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5-Methylcytosine (m5C) is a well-known post-transcriptional
modification that plays significant roles in biological processes,
such as RNA metabolism, tRNA recognition, and stress re-
sponses. Traditional high-throughput techniques on identifica-
tion of m5C sites are usually time consuming and expensive. In
addition, the number of RNA sequences shows explosive
growth in the post-genomic era. Thus, machine-learning-based
methods are urgently requested to quickly predict RNA m5C
modifications with high accuracy. Here, we propose a noval
support-vector-machine (SVM)-based tool, called iRNA-
m5C_SVM, by combining multiple sequence features to iden-
tify m5C sites in Arabidopsis thaliana. Eight kinds of popular
feature-extraction methods were first investigated systemati-
cally. Then, four well-performing features were incorporated
to construct a comprehensive model, including position-spe-
cific propensity (PSP) (PSNP, PSDP, and PSTP, associated
with frequencies of nucleotides, dinucleotides, and trinucleo-
tides, respectively), nucleotide composition (nucleic acid, di-
nucleotide, and tri-nucleotide compositions; NAC, DNC, and
TNC, respectively), electron-ion interaction pseudopotentials
of trinucleotide (PseEIIPs), and general parallel correlation
pseudo-dinucleotide composition (PC-PseDNC-general). Eval-
uated accuracies over 10-fold cross-validation and independent
tests achieved 73.06% and 80.15%, respectively, which showed
the best predictive performances in A. thaliana among existing
models. It is believed that the proposed model in this work can
be a promising alternative for further research on m5C modi-
fication sites in plant.

INTRODUCTION
To date, more than 150 types of RNA post-transcriptional modifica-
tions have been found in all kingdoms of life.1–7 As one of most prev-
alent modifications, 5-methylcytosine (m5C) is catalyzed by RNA
methyltransferase, in which a methyl group is attached to the fifth po-
sition of the cytosine ring. It has been reported that m5C sites are
involved in many kinds of biological processes, including RNA struc-
tural stability and metabolism, tRNA recognition and stress re-
sponses,8–14 and so forth. Additionally, it has also been proved that
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m5c modifications are associated with many diseases, such as breast
cancer,15 autosomal recessive intellectual disability,16 amyotrophic
lateral sclerosis,17 and Parkinson’s disease.18 Thus, the accurate
identification of m5C is the primary and crucial task for carrying
out the research on corresponding diseases and biological func-
tions.8,9,11–13,15–21 In experiments, several traditional high-
throughput sequencing techniques, such as bisulfite conversion,22 mi-
CLIP,23 and Aza-IP,24 have been developed to detect m5C sites. More
details about m5C biological mechanisms and related diseases can be
found in Chen et al.25 and literature therein. However, considering
the time-consuming and labor-intensive nature of these techniques,
it is challenging to keep pace with the dramatic increase of the number
of RNA sequences in the post-genome era. Therefore, the identifica-
tion of m5C and non-m5C sequences using computational methods
is of great significance and necessity.

Eight computational predictors have been proposed to detect m5C
sites in RNA sequences, including m5C-PseDNC,26 iRNAm5C-
PseDNC,27 M5C-HPCR,28 pM5CS-Comp-mRMR,29 RNAm5C-
finder,30 PEA-m5C,31 iRNA-m5C,32 and RNAm5CPred.33 Related
species, feature-extraction techniques, and classifiers are listed in
Table 1. It can be seen that there were a total of four species investi-
gated: Homo sapiens, Mus musculus, Saccharomyces cerevisiae, and
Arabidopsis thaliana. In specific, Feng et al.26 first provided the
m5C-PseDNC tool based on the support vector machine (SVM) in
H. sapiens. By applying pseudo-dinucleotide composition (PseDNC)
features with three physiochemical properties, the accuracy over the
jackknife test achieved 90.42%. Qiu et al.27 also used PseDNC features
with 10 properties to construct the random forest (RF) model called
The Author(s).
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Table 1. Eight Proposed Methods to Identify m5C Sites in RNA Sequences

Method Species Feature Extraction/Selection Classifiers

m5C-PseDNC26 H. sapiens PseDNC (3 properties) SVM

iRNAm5C-PseDNC27 H. sapiens PseDNC (10 properties) RF

M5C-HPCR28 H. sapiens HPCR SVM

pM5CS-Comp-mRMR29 H. sapiens Kmer (k = 2, 3, and 4) /mRMR SVM

RNAm5Cfinder30 H. sapiens, M. musculus BE RF

PEA-m5C31 A. thaliana BE + Kmer + PseDNC RF

iRNA-m5C32 H. sapiens, S. cerevisiae, M. musculus, A. thaliana Kmer + BE + NV + PseKNC RF

RNAm5CPred33 H. sapiens Kmer + KSNPF + PseDNC SVM
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iRNAm5C-PseDNC, where the jackknife test gave an accuracy of
92.37%. Later, Zhang et al.28 introduced the m5c-HPCR model,
with a higher Matthew’s correlation coefficient (MCC) of 0.859 and
area under the receiver operating characteristic (ROC) curve
(AUC) of 0.962, where a novel heuristic nucleotide physicochemical
property reduction (HPCR) algorithm was applied. Then, Sabooh
et al.29 presented the pM5CS-Comp-mRMR method, with an accu-
racy of 93.33%, where the minimum redundancy and maximum rele-
vance (mRMR) method was used to select effective features from
Kmer features with ks = 2, 3, and 4 (corresponding to di-nucleotide
composition, tri-nucleotide composition, and tetra-nucleotide
composition; DNC, TNC, and TetraNC, respectively). For the m5C
sites in A. thaliana, Song et al.31 first developed the predictor PEA-
M5C, where an independent test showed an overall accuracy of
83.5% with the MCC of 0.688. In this method, three kinds of
feature-encoding techniques—binary encoding (BE), Kmer, and
PseDNC—were incorporated to give combined performances. Li
et al.30 designed the RNAm5Cfinder using BE features to analyze
m5C sites in H. sapiens and M. musculus, where comprehensive
and cell-specific predictors gave AUC values of 0.77 and 0.87, respec-
tively. Recently, Lv et al.32 established a novel approach, iRNA-m5C,
to systematically diagnose m5C sites in four species, where Kmer, BE,
pseudo-k-tuple nucleotide composition (PseKNC), and natural vec-
tor (NV) were incorporated to obtain overall results. Optimal models
of four species gave evaluated accuracies of 92.90%, 100.00%,
100.00%, and 70.70% on training datasets and 74.00% on testing data-
sets in A. thaliana. Also recently, Fang et al.33 constructed an accurate
RNAm5CPred tool in H. sapiens, where Kmer (described as K-nucle-
otide frequencies [KNFs] in their paper), K-spaced nucleotide pair
frequencies (KSNPFs), and PseDNC were combined to represent
RNA samples.

Generally, except for the PEA-M5C31 model, which was focused on
A. thaliana, seven other tools26–30,32,33 all gave better performances
in H. sapiens, where the average accuracy was higher than 90%. As
for S. cerevisiae and M. musculus, it was noted that only 97 and 211
positive samples were experimentally validated, where the remaining
sequences, by removing sequence similarity, were too few to construct
computational predