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A B S T R A C T

Background: Cognitive function among apparently healthy adolescents has been associated with cardiovascu-
lar morbidity and mortality. We examined the relationship between global and subdomain cognitive scores
in adolescence and early-onset type 2 diabetes (T2D) in men and women.
Methods: A nationwide, population-based study of 971,677 Israeli born adolescents (56% men; mean age 17.4
years) who were medically examined and their cognitive performance was assessed before compulsory mili-
tary service during 1992�2010. Data included global and subdomain cognitive Z-scores (problem-solving,
verbal abstraction and categorization, verbal comprehension, and mathematical abilities). Data were linked
to the Israeli National Diabetes Registry. The relations between global and subdomain scores and incident
T2D was determined using Cox proportional hazard models and logistic regression models. Analyses were
conducted separately for men and women.
Findings: During 16,095,122 person-years, 3,570 individuals developed T2D. After adjustment, those in the
low compared to the high quintile of global cognitive Z-score had the highest risk for T2D; HR 2.46, (95% CI
2.10�2.88) for men and 2.33 (95% CI 1.88�2.89) for women. A one-unit lower global cognitive Z-score was
associated with 1.41 (95% CI 1.34�1.48) and 1.46 (95% CI 1.36�1.56) increased risks for men and women,
respectively. The relationship was noted for the cognitive subdomains scores as well as for the global cogni-
tive score, with no heterogeneity across cognitive subdomains.
Interpretation: This large nationally representative cohort suggests relationship between global, as well as
subdomain cognitive scores in late adolescence, and incident early onset T2D in both sexes, which was inde-
pendent of socioeconomic status.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Early-onset type 2 diabetes, defined as onset of diabetes by age
40 years, is increasing disproportionally worldwide [1]. Early-onset
type 2 diabetes has a worse clinical course, with risk for long-term
complications [1], and might be associated with novel risk factors
such as intelligence and cognition variability [2]. Cognitive epidemi-
ology, emerged in the early 2000s, studies how and why individual
differences in intelligence (especially when measured in childhood or
young adulthood) associate with later differences in health, illness
and death [2].

While diabetes is recognized as a risk factor for cognitive
impairment later in life [3], evidence suggests that the association
may be bidirectional. Accordingly, cognitive function among appar-
ently healthy adolescents has been associated with incident type 2
diabetes [4�7], the metabolic syndrome [4�6,8�10], cardiovascular
morbidity [11,12] and mortality [13]. Some studies have assessed
cognitive function in adolescence and the risk for type 2 diabetes
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Research in context

Evidence before this study

Cognitive function among apparently healthy adolescents has
been associated with incident type 2 diabetes, the metabolic
syndrome, cardiovascular morbidity and mortality in some
publications, yet only a few studies provided data with respect
to specific cognitive subdomains.

Added value of this study

In a large nationally representative cohort of nearly 1 million
born adolescents, we demonstrated the importance of cognitive
performance during late adolescence in predicting diabetes in
young adulthood, in both sexes, and in all cognitive subdo-
mains examined (problem-solving, verbal abstraction and cate-
gorization, verbal comprehension and mathematical abilities).

Implications of all the available evidence

We observed an inverse relationship in both sexes, of global
and subdomain cognitive scores in late adolescence with early
onset type 2 diabetes. These relationships were independent of
adolescent sociodemographic background or BMI. The findings
support the hypothesis that cognitive abilities at adolescence
are a risk marker for future metabolic health.
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[4�6]. However, only a few studies provided data with respect to
specific cognitive subdomains [6,8�10].

Here, we used a nationally representative study sample of approx-
imately 1 million adolescents who were screened for cognitive status
as part of their assessment for mandatory military service. Cognitive
assessment included measures of problem-solving abilities, verbal
Fig. 1. Study fl
abstraction and categorization, verbal comprehension, and mathe-
matical abilities, as well as a measure summing all these into a global
cognitive score. These data were linked to the Israel National Diabe-
tes Registry (INDR) to assess relations between these scores and the
risk for type 2 diabetes in young adulthood.
2. Methods

2.1. Study population

This was a retrospective historical cohort study of 1,112,274
Israeli-born adolescents aged 16�19 years, who underwent compul-
sory evaluation, including medical and cognitive assessments aimed
to determine military service placement, between January 1, 1992
and December 31, 2010. Exclusion criteria were the absence of full
cognitive data, death before establishment of the INDR in 2012, and a
history of diabetes or dysglycemia, based on review of medical his-
tory, an interview, and a physical examination (Fig. 1). Thus, the
study sample comprised 971,677 adolescents (56% men) with com-
plete information on all cognitive domains. This represents 87.4% of
the data available for Israeli-born adolescents. The date of diabetes
diagnosis was available for only 3570 (63%) of 5649 individuals with
type 2 diabetes.

