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Abstract

Protein–protein interactions (PPIs) are essential for most biological processes. However,

current PPI networks present high levels of noise, sparseness and incompleteness, which

limits our ability to understand the cell at the system level from the PPI network. Predicting

novel (missing) links in noisy PPI networks is an essential computational method for auto-

matically expanding the human interactome and for identifying biologically legitimate but

undetected interactions for experimental determination of PPIs, which is both expensive

and time-consuming. Recently, graph convolutional networks (GCN) have shown their

effectiveness in modeling graph-structured data, which employ a 1-hop neighborhood

aggregation procedure and have emerged as a powerful architecture for node or graph rep-

resentations. In this paper, we propose a novel node (protein) embedding method by com-

bining GCN and PageRank as the latter can significantly improve the GCN’s aggregation

scheme, which has difficulty in extending and exploring topological information of networks

across higher-order neighborhoods of each node. Building on this novel node embedding

model, we develop a higher-order GCN variational auto-encoder (HO-VGAE) architecture,

which can learn a joint node representation of higher-order local and global PPI network

topology for novel protein interaction prediction. It is worth noting that our method is based

exclusively on network topology, with no protein attributes or extra biological features used.

Extensive computational validations on PPI prediction task demonstrate our method without

leveraging any additional biological information shows competitive performance—outper-

forms all existing graph embedding-based link prediction methods in both accuracy and

robustness.

Introduction

Protein-protein interactions (PPIs) are crucial in almost every process in a cell. Understanding

PPIs is essential to identify cell physiology states that are normal or diseased. Furthermore,

knowledge of PPIs can significantly facilitate uncharacterized protein function prediction and

drug design [1, 2]. We usually represent the totality of PPIs in a cell or an organism with a PPI

network. These networks are mathematical constructs where every protein is represented as a
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node, with an edge indicating that two proteins interact. With the development of high-

throughput experimental technologies [3–6] (e.g., large-scale PPI screening tools) for the

determination of PPIs, an increasing amount of PPI data has become available and provide

valuable resources for understanding cell work mechanisms from PPI networks. Despite this,

current PPI networks are still incomplete and noisy since the experimental determination of

PPIs is limited in how many legitimate interactions they can detect and often have high false

positive and negative rates [7]. Moreover, existing experimental maps of PPIs are both expen-

sive and time-consuming. Consequently, these limitations have enabled a series of network-

based algorithms [8–12, 15, 17] for predicting missing (unknown) links based on already

mapped interactions in noisy and incomplete PPI networks. One class of simple yet efficient

approaches for link prediction is called network structured-based algorithms, rooted in social

network analysis. Network structure-based algorithms [13–18] such as common neighbors

(CN), preferential attachment (PA), Adamic-Adar (AA) and the number of 3-hop paths (L3),

which assign a likelihood score to all candidate links (i.e., non-connected node pairs) and rank

these unknown links according to their scores. Due to the simplicity and low computational

complexity of network-based algorithms, they have obtained wide practical uses (e.g., Identifi-

cation of novel protein interactions). In addition, several traditional network embedding algo-

rithms (e.g., multidimensional scaling (MDS) and isometric feature mapping (Isomap)) have

been introduced to PPI networks for novel protein interaction prediction. For example, [8]

proposed a protein embedding method based on MDS for identifying and assessing new PPIs.

Instead of MDS, [10] utilized Isomap to learn latent protein representations by preserving geo-

desic distances between proteins. The PPI prediction task was transformed to calculate a reli-

ability index for each protein pair. [9] proposed minimum curvilinear embedding (MCE) that

converted network topology by leveraging the minimum spanning tree, which outperformed

MDS and Isomap in predicting PPIs.

The recently proposed graph embedding [19–22] (sometimes called network representation

learning) technologies provide new effective paradigms in graph analysis tasks. Specifically,

graph embedding utilizes random walk or matrix factorization to convert network structure

into a low-dimensional space in which the topological information of a graph is maximally

preserved, often without using node features [23]. In this way, nodes (edges and/or subgraph)

of graphs are represented as compacted yet informative vectors in the embedding space and

thus can be used as latent features in building traditional machine learning models for a wide

range of downstream tasks, such as link prediction and node (or graph) classification. It is

worth noting that instead of these advanced graph embedding algorithms, the previous

embedding methods, MDS and Isomap, learn node representation by preserving the Euclidean

distances of node pairs in the embedding spaces. The main problem with these traditional

embedding method is that they need to compute the shortest lengths of node pairs [25].

Although the main application of the recently proposed graph embedding technologies on

non-biological networks, such as social networks and recommendation system, numerical

experiments indicate that these advanced approaches can also be applied in network biology

fields (e.g., drug-disease association (DDA) prediction and PPI prediction) and achieve supe-

rior results [24, 25]. The performance of graph embedding and its downstream tasks strongly

depend on the type of structure (local and global) property to preserve [25]. Unfortunately,

existing graph embedding mainly focuses on capturing local network structural information

and fails to exploit a stronger notion of global network topology. Although several embedding

approaches (e.g., node2vec [20], LINE [26] and SDNE [27]) are designed to preserve both local

and global structure properties, they only consider the first- or second-order similarity of

graphs (i.e., 1 or 2-hop neighbors of nodes) for learning node representation. In fact, some fac-

torization matrix-based models (e.g., HOPE [21] and GraRep [22]) aim at preserving the
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higher-order proximity of networks. However, how to balance higher-order local and global

graph structural information to benefit biological informatics, especially novel PPI prediction,

is rarely discussed.

