and that will
greatly increased the credibility of microarray analysis.
And we were looking forward to see more breakthrough
in miRNA analysis in the future. The last shortcoming is
that the causal relationship between the novel bio-
markers and stoke can only be predicted by theoretical
analysis rather than through prospective study. There-
fore, we will keep monitoring the progress in stroke re-
search. Further investigations are warranted to confirm
whether our novel biomarkers are potential prognostic
predictors or therapeutic targets in stroke.

Conclusion
Our integrated analysis of stroke genomics provides
abundant resources for further explorations of the role
of target genes and miRNA in ischemic stroke. Six
significantly upregulated genes (PTGS2, IL1B, STAT3,
MMP9, SOCS3 and CXCL1) and two significantly upreg-
ulated miRNAs (miR-320b and miR-320d) were identi-
fied as potentially useful clinical diagnostic markers.
Systemic Lupus Erythematosus pathways and atypical
pulmonary and digestive infections may participate the
pathogenesis of stroke; therefore, these topics warrant
further study.
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