Follow-up extended from the initial pre-military evaluation until
type 2 diabetes diagnosis, death or 31 December 2016, whichever
came first.
2.2. Ethical statement

The Institutional Review Boards of Sheba Medical Center Ethics
Committee and the Institutional Review Board of the Israel Defense
Forces Medical Corps approved this study and waived the need for
informed consent, with assurance of strict maintenance of anonymity
of the persons included, during database analyses.
owchart.
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2.3. Evaluation of cognitive function at baseline

Cognitive assessment was conducted as part of the pre-military
assessment and was administered by trained personnel. The cogni-
tive assessment included four subdomains: Raven’s Progressive
Matrices-R, which measures nonverbal abstract reasoning and
visual-spatial problem-solving abilities; Similarities-R, which
assesses verbal abstraction and categorization; the Otis-R, verbal
comprehension, which is a measure of the ability to understand and
carry out verbal instructions; and Arithmetic-R, which assesses math-
ematical reasoning, concentration, and concept manipulation [14].
The sum of the scores of the four tests form a validated global score
of overall intelligence [15]. The standardized sum of the scores of the
four tests form a validated global score of overall intelligence [15].
Scored on a 90-point scale (stanine), this overall score has demon-
strated high correlation (r> 0.8) with theWechsler Adult Intelligence
Scale Total Intelligence Quotient (IQ) [14,15].

All cognitive scores were standardized for sex and year of assess-
ment. Thus, Z-scores for the global and subdomains raw scores were
computed according to sex and year of assessment and were then
categorized into quintiles (1st is low, 5th is high) similar a previous
study from this cohort [16].

2.4. Covariates

Medical evaluation is performed by a physician as part of the com-
pulsory pre-army assessment. This includes a detailed interview,
review of medical history and a physical examination. Measurement
of weight, height, and systolic and diastolic blood pressure were per-
formed for most of the adolescents (98.5%) as described elsewhere
[17,18]. Mean arterial pressure was calculated: ðSystolic BP þ 2 � Dias
tolic BPÞ

3 .
Demographic data of all the adolescents were available from the

pre-military assessment. These included data on birth year, sex, edu-
cation, country of origin (classified by the father’s or grandfather’s
country of birth) and residential socioeconomic status (SES). Residen-
tial SES was based on locality of residence at the time of examination
and was determined according to a 1-to-10 ordinal scale reflecting
SES characteristics of residential areas, as defined by the Israeli
Bureau of Statistics [19]. Adolescents were classified into three cate-
gories of residential SES: low (1�4), intermediate (5�7), and high
(8�10) as reported previously [17]. Data on years of attained educa-
tion were received from the Israeli Ministry of Education and dichot-
omized as previously described using a cutoff of 11 years of formal
schooling (Supplementary Appendix) [17].

The Israel National Diabetes Registry (INDR)
The primary outcome of the study was early-onset type 2 diabetes

as indicated by the INDR. This registry was established in 2012 and is
managed by the Israel Center for Disease Control. The INDR receives
an annual dataset of the persons with diabetes from each of the four
health maintenance organizations that provide medical services to
almost all Israeli permanent residents. The pre-military assessment
of adolescents was linked to the INDR using a coded de-identified
civilian identification number [17,18]. The dataset reported to the
INDR includes individual data on persons who met at least one of the
following criteria in the previous year: (1) a single test of glycated
hemoglobin (HbA1c) greater than or equal to 6.5%; (2) serum glucose
concentrations of 200 mg/dL or higher in two tests performed at least
1 month apart in the same year; (3) at least three purchases of glu-
cose lowering medication (including insulin) in different months. The
sensitivity of detecting diabetes in the INDR is 95%, specificity 94.3%
and the positive predictive value is 93% [17]. The INDR does not
receive data regarding the type of diabetes. Therefore, an algorithm
to classify type 1 versus type 2 diabetes was applied. Using the fol-
lowing criteria, individuals were deemed to have type 1 diabetes: (1)
treatment with insulin was initiated before age 18 years; (2)
treatment with short acting insulin was initiated at least one year
before any oral anti-diabetic drug, or treatment with oral anti-dia-
betic drugs was never administered. Diabetes was designated as
“uncertain type” if information on the initiation of antidiabetic medi-
cations was missing. All other incidences of diabetes were recorded
as type 2.