Alternatively, various neural network-based methods [26–29], such as LINE, SDNE and

VGAE, have also been generalized to the field of graph embedding and show their effectiveness

in modeling graph-structured data. A recent important development is graph convolutional

networks (GCN) proposed by [28], which have emerged as a powerful architecture for learning

node (or graph) representations. Specifically, GCN follows a message passing procedure (i.e.,

neighborhood aggregation scheme), where each node representation vector is derived by

recursively aggregating and transforming the representation vectors of its neighbors. After L
iterations of the neighborhood aggregation procedure, each node learns a representation vec-

tor that captures the network topological information within its L-hop neighborhood, where L
is the number of convolutional layers. These representations can be used as features for various

node-related tasks (e.g., link prediction and node classification). Due to the flexibility and

effectiveness of GCN, numerous GCN variants have been proposed and garnered particular

attention in biological informatics fields [30–32]. For example, several works utilize attention

[33, 34], edge features [35] and random walk [36] to improve the basic message passing proce-

dure. [30] adopted a standard GCN decoder and an inner product decoder to discover novel

PPIs. However, all of these methods for learning node representation are based on a limited

neighborhood aggregation scheme that only considers the immediate (1-hop) neighbors of

each node. A larger (higher-order) neighborhood would desirable to provide the GCN model

with more topological information, especially for nodes in an incomplete and sparse graph

(e.g., PPI network). Furthermore, because GCN are essentially a type of Laplacian smoothing

[36], we exploit the higher-order neighborhood information (i.e., increase the sizes/range of

the neighborhood) for learning node latent embedding by simply adding the number of con-

volutional layers (or aggregation/propagation steps) of GCN model, which will cause over-

smoothing. It, therefore, loses its focus on the local neighborhood and deteriorates prediction

performance [36, 37]. Hence, designing a graph embedding method that can learn a joint

node representation of higher-order local and global graph structures would be a promising

direction in biological application scenarios.

In this paper, we propose a novel node (protein) embedding method by combining GCN

and PageRank as the latter can significantly improve the GCN’s aggregation scheme, which

has difficulty in extending and exploring topological information of networks across higher-

order neighborhoods of each node. Building on this novel node embedding model, we then

develop an adaption of variational graph auto-encoder (VGAE) [29], called HO-VGAE, for

novel PPI prediction, which aims to explore only network topology, no protein attributes or

extra biological information used in PPI networks. More precisely, we utilize our proposed

higher-order GCN to capture highly-order local and global graph structures and learn a lower-

dimensional representation (i.e., latent embedding) for each node. This embedding is then

used for reconstruction of the PPI network to discover new interactions between protein pairs.

A recent study [37] also proposed a message passing algorithm that combines neural network

and PageRank, which separates the neural network from the propagation scheme. The predic-

tions are first generated from each node’s features by a neural network (e.g., standard multi-

layer perceptron (MLP)) and then propagated using an adaption of personalized PageRank.

Unlike in [37], our method utilizes PageRank to explore and propagate graph topological

information across the higher-order neighborhood of each node in every convolutional layer,

not just 1-hop neighborhood aggregation (e.g., the original GCN model [28]). Obviously, the

proposed algorithm by [37] requires abundant (additional) node features and is only suitable

for node classification tasks.
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In addition, to avoid the incompleteness of the PPI network that may result in an unsatis-

factory prediction performance, we propose a co-training technique based on the L3 principle

proposed by [17], which indicates that the more 3-hop paths between two proteins in the PPI

network, the more likely that a nonobserved (unknown) but legitimate link (interaction) exists.

Specifically, we add some nonconnected protein pairs between which there are many 3-hop

paths as legitimate links (or present/positive edges) to the training dataset to train our model

and improve its prediction performance.

As a consequence, extensive computational validations in PPI networks demonstrate our

method without leveraging any additional biological information achieve competitive results

in both accuracy and robustness and outperforms all existing graph embedding-based models.

Methods

In this section, the proposed graph embedding-based method of novel protein interaction pre-

diction is described.

Definition

PPI data produced by high-throughput experimental technologies come in the form of con-

nections between proteins, which can be naturally modeled as a graph, where proteins are

represented as nodes and their interactions are represented as edges. Assume we have an undi-

rected and unweighted graph G = (V, E) with n = |V| nodes. Denoted by A ¼ ½aij� 2 R
n�n

is the

adjacency matrix of G, where aij = 1 denotes a present edge, aij = 0 denotes a nonconnected

node pair (non-edge). Denoted by D = diag(d1, d2, . . ., dn) is the degree matrix of A where

di = Sjaij. Node (protein) features are summarized in an n × d matrix X.

A novel node embedding model with higher-order GCN

Message passing algorithms like GCN [28] are essentially a type of Laplacian smoothing [35],

so learning a node representation by recursively aggregating its neighbors’ information could

cause oversmoothing if too many layers (or aggregation/propagation steps) are used. This is

why the traditional GCN model cannot be trivially expanded to leverage the higher-order

neighborhood information of each node.