2.5. Statistical analysis

Analyses were conducted separately for men and for women. The
global cognitive Z-score was analyzed as a continuous variable and as
categorical variable for comparisons of the first, second, third and
fourth quintiles, respectively, with the fifth (reference) quintile. The
one sample Kolmogorov-Smirnov test was applied to test for a nor-
mal distribution of continuous variables. The characteristics of the
cohort were expressed as counts with percentages and as means §
standard deviations (SD). Chi-square and analysis of variance or Krus-
kal-Wallis tests were performed to determine significant differences
in baseline characteristics among the global cognitive Z-score quin-
tiles. Baseline characteristics of individuals who were not included in
the study (Fig. 1) were compared to those included using chi-square
and analysis of variance or Kruskal-Wallis tests (Supplementary Table
S1). Kaplan-Meier cumulative probability curves for the incidence of
type 2 diabetes by quintiles of global cognitive Z-scores were plotted
by sex.

Cox proportional hazard models were used to estimate hazard
ratios (HRs) and 95% confidence intervals (CIs) for incident type 2 dia-
betes, using Z-scores of cognitive performance (global score or subdo-
mains) as either categorical or continuous variables. Multivariable
models were pre specified to include age at examination, birth year,
education, country of origin, BMI, height, mean arterial pressure and
residential SES. The assumption of proportional hazards was assessed
by log�log plots, and the ratio of hazards was the same across time.
Interactions with SES and sex were assessed.

In addition, we conducted two sensitivity analyses. First, the study
sample was restricted to individuals with unimpaired health status at
study entry (absence of a medical history of cancer or major surgery,
absence of mental disorders or a need for a chronic medical treat-
ment or follow-up), to minimize confounding by coexisting medical
illness [17,18]. Second, the outcome was defined as the onset of type
2 diabetes before age 30 years, to better characterize the hazard asso-
ciated in early young adulthood.

Logistic regression models were applied to account for individuals
without a known date of type 2 diabetes diagnosis. Thus, all analyses
applied by the Cox proportional hazard models were repeated and
odds ratios (ORs) and 95% CIs for type 2 diabetes were calculated.
Additionally, we conducted an analysis that included uncertain dia-
betes type, as a valid outcome to address bias related to misclassifica-
tion.

The explained variability (adjusted R square), i.e., the explanatory
power of the regression models in the fully-adjusted models for each
of the cognitive subdomain scores was also imputed. Heterogeneity
in the relationship between the particular cognitive subdomain
scores and incident diabetes (i.e. the HRs for diabetes for cognitive
subdomain Z-scores) was assessed using Higgins & Thompson's het-
erogeneity H-index, Higgins & Thompson's I-squared statistics within
a visual forest plot. All the tests used were two-tailed, and p < 0.05
was considered statistically significant. Data were analyzed with
SPSS software, version 25.0 (SPSS Inc, Chicago, Illinois) and in WIN-
PEPI for windows (version 11.65).

2.6. Role of the funding source

There was no funding source for this study. The corresponding
author had full access to all the data in the study and had final
responsibility for the decision to submit for publication.
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3. Results

3.1. Study characteristics

The characteristics of the study population by quintiles of global
cognitive Z-score groups are shown in Table 1. In general, adolescents
in the lowest quintile were less educated, had higher BMI and were
categorized in lower residential SES categories. A significant interac-
tion was found between cognitive function, sex and T2D (P for inter-
action<0.001). A total of 3570 (0.4%) adolescents (2425 men and
1145 women) were diagnosed with type 2 diabetes during a mean
follow-up of 16.6 § 5.5 years; the mean age at diagnosis was
35.4 § 3.8 years for men and 33.8 § 4.5 years for women.

Baseline characteristics of 140,597 individuals who were not
included in the study, because of history of diabetes or dysglycemia,
died before establishment of the INDR and those with missing cogni-
tive data, were compared to those included (Supplementary Table
S1). Compared with patients who were not included, those included
were more educated, less obese and had a higher SES status.