To effectively capture the larger neighborhood information for each node, we propose a

novel mode embedding method by combining GCN and a personalized PageRank algorithm

as the latter can significantly improve the GCN’s aggregation scheme, which has difficulty in

extending and exploring topological information of networks across higher-order neighbor-

hoods of each node. This higher-order GCN consists of neighborhood aggregation layers that

not only consider the immediate neighbors of the nodes but also the higher-order neighbor-

hood. Specifically, our method connects the random walk-based propagation effect (scheme)

of personalized PageRank [38] to GCN consecutively in every convolutional layer. We define

the root node (i.e., the random walk’s starting node) with a chance of teleporting back (i.e.,

restart probability α 2 (0, 1]), which ensures the balance of the need to preserve locality and

the topological information from the higher-order neighborhood. Note that we assume the

diagonal elements of the adjacency matrix A set to 1 (i.e., every node is connected to itself) dur-

ing the following calculations. The nonlinear functions of every convolutional layer can be

written as follows:

Zlþ1 ¼ ReLUðHl
KW

lÞ; ð1Þ

In the l-th convolution layer, each power iteration (random walk/propagation) formula is
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calculated as follows:

Hl
kþ1
¼ ð1 � aÞAnormHl

k þ aZ
l; ð2Þ

Hl
0
¼ Zl; ð3Þ

where H0
0
¼ X. L is the number of convolution layers. Hl is the matrix of activations in the l-th

layer, and Wl is the trainable weight matrix in the layer l, ReLU(�) = max(0, �) refers to a the

activation function of model. Anorm ¼ D� 1
2AD� 1

2 is the standard symmetrically normalized adja-

cency matrix.

In recurrent Eq (2), due to the convergence property of the PageRank algorithm based

on random walk, Hl
kþ1

is approximately equal to Hl
k when k is large enough. After the k-th

(k!1) iteration step, the resulting Eq (2) is

Hl
1
¼ aðIn � ð1 � aÞAnormÞ

� 1Zl; ð4Þ

where In is identity matrix. In the formula above, we also obtain the normalized fully score

matrix S = α(In − (1 − α)Anorm)−1, whose element (Sij) specifies the influence score of node i on

node j. Note that due to symmetry Sij = Sji (i.e., the influence of i on j is equal to the influence

of j on i), this inverse always exists and can be used to prove the existence of score matrix S
[37].

Hence, an adaption of the message passing algorithm of GCNs can be obtained by using the

above influence scores, and its nonlinear convolution functions can be written as follows:

Zlþ1 ¼ ReLUðSZlWlÞ; ð5Þ

GCNðX;AÞ ¼ ZL; ð6Þ

Instead of the standard convolutional formula of the GCN model [28] with a 1-hop neigh-

borhood aggregation scheme, which is calculated via Zl+1 = ReLU(Anorm Zl Wl), (7). Our pro-

posed novel embedding model with higher-order GCN is strictly stronger than the original

GCN in terms of capturing topological information from a larger neighborhood (as illustrated

in Fig 1).

Higher-order GCN variational auto-encoder for novel protein interaction

prediction

Building on our proposed novel node embedding model, we design a higher-order GCN varia-

tional auto-encoder (HO-VGAE) architecture developed by [28, 29, 39], which aims to recon-

struct a new PPI network to discover novel protein interactions from a noisy and incomplete

network.

The basic framework. The HO-VGAE architecture consists of multiple nonlinear trans-

forms (mapping functions) on the input structure (i.e., the adjacency matrix A and node fea-

tures matrix X), which are summarized in two parts: encoder and decoder. For the encoder

part, we utilize our proposed higher-order GCN to generate a Gaussian-distributed latent

node embedding Z 2 Rn�f
from the input structure. This embedding can produce an approxi-

mate reconstruction output Â in the decoder part of the model. The HO-VGAE model focuses

on learning low-dimensional and stable node representation preserved graph structural infor-

mation by minimizing the error between A and Â. Our goal is the reconstruction of PPI net-

work, which can be applied to discover new interactions. The basic framework of HO-VGAE

is presented in Fig 2. Now, we describe each phase of the HO-VGAE in formal terms.
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Encoder. The encoder part of HO-VGAE generates low-dimensional latent node embed-

ding. It computes μ and σ, i.e., two n × f matrices, by our proposed higher-order GCN:

m ¼ GCNmðX;AÞ and logs ¼ GCNsðX;AÞ; ð7Þ

Embedding. For each node i we can define the distribution of an f-dimensional stochastic

embedding Zi by obtained parameters μ and σ from the encoder:

zijA;X � N ðmi; diag ðs2
i ÞÞ; ð8Þ

Hence, given embedding Z, we obtain a probability density function for all nodes in the

form of an n × f matrix:

qðZjX;AÞ ¼
Yn

i¼1

qðzijX;AÞ; ð9Þ

Fig 1. Message passing procedure in original GCNs (a) compared to ours (b). The original GCN follows a 1-hop

neighborhood aggregation scheme, which considers only the immediate neighbor information for each node. Our

proposed model explores and propagates graph topological information across the highly-order neighborhood of each

node in every convolutional layer.

https://doi.org/10.1371/journal.pone.0238915.g001

Fig 2. The basic framework of the higher-order GCN variational auto-encoder model to predict new PPIs.

https://doi.org/10.1371/journal.pone.0238915.g002
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Decoder. The decoder part reconstructs the input structure by using the inner product oper-

ation between the latent variable representations of two nodes, defined as:

pðAij ¼ 1jzi; zjÞ ¼ sðz>i zjÞ; ð10Þ

where sð�Þ ¼ 1

1þe� ð�Þ refers to logistic function and σ(�) 2 (0, 1).

Thus, we can obtain the probability density of a given reconstruction of the PPI network

for estimating the likelihood that a nonobserved/unknown link exists, which can be written as:

pðAjZÞ ¼
Yn

i¼1

Yn

j¼1

pðAijjzi; zjÞ; ð11Þ

Learning. The HO-VGAE is trained by optimizing an upper bound:

L ¼ EqðZjX;AÞ½logpðAjZÞ� � KL½qðZjX;AÞ k pðZÞ�

¼ LA þ LKL

; ð12Þ

where LKL represents the Kullback-Leibler divergence between the distribution of embedding

q(Z|X, A) and a Gaussian prior pðZÞ ¼
Q

ipðziÞ ¼
Q

iN ðzij0; IÞ. The HO-VGAE model per-

forms batch or stochastic gradient descent and utilizes a reparameterization technique for

training [39]. Finally, LA and LKL can be expressed directly [39]:

LA ¼
Xn

i;j¼1

½Aijlogðsðz
>

i zjÞÞ þ ð1 � AijÞlogð1 � sðz
>

i zjÞÞÞ�; ð13Þ

LKL ¼
1

2

Xn

i¼1

Xf

j¼1

m2

ij þ s
2

ij � 2logsij � 1; ð14Þ

Such a reconstruction process described in the basic framework of the HO-VGAE model is

not suitable for directly applying to predict new PPIs because of some characteristics of the

PPI network (e.g., incompleteness and sparsity). As we observed, the optimization of the con-

struction of the entire input structure is not intuitive in the case of topological link prediction

in an incomplete and sparse PPI network. To solve these issues, we propose a co-training tech-

nique and make a few adjustments to loss function L.

A co-training technique. The incompleteness of the PPI network problem may make it

difficult for our model to accurately identify missing interactions. In the PPI network, we can

observe some known interactions (links) between proteins, but simultaneously, many legiti-

mate links are unobserved that are treated as absent (negative) edges. Then, if we train a model

by optimizing the object function, which only allows for the contribution of the training

model associated with observed interactions (i.e., we directly use the known interactions as the

input to a training model), it could lead to an unsatisfactory result. Motivated by the L3 princi-

ple [17], we propose a co-training method to train GCN with more positive samples (known

interactions). Specifically, we first use A3 to find the t (i.e., hyper-parameter) most confident

unobserved links (edges) E0—the t most 3-hop paths between two nodes, and then we obtain a

new network G = (V, E0 [ E) with the expanded adjacency matrix A0.
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Given this expanded adjacency matrix, we refine the learning algorithm of the basic HO-V-

GAE model as follows by altering the LA (Eq 13) to be optimized.

LA ¼
Xn

i;j¼1

½A0ijlogðsðz
>

i zjÞÞ þ ð1 � A0ijÞlogð1 � sðz
>

i zjÞÞÞ�; ð15Þ

Rather than optimizing for the input structure reconstruction outlined in the basic frame-

work of HO-VGAE, we optimize the object function allowing for contribution associated with

observed interactions and some unobserved but highly likely legitimate links.

Loss adjustments. In practice, the loss function L needs a few adjustments to improve the

prediction performance. First, due to the high sparsity of the PPI network, the input structure

exhibits an extreme class imbalance in which the number of known links is considerably less

than the number of nonconnected links. Then, if we use LA as the loss function to our model,

it could result in globally near-zero link reconstruction probabilities. To address this class

imbalance issue, we use the density of the network’s adjacency matrix to adjust the LA, defined

as:

~LA ¼
Xn

i;j¼1

A0ij
d
logðsðz>i zjÞÞ þ

1 � A0ij
1 � d

logð1 � sðz>i zjÞÞ
� �

�; ð16Þ

where d ¼
P

ij
A0ij

n2 . The approach is called balanced cross-entropy, which ensures the positive

class and negative class of input structure that contribute equally to the cross-entropy loss

formulation.

Second, we add an L2-norm regularizer term to prevent overfitting, defined as:

Lreg ¼
1

2

XL

l¼1

ðjjWljj
2

FÞ; ð17Þ

Therefore, the final total reconstruction loss the HO-VGAE is trained for can be written as fol-

lows:

Lfinal ¼
~LA þ LKL þ vLreg ; ð18Þ

End-to-end optimization. To improve prediction performance, the HO-VGAE is opti-

mized end-to-end. Our goal is to minimize the objective Lfinal as a function of all trainable

parameters (W1, . . ., WL). In detail, we first initialize weights using the initialization described

in [40]; then, we calculate the partial derivative of Lfinal and obtain updated parameters via

back-propagation. Hence, by using the full-batch gradient descent (i.e., propagating loss func-

tion gradients through the entire HO-VGAE model, including the encoder part and the

decoder part), we can finish the optimization of the HO-VGAE model.

After minimizing the reconstruction loss until the HO-VGAE converges, we can obtain

low-dimensional and stable node representation preserved graph structural information.

Then, we use the inner product operation (Â ¼ sðZZTÞ) between the latent representations of

each node pair to obtain the approximated reconstruction matrix for discovering novel PPIs.