3.2. The relationship between global cognitive function and early-onset
type 2 diabetes

During 16,095,122 person-years, 3570 individuals developed T2D.
Kaplan-Meier cumulative probability curves for the incidence of type
2 diabetes by quintiles of global cognitive Z-scores demonstrated
Table 1
Baseline characteristics by quintiles of cognitive global Z-scores of adolescents with known

Quintiles of global cognitive Z-scores

5th 4th 3rd 2nd 1st
N = 182,569 N = 195,392 N = 202,458 N = 191,316 N = 197,661

1.40 § 0.4 0.57 § 0.2 0.02 § 0.2 �0.53 § 0.2 �1.37 § 0.4 me
0.97 § 0.3 0.62 § 0.4 0.27 § 0.5 �0.25 § 0.6 �1.36 § 0.9 me
1.02 § 0.3 0.63 § 0.4 0.22 § 0.5 �0.37 § 0.6 �1.38 § 0.7 me
1.12 § 0.4 0.62 § 0.4 0.13 § 0.5 0.43 § 0.5 �1.34 § 0.7 me
1.32 § 0.7 0.48 § 0.6 �0.08 § 0.5 �0.54 § 0.5 �1.05 § 0.5 me
17.2 § 0.3 17.2 § 0.3 17.2 § 0.3 17.3 § 0.4 17.4 § 0.5 me
102,658 (56.2) 109,619 (56.1) 118,136 (58.4) 105,690 (55.2) 102,919 (52.1) n (
181,875 (99.6) 193,883 (99.2) 198,644 (98.1) 182,661 (95.5) 173,002 (87.5) n (
31,587 (17.4) 38,087 (19.6) 46,127 (22.8) 51,042 (26.8) 62,325 (31.6) n (
90,890 (50.0) 103,003 (52.9) 110,474 (54.7) 104,517 (54.8) 106,566 (54.0)
59,298 (32.6) 53,669 (27.6) 45,289 (22.4) 35,129 (18.4) 28,308 (14.4)
17,934 (9.9) 16,903 (8.7) 15,235 (7.6) 12,697 (6.7) 12,714 (6.5) n (
16,969 (9.3) 15,223 (7.8) 14,248 (7.1) 11,860 (6.2) 11,011 (5.6)
34,053 (18.7) 47,393 (24.3) 56,477 (28.0) 59,245 (31.1) 31,330 (31.2)
26,734 (14.7) 41,302 (21.2) 55,662 (27.6) 63,190 (33.2) 78,704 (40.0)
85,996 (47.3) 73,629 (37.8) 59,244 (29.4) 41,716 (21.9) 29,024 (14.8)
126 (0.1) 325 (0.2) 865 (0.4) 1729 (0.9) 3917 (2.0)
62.6 § 11.6 62.7 § 12.2 62.7 § 12.3 62.2 § 12.5 62.0 § 13.2 me
170 § 8.8 169 § 8.9 169 § 8.9 168 § 8.8 167 § 8.7 me
10,014 (5.5) 11,003 (5.7) 12,595 (6.3) 13,092 (6.9) 14,525 (7.5) n (

149,795 (82.6) 156,329 (80.6) 159,313 (79.5) 147,451 (77.9) 145,356 (75.2)
15,242 (8.4) 18,120 (9.3) 19,084 (9.5) 18,925 (10.0) 20,970 (10.8)
6279 (3.5) 8445 (4.4) 9511 (4.7) 9697 (5.1) 12,476 (6.5)
116 § 12 115 § 12 115 § 12 116 § 12 115 § 12 me
71§ 8 71 § 8 71 § 8 71 § 8 71 § 8 me
85.9 § 8.2 85.6 § 8.1 85.9 § 8.3 86.1 § 8.3 85.9 § 8.3 me
376 (0.2) 387 (0.1) 637 (0.3) 960 (0.5) 1210 (0.6)
57 (0.03) 50 (0.03) 56 (0.02) 59 (0.03) 78 (0.04)