In fact, the approximated construction matrix Â is associated with a confidence score of the

interaction and estimates the likelihood that an unobserved or missing link exists. The higher

score between two proteins indicates a higher possibility that they interact. The full algorithm

is presented in Algorithm 1.
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Algorithm 1 Framework of the HO-VGAE model for novel PPIs prediction.
Input: The network G = (V, E) with adjacency matrix A
Output: The approximated reconstruction matrix Â
1: Replace node (protein) features X with the identity matrix in the
model;
2: E0: the top t edges (protein pairs) in A3;
3: Obtain a new network G0 = (V, E0 UE) with adjacency matrix A0;
4: Initialize weights(W1, . . ., WL) using the initialization described
in [40];
5: Z0 = X, Anorm ¼ D� 1

2AD� 1
2;

6: Calculate the normalized fully score matrix S based on formula S =
α(In − (1 − α)Anorm)

−1;
7: repeat
8: for l = 1 to L do do
9: Zl+ 1 = ReLU(SZl Wl)
10: end for
11: GCN(X, A) = ZL;
12: Apply Eq (7) to compute μ and σ;
13: qðZjX;AÞ ¼

Qn
i¼1

qðzijX;AÞ with zijA;X � N ðmi;diagðs2
i ÞÞ;

14: pðAjZÞ ¼
Qn

i¼1

Qn
j¼1

pðAijjzi; zjÞ with pðAij ¼ 1jzi; zjÞ ¼ sðz>i zjÞ;
15: Apply Eqs (15), (13) and (16) to compute ~LA, LKL and Lreg,
respectively;
16: Lfinal ¼

~LA þ LKL þ vLreg;
17: Use back-propagation to calculate the partial derivative of Lfinal

and get updated parameters (W1, . . ., WL).
18: until converage
19: We obtain stable node (protein) embedding Z based on global graph
topology;
20: Apply the inner product operation (Â ¼ sðZZT) to obtain the approx-
imated reconstruction matrix for estimating the likelihood that a
unobserved or missing link exists.

Accuracy and efficiency analysis. As we observed when adding the propagation effects of

the PageRank algorithm to GCN consecutively during inference (i.e., steps 7-16 in Algorithm

1), PageRank can significantly explore the useful information from higher-order neighbor-

hood for each node and then improve the model’s accuracy. However, because calculating

the normalized fully score matrix S (step 6 in Algorithm 1), i.e., reconstructing a denseRn�n

matrix, requires Oðn2Þ computational complexity and memory, we achieve higher-order GCN

by directly using this matrix for training and inference would be computationally inefficient.

To avoid this issue, we can approximate the nonlinear convolution functions (Eq (5)) that

utilize a score matrix S via PageRank’s power iteration connected to the regular random walk.

The approximate computation algorithm for the calculation of GCN(X, A), i.e., steps 8-11 in

Algorithm 1, is described in Algorithm 2. Note that this method retains the graph’s sparsity

and achieves linear computational complexity.

Algorithm 2 The approximate computation for the calculation of GCN(X, A).
Input: Nodes (proteins) feature matrix X and the initialized weights
(W1, . . ., WL)
Output: GCN(X, A)
1: H0

0
¼ Z0 ¼ X, Anorm ¼ D� 1

2AD� 1
2

2: for l = 1 to L do do
3: for k = 0 to K do do
4: Zl+ 1 = ReLU(SZl Wl)
5: end for
6: Zlþ1 ¼ Hlþ1

0
¼ ReLUðHl

KWlÞ
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7: end for
8: GCNðX;AÞ ¼ HL

K.

Results and discussion

In this section, we demonstrate the ability of the HO-VGAE to learn meaningful latent embed-

dings on novel PPI prediction tasks on several human PPI networks. The experimental results

indicate significant improvements in both accuracy and robustness over all existing graph

embedding-based link prediction models. We also predicted the novel PPIs by training HO-V-

GAE using the complete network and then compiled a list of most likely potential PPIs (i.e.,

top 150 predictions) ranked according to their interaction confidence score for biologists to

test (S2 File).

Datasets

To comprehensively assess the performance of the HO-VGAE, we use six human interactomes

curated by [17] for novel PPI prediction. We start from a systematic PPI network, HI-II-14

[4], obtained from a binary pipeline. We then predict new interactions on the HI-III dataset

[41] produced by high-throughput experimental PPI screening technologies. We continue

with literature-curated PPI networks of direct physical interactions, such as the Lit-BM-13 [6]

and BioGRID [42] datasets. We finally consider co-complex proteomics datasets, such as Bio-

plex [6] and Hein et al [5]. Following [17], we summarized the detailed statistics of the datasets

in S1 Table in S3 File.

Baseline model

We first compare our model with following 8 representative graph embedding techniques.

• Graph Factorization (GF) [43]: It factorizes the Laplacian matrix of the adjacency matrix to

obtain graph representation. It only preserves the first-order property of the network.

• GraRep [22]: A recently proposed graph embedding method based on matrix factorization

focuses on capturing the high-order proximity of graphs and designing k-step transition

probability matrices for factorization.

• HOPE [21]: It also takes into account the high-order proximity to preserve graph structures

by utilizing heuristic network similarity.

• DeepWalk [19]: It generates network embedding by using a random walk and skip-gram

model.

• node2vec [20]: Compared to DeepWalk, node2vec adopts a biased second-order random

walk procedure with more flexibility to generate node embedding.

• LINE [26]: It adopts neural network architectures (i.e., MLP) and directly models node

embedding vectors by optimizing the loss function, which preserves the 1st-order and/or

2nd-order proximity of graphs.

• SDNE [27]: It utilizes a deep auto-encoder to preserve the second-order proximity by recon-

structing the neighborhood structure of each node and incorporate the first-order proximity

using the Laplacian Eigenmaps model [44].

• VGAE [29]: It consists of two-layer GCN and a simple inner product decoder to learn mean-

ingful latent embedding based on the variational autoencoder [39].
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Besides the above embedding techniques, we also compare our embedding model with 5

state-of-the-art network structure-based link prediction algorithms, including common neigh-

bors (CN), preferential attachment (PA), Adamic Adar (AA), L3 principle [17] as well as its

higher-order extension (CH2-L3) [18].

We can directly apply the HOPE and VGAE model to the PPI prediction task. Following

[24], to adapt the other embedding-based baseline algorithms to predict novel PPIs, we first

use these graph embedding methods to learn latent node representation. We then concatenate

the embeddings of each node pair (i.e., edges and non-edges) as features to build a training

model (e.g., Logistic Regression binary classifier) for predicting unknown interaction. Note

that another typical operator is the Hadamard product for obtaining the training features of

node pairs, we also report the prediction performance using this pipeline in S5 Table and S6

Table in S3 File. The result indicates the concatenation operation outperforms the Hadamard

product operator.

Experimental setup

In the PPI network, all the existing links (interactions) are randomly split into a set of train-

ing PPI, validation and test sets. Thus, the model is trained on an incomplete PPI network

(i.e., contains 80% of known interactions) where parts of the known links have been

removed. We form validation and test set from removed edges (i.e., each includes 10% of

known interactions) and a matching number of randomly sampled unlinked protein pairs.

The validation set is used for the optimization of hyper-parameters. We use the area under

precision recall (AUPR) curve and precision@k (k is the number of 10% of known interac-

tions) to evaluate the link prediction performance. Meanwhile, AUPR is used to choose the

best hyper-parameters.

Before the optimization of the HO-VGAE model, we initialize the weights (W1, . . ., WL)

using the initialization described in [40]. We train for a maximum of 100 iterations using

Adam optimizer [45] with a learning rate of 0.01. To prevent overfitting and experimental

bias, we use a regular dropout [46] to hidden layer units and apply early stopping with a win-

dow size of 2, i.e., we stop training if the validation set loss does not decrease for two consecu-

tive iterations. In addition, notice that our model does not incorporate any additional

information about protein attributes, but only network topology, so we can replace node fea-

tures matrix X with the identity matrix in the GCN model. We can also apply the graph

embedding techniques (e.g., DeepWalk) to generate node embeddings (features). However, in

practice, node features obtained by graph embedding techniques didn’t improve the perfor-

mance of VGAE and HO-VGAE (S7, S8 Tables in S3 File).

We optimize all hyper-parameters (e.g., α, k, and t) of all embedding models (i.e., HO-V-

GAE and all embedding-based baseline) for all PPI networks individually using a grid search

on the validation set. Specifically, HO-VGAE applies a 3-layer GCN architecture with d(1) =

256, d(2) = 128 and d(3) = 64 hidden units in each convolutional layer and a dropout rate of

0.5 in our experiments. We also report all candidate hyper-parameter values over which the

grid search has been performed and default hyper-parameter values in S2 Table in S3 File.

Accuracy

The results for AUPR are summarized in S3 Table in S3 File. All results were summarized over

10 trials and expressed as mean ± standard deviation. As can be seen, the HO-VGAE signifi-

cantly outperforms all compared models on all datasets. In particular, we obtain these key con-

clusions as follows.
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Generally, the recently proposed embedding approaches can be applied to novel PPI pre-

diction and are more effective than conventional network structure-based link prediction

algorithms (e.g., CN and AA). For example, compared to CN, SDNE achieved 15.9%-36.1%

improvements of the AUPR value on all datasets. Our experiments also demonstrate that the

VGAE developed by the GCN model and VAE is a promising unsupervised approach for

learning powerful latent embeddings for the structure information of networks, which can

be used for the prediction of PPI. However, the result indicates that the VGAE with two

2-layer GCN for learning node representations fails to exploit stronger topological informa-

tion from the higher-order neighborhood of each node, while our proposed HO-VGAE

exhibits much superior performance (e.g., HO-VGAE obtains 2.5%-8.1% gains in terms of

the AUPR value on the six human PPI networks compared with VGAE) in the novel PPI pre-

diction task, as it overcomes limitations of the VGAE model. In addition, we observe that

VGAE with L3 co-training outperforms pure VGAE by large margins. This implies that our

proposed co-training method can improve the prediction performance of embedding model.

However, it’s also interesting that compared to HO-VGAE without L3 co-training, adding

L3 co-training does not significantly improve the performance and does not always improve

the performance.

In practice, the known PPI network (matrix) exhibits class (label) imbalance in which the

number of known interactions is considerably less than the number of non-interacting pairs.

To mimic this situation, we further performed two additional validation tests, in which the

negative examples in the test set contained either the negative samples nine times more than

the positive ones (i.e., positive-negative ratio of the test set = 1:10) or all unconnected protein

pairs in the remaining PPI network. The experiment results under the above settings are sum-

marized in S4 Table in S3 File and Table 1, respectively. In these two experimental scenarios,

L3 (or CH2-L3) always show great performance, which indicates they have much better

predicting power for identifying novel/unknown PPIs in the extremely sparse networks. It’s

interesting that the AUPR values of all graph embedding-based approaches, including our pro-

posed HO-VGAE, dropped greatly when all unknown pairs were treated as negative examples.

Table 1. Link prediction performance on six human PPI networks (AUPR). All unknown pairs were treated as negative examples.