Missing: 1�0.02%.
2 �0.3%.
3 �0.4%.
4 �1.4%.
5 �1.4%.
6 �1.4%.
7 �1.5%;8 �1.5%. SES= socioeconomic status (residential); BMI= Body mass index; BP=blo

yBMI classified according to percentiles: underweight (<5th) normal (5th�BMI<85th), over
graded decreasing HRs from lower to higher quintiles in both sexes
(Fig. 2). HRs for incident type 2 diabetes were calculated after adjust-
ment for age at examination, birth year, education, country of origin,
BMI, height, mean arterial pressure and residential SES. For men, the
adjusted HRs were 2.46 (95% CI 2.10�2.88), 1.87 (95% CI 1.61�2.17),
1.45 (95% CI 1.24�1.70) and 1.26 (95% CI 1.05�1.52) for comparisons
of the first, second, third and fourth quintiles, respectively, with the
fifth (reference) quintile (Table 2). A similar trend was noted when
cognitive function was treated as a continuous variable (Fig. 3). Thus,
after adjustment for the variables mentioned above, every one-unit
decrement in global cognitive Z-score was associated with a 1.41
(95% CI 1.34�1.48) greater hazard for the development of type 2 dia-
betes. For women, after the adjustments cited above, the HRs were
2.33 (95% CI 1.88�2.89), 1.58 (95% CI 1.26�1.98), 1.23 (95% CI
0.95�1.59) and 1.08 (95% CI 0.85�1.39) for comparisons of the first,
second, third and fourth quintiles, respectively, with the fifth (refer-
ence) quintile (Table 2). After adjustment for the variables mentioned
above, every one-unit decrement in global cognitive Z-score was
associated with a 1.46 (95% CI 1.36�1.56) greater hazard for the
development of type 2 diabetes.

3.3. The relationship between cognitive subdomains and early-onset
type 2 diabetes

Lower vs. higher scores on the cognitive subdomains were all
associated with increased adjusted HRs for type 2 diabetes in both
dates of diabetes diagnosis.

Characteristics

Z-Score:
an § SD Global
an § SD Nonverbal abstract reasoning and visual-spatial problem-solving abilities
an § SD Verbal abstraction and categorization
an § SD Verbal comprehension
an § SD Mathematical reasoning concentration and concept manipulation
an § SD Age at examination
%) Sex, men
%) Education1, �11 years
%) SES groups2, Low

Moderate
High

%) Origin3, Israel
USSR
Asia
Africa
West Ethiopia

an § SD Weight4 (kg)
an § SD Height5 (cm)
%) BMI6y, (kg/m2), Underweight

Normal
Overweight
Obese

an § SD Systolic BP7, mm Hg
an § SD Diastolic BP8, mm Hg
an § SD Mean arterial pressure

Diabetes type 2, n (%)
Uncertain diabetes type, n (%)

od pressure.
weight (85th �BMI<94th) and obese (�95th).



Fig. 2. . Kaplan-Meier cumulative probability curves showing the incidence of type 2 diabetes by quintiles (1�5) of global cognitive Z-scores by sex. Quintile 1 is low; quintile 5 is
high.

M. Lutski et al. / EClinicalMedicine 41 (2021) 101138 5
sexes. In men, after adjustment for the variables mentioned above,
every one-unit SD decrement in cognitive Z-scores for problem-solv-
ing abilities, verbal abstraction and categorization, verbal compre-
hension, and mathematical abilities was associated with 1.31 (95% CI
1.26�1.36), 1.33 (95% CI 1.28�1.39), 1.27 (95% CI 1.22�1.33) and
1.35 (95% CI 1.29�1.41) greater hazard for incident diabetes, respec-
tively (Fig. 3). In women, after adjustment for the variables men-
tioned above, every one-unit SD decrement in cognitive Z-scores for
problem-solving abilities, verbal abstraction and categorization, ver-
bal comprehension, and mathematical abilities was associated with



Table 2
Hazard ratios (HRs) and 95% confidence interval (CIs) for associations between global
cognitive Z-scores and early-onset type 2 diabetes.

Cognitive Z-scores Model 1 Model 2
HR (95%CI) HR (95%CI)

Men
Global Z-score quintiles 1 3.20 (2.78�3.70)* 2.46 (2.10�2.88) *

2 2.25 (1.95�2.60) * 1.87 (1.61�2.17) *
3 1.54 (1.33�1.79) * 1.45 (1.24�1.70) *
4 1.17 (0.98�1.40) 1.26 (1.05�1.52) *
5 (high) 1 (ref.) 1 (ref.)

Women
Global Z-score quintiles 1 2.97 (2.43�3.63) * 2.33 (1.88�2.89) *

2 1.79 (1.44�2.22) * 1.58 (1.26�1.98) *
3 1.27 (1.00�1.62) ** 1.23 (0.95�1.59)
4 1.14 (0.90�1.45) 1.08 (0.85�1.39)
5 (high) 1 (ref.) 1 (ref.)