Method Name HI-II-14 HI-III Lit-BM-13 BioGRID Bioplex Hein et al Mean

CH2-L3 13.9±0.7 16.3±0.3 10.5±0.5 15.6±0.3 14.0±0.3 16.5±0.3 14.5

L3 14.3±0.7 15.6±0.5 10.4±0.8 15.0±0.7 13.8±0.3 16.4±0.7 14.2

CN 3.1±0.2 3.1±0.6 6.0±0.7 5.7±0.3 6.0±0.4 8.4±0.4 5.4

HO-VGAE+CH2-L3 4.9±0.3 5.3±0.2 2.4±0.1 5.8±0.1 5.1±0.0 1.6±0.0 4.2

HO-VGAE+L3 5.0±0.3 5.3±0.3 2.5±0.2 5.8±0.2 5.0±0.1 1.6±0.0 4.2

HO-VGAE 4.7±0.3 5.1±0.2 2.4±0.0 5.7±0.2 4.7±0.1 1.6±0.0 4.1

AA 1.9±0.1 2.2±0.3 2.5±0.2 3.0±0.1 5.0±0.2 6.4±0.1 3.5

VGAE+L3 3.6±0.3 4.5±0.1 1.7±0.1 4.6±0.2 3.7±0.1 1.5±0.1 3.2

VGAE 3.4±0.1 4.4±0.1 1.4±0.1 4.5±0.1 3.4±0.1 1.3±0.1 3.1

PA 3.5±0.9 4.0±0.2 1.1±0.1 2.6±0.3 2.6±0.3 1.4±0.1 2.5

GraRep 2.0±0.2 2.3±0.1 1.0±0.1 1.0±0.3 1.6±0.1 0.9±0.1 1.5

HOPE 1.7±0.3 2.0±0.3 0.9±0.0 0.9±0.1 1.3±0.0 0.7±0.0 1.3

LINE 1.2±0.2 1.1±0.2 0.7±0.0 1.1±0.0 1.1±0.0 0.7±0.0 1.0

SDNE 1.1±0.2 1.0±0.1 0.5±0.0 1.3±0.0 1.0±0.0 1.2±0.1 1.0

GF 1.4±0.2 1.7±0.2 0.4±0.0 0.6±0.0 0.9±0.0 0.5±0.0 0.9

DeepWalk 1.0±0.1 1.8±0.1 0.2±0.0 1.2±0.3 0.8±0.0 0.6±0.0 0.9

node2vec 0.8±0.2 1.5±0.1 0.2±0.0 1.0±0.2 0.7±0.0 0.8±0.0 0.8

https://doi.org/10.1371/journal.pone.0238915.t001
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Despite this, HO-VGAE still obtains a much higher AUPR score and shows superior ability in

identifying missing PPIs when compared to other graph embedding-based methods.

The results for precison@k (k is the number of 10% of known interactions) are summarized

in Table 2. We find that L3 and CH2-L3 outperform other state-of-the-art baseline methods

and our proposed HO-VGAE. We also observe that the performance of HO-VGAE is consis-

tently better than other graph embedding-based approaches. Thus, HO-VGAE achieves com-

petitive performance showing that it’s a powerful ability in predicting novel/unknown PPIs.

Robustness

We illustrate the potential of the HO-VGAE in effectively capturing strong structural infor-

mation of graphs and predicting PPI in the presence of noise. In particular, to explore the

robustness of HO-VGAE, we randomly remove 10%, 20%. . ., 80%, and 90% known interac-

tions (links/edges) from the PPI network, respectively, and then follow the aforementioned

procedure to report the results of different link prediction methods. Note that all prediction

approaches didn’t use the co-training technique and all non-interacting pairs were treated

as negative examples. The result (AUPR and precision@k) on the HI-III dataset is shown in

Fig 3.

We find that the predictive power of the HO-VGAE model persists even when over 60%-

70% of the known links are removed. Additionally, our model performs stably better than

baseline algorithms (except for L3 and CH2-L3) up to the removal of 90% of links of the PPI

network. It also demonstrates that the great power of HO-VGAE in predicting potential (miss-

ing) links with incomplete (noisy) networks.

Effects of parameters

In this section, we investigate the effects of hyper-parameters on the performance of PPI pre-

diction. Specifically, we report the AUPR on three PPI datasets (HI-III, Lit-BM-13 and Hein at

al) to evaluate how different values of hyper-parameters α and K can affect the prediction

Table 2. Overall link prediction performance comparison on six human PPI networks (Precision@k).

Method Name HI-II-14 HI-III Lit-BM-13 BioGRID Bioplex Hein et al Mean

CH2-L3 19.0±0.5 20.1±0.3 14.6±0.3 9.3±0.2 14.1±0.4 26.8±0.5 17.3

L3 19.2±0.3 19.9±0.2 15.0±0.6 9.5±0.2 13.5±0.2 26.6±0.3 17.3

HO-VGAE+CH2-L3 17.7±0.2 18.8±0.3 10.8±0.1 10.6±0.3 12.6±0.2 13.0±0.2 13.9

HO-VGAE+L3 17.7±0.1 18.5±0.3 10.9±0.1 10.4±0.2 12.6±0.3 13.1±0.5 13.8

HO-VGAE 17.6±0.1 18.5±0.4 10.6±0.5 10.4±0.3 12.4±0.3 12.8±0.3 13.7

VGAE+L3 15.5±0.2 17.0±0.3 9.1±0.2 9.2±0.4 10.8±0.4 11.7±0.3 12.2

VGAE 15.2±0.4 16.5±0.3 8.9±0.2 9.0±0.2 10.1±0.3 11.2±0.4 11.8

GraRep 12.6±0.3 14.8±0.2 8.0±0.4 9.8±0.3 9.2±0.4 10.8±0.3 10.6

HOPE 12.7±0.6 11.4±0.3 7.8±0.1 7.9±0.3 7.0±0.3 8.1±0.1 9.2

LINE 11.4±0.2 11.0±0.1 6.1±0.3 8.5±0.3 8.6±0.3 9.1±0.3 9.2

SDNE 8.5±0.3 10.2±0.2 4.1±0.2 7.1±0.1 7.4±0.1 7.6±0.2 7.5

GF 7.7±0.2 6.9±0.1 7.7±0.5 5.1±0.3 4.4±0.1 7.3±0.1 6.5

DeepWalk 6.7±0.3 8.9±0.4 3.3±0.0 5.0±0.1 6.0±0.1 5.8±0.2 5.9

AA 4.6±0.3 5.3±0.1 4.8±0.2 2.0±0.0 5.2±0.1 13.1±0.7 5.8

node2vec 4.8±0.1 8.5±0.1 1.5±0.0 3.1±0.2 5.3±0.2 4.3±0.3 4.6

CN 0.0±0.0 5.7±0.1 6.5±0.3 2.1±0.1 4.9±0.0 0.3±0.0 3.2

PA 3.9±0.2 4.5±0.3 2.3±0.0 1.8±0.0 0.7±0.0 3.1±0.1 2.7

https://doi.org/10.1371/journal.pone.0238915.t002
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results. Note that HO-VGAE didn’t use the co-training technique and all non-interacting pairs

were treated as negative examples.

Effect of teleport probability α. Fig 4 shows how the link prediction performance depends

on the values of α on three human PPI networks. The teleport probability α balances the need

to preserve locality and larger (higher-order) neighborhood information for each node (pro-

tein). The larger the α, the more the HO-VGAE model concentrates on the node’s local topo-

logical information. Generally, we found a well-balanced point of approximately α 2 [0.1, 0.3]

for the range of the neighborhood influencing each node. From Fig 4, we can see that the per-

formance decreases as the value of α exceeds 0.4-0.5 because we fail to exploit stronger topo-

logical information from higher-order neighborhoods when α is too large. In addition, this

experiment suggests that the value of α should be adjusted for different datasets because differ-

ent PPI networks require different neighbor ranges. For example, for the HI-III PPI network,

when teleport probability α = 0.1, the performance is the best. However, the link prediction

result of α = 0.2 is better than that of α = 0.1 on the Lit-BM-13 dataset.

Effect of the number of power iteration steps K. Fig 5 shows how the number of power

iteration steps affects the prediction performance (α = 0.1). As clearly shown in the figure, the

link prediction performance increases and converges to a stable result as we increase the num-

ber of power iteration steps. In detail, when K = 0, the node embeddings are totally derived by

their own node features X. The larger K is, the higher-order the neighborhood is that the

model explores and propagates graph topological information across. As also shown, when

K = 10, it is enough to reach the best prediction performance.

Running time

Fig 6 summarized running times on six datasets for different link prediction algorithms. All

algorithm codes carried out on a workstation under Windows 10 with 64 GB of RAM and

Intel Core i7-8700 processors with 3.20GHz. Note that the running time of all embedding-

Fig 3. The results of six link prediction methods on the HI-III dataset of different incompleteness.

https://doi.org/10.1371/journal.pone.0238915.g003

Fig 4. The prediction performance for different values of α on three human PPI networks.

https://doi.org/10.1371/journal.pone.0238915.g004
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based methods are computed using the default parameters and do not include the hyper-

parameters optimization.

Conclusion

In this paper, we present a graph embedding-based computational method that can effectively

predict missing links in noisy and incomplete PPI networks, with no additional biological

information involved. The key idea of our method is that we propose a novel node (protein)

embedding model by combining graph convolutional network (GCN) and PageRank because

the latter can significantly improve the GCN’s aggregation scheme, which is difficult to extend

and explore topological information of networks across higher-order neighborhoods of each

node. With our proposed novel higher-order GCN, we further present HO-VGAE as an adap-

tion of VGAE for learning powerful latent embedding from PPI network topology that can be

used to discover novel protein interactions. The experimental results demonstrate that our

method significantly outperforms all existing graph embedding-based link prediction models

in both accuracy and robustness. We believe that the HO-VGAE provides a powerful and nec-

essary tool for automatically expanding the human interactome and for identifying biological

legitimate but undetected interactions for experimental determination of PPIs, which is both

expensive and time-consuming.

It is worth noting that our model can be easily adapted for many other biological interac-

tion graphs, especially heterogeneous information networks (e.g., drug-protein networks [31]

and disease-gene networks [32]), which rely on data obtained from costly high-throughput

Fig 5. The prediction performance for different power iteration steps K on three human PPI networks (α = 0.1).

https://doi.org/10.1371/journal.pone.0238915.g005

Fig 6. Running times on six datasets for different link prediction alogrithms.

https://doi.org/10.1371/journal.pone.0238915.g006
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experimental technologies and are often incomplete and noisy. We leave the adaption of

HO-VGAE to further work.
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