*P < 0.001 ** p < 0.05; Model 1: Unadjusted; Model 2: Adjusted for age at examina-
tion and birth year (continuous), education, country of origin, BMI (continuous),
height (continuous), mean arterial pressure (continuous) and residential socioeco-
nomic status.
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1.33 (95% CI 1.25�1.40), 1.34 (95% CI 1.27�1.42), 1.34 (95% CI
1.26�1.42) and 1.34 (95% CI 1.25�1.43) greater hazard for incident
diabetes, respectively (Fig. 3). No heterogeneity was noted in the
relations between incident diabetes and the four cognitive subdo-
main scores among men (I2 = 28% and H-index=1.2, P = 0.244) and
among women (I2 = 0% and H-index=1.0, P = 0.997) (Fig. 3).

For men, when restricted to those diagnosed with T2D by age
30 years, the adjusted HRs were 2.62 (95% CI 2.12�3.25), 2.05 (95% CI
1.68�2.51), 1.58 (95% CI 1.28�1.94) and 1.41 (95% CI 1.11�1.80) for
comparisons of the first, second, third and fourth quintiles, respec-
tively, with the fifth (reference) quintile. For women, when restricted
to those diagnosed with T2D by age 30 years, the adjusted HRs were
2.79 (95% CI 2.13�3.65), 1.67 (95% CI 1.25�2.22), 1.16 (95% CI
0.83�1.62) and 1.03 (95% CI 0.75�1.42) for comparisons of the first,
second, third and fourth quintiles, respectively, with the fifth (refer-
ence) quintile. (Supplementary Table S2).

Similar point estimates were obtained in both sexes when analy-
ses were limited to adolescents with unimpaired health at study
entry (Supplementary Table S2). For men, the adjusted HRs were
2.14 (95% CI 1.56�2.93), 1.39 (95% CI 1.01�1.91), 1.35 (95% CI
0.98�1.85) and 1.23 (95% CI 0.88�1.72) for comparisons of the first,
second, third and fourth quintiles, respectively, with the fifth (refer-
ence) quintile. For women, the adjusted HRs were 2.76 (95% CI
1.87�4.01), 2.03 (95% CI 1.36�3.04), 1.63 (95% CI 1.07�2.47) and
Fig. 3. The relations between one-unit lower cognitive Z-scores in global and co
1.34 (95% CI 0.87�2.07) for comparisons of the first, second, third
and fourth quintiles, respectively, with the fifth (reference) quintile.

Similar point estimates were obtained when logistic regression
models were applied to account for incidences of type 2 diabetes
without diagnosis dates (Supplementary Tables S3 and S4).

4. Discussion

This nationwide study demonstrates a graded inverse relationship
between cognitive performance in late adolescence and the risk for
incident diabetes in young adulthood. This relation was evident in
both men and women; the point estimates were similar despite a sig-
nificant interaction with sex. In men, comparison of all global cogni-
tive Z-scores quintiles to fifth (reference) quintile was associated
with a significant reduction in T2D risk. In women this was only evi-
dent in the first and second quintiles compared to the fifth quintile
comparison. The relation persisted when the analysis was limited to
those with unimpaired health and when the outcome was limited to
a diagnosis of type 2 diabetes before age 30 years. The point esti-
mates were slightly attenuated after adjustment for sociodemo-
graphic variables and adolescent BMI, further strengthening the
hypothesis of a relationship between cognitive status in adolescence
and incident type 2 diabetes. The similarity of the relations for cogni-
tive subdomain scores, without any significant heterogeneity, as well
as to the relation for global cognitive scores, further supports the
hypothesis that global cognitive score is a significant marker of future
metabolic health.

Our results are consistent with previous studies that reported an
inverse association between cognitive function in adolescence and
incident T2D. In the British National Child Development Study [6], a
one-unit SD decrement in general ability score at age 11 years was
associated with a 37% increased risk for type 2 diabetes at age
42 years. In the Lothian Birth Cohort [5], lower childhood cognitive
functions at age 11 years, overall and in specific cognitive subdo-
mains, were associated with higher HbA1c levels and self-reported
type 2 diabetes at age 70 years [5]. The Vietnam Experience Study
[8], comprised a large cohort of former US male military personnel
whose IQ was assessed at entry to the service at around age 20 years.
Lower IQ test scores were associated with a higher prevalence of the
metabolic syndrome and most of its components (hypertension, high
BMI, high triglycerides and high blood glucose) at a mean age of
38.3 years. A one SD higher IQ score was associated with a decrease
in blood glucose level by about 20% [8]. Data of young men from the
Danish National Health Service study [10] reported a greater hazard
for the development of type 2 diabetes before age 55 years among
gnitive subdomain scores in adolescence and early-onset type 2 diabetes.
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those with low vs. very high cognitive scores, 1.76 (95% CI 1.28, 2.40)
[10]. In a sub-cohort of the present study,[7] of career men military
personnel, the risk for T2D in young adulthood was increased two-
fold among those with lower vs. higher cognitive scores at age
17 years, independent of any lifestyle data, baseline glucose or tri-
glyceride level, family history of diabetes or adult BMI. The current
analysis confirms the results of these studies but also extends them,
by providing data separately for men and women, and for the cogni-
tive subdomains. Indeed, a recent article summarizing studies that
assessed associations of cognitive function with diabetes- and cardio-
vascular-related mortality in the current and other European cohorts
reported similar consistent point estimates [2]. This further supports
the extrapolation of our data to other Western populations.

We found a significant interaction between cognitive function, sex
and T2D; however, the observed associations were similar between
the sexes. We speculated that the interaction reported is due to the
large sample size and does not signify a true biological difference. Sex
differences in cognitive functioning have been described over the
past decades, but the findings are inconsistent [9, 20�22].

Several explanations are possible for the observed relation
between global cognitive and cognitive subdomains scores with inci-
dent diabetes. First, the relation may be mediated by better lifestyle
behaviors [23,24] including adoption or maintenance of physical
activity and healthy diet, avoidance of smoking, moderate alcohol
consumption, more persistent adherence to medical treatment and
self-management of vascular risk factors among individuals with
higher vs lower cognitive ability [8,25]. Second, better cognitive abil-
ity can lead to better educational attainment and consequently to
better occupational status, and a higher SES. Indeed, a recent meta-
analysis demonstrated an association of lower SES with higher risk
for incident type 2 diabetes [26]. However, in this analysis we did not
find any interaction between SES status, cognitive scores and incident
type 2 diabetes. Third, intelligence test scores in childhood and young
adulthood might be influenced by pre- and postnatal life factors
which may predispose to both lower cognitive test scores and
diabetes [2]. In addition, the relation described may be due to a
common pathway. Insulin signaling in the brain modulates neu-
rotransmitter channel activity, brain cholesterol synthesis and
mitochondrial function in neurons. In turn, its disruption plays a
prominent role in brain functions that regulate brain metabolism,
and leads to impairment of neuronal function and synaptogenesis
[27,28]. Thus, variations in insulin signaling in the brain may
affect both cognitive function and the development of diabetes.
Indeed, recent neuroimaging studies have revealed a significant
insulin-induced response in several brain areas such as the hippo-
campus, which are responsible for memory functions and spatial
navigation; and in the fusiform gyrus, which is responsible for
visual attention [28].

This study has limitations. First, we lacked longitudinal sociode-
mographic, lifestyle, familial diabetes status and metabolic data (such
as BMI) parameters in adulthood. In addition, SES at baseline was
defined according to residential area and thus its precision is limited.
Second, because we lacked data of antibodies that mark beta cell
autoimmunity, we cannot exclude the possibility that individuals
with type 1 diabetes were included. However, we previously
reported [17] that only 1.2% of those who were classified as having
T2D in the INDR were treated initially by insulin only, which makes
the contribution of such potential misclassification negligible. Third,
the absence of biochemical measures of glucometabolic status at
baseline precludes analyses by the degree of baseline dysglycemia.
Furthermore, for 12% of the initial population, we did not have data
of all subdomain cognitive scores, and thus, they were not included
in this analysis. Among the strengths of this study are the systematic
data collection including a comprehensive cognitive assessment,
sociodemographic and medical data, and the linkage between two
nationwide databases.
In conclusion, we observed an inverse relationship in both sexes,
of global and subdomain cognitive scores in late adolescence with
early onset T2D. These relationships were independent of adolescent
sociodemographic background or BMI. The findings support the
hypothesis that cognitive abilities at adolescence are a risk marker
for future metabolic health.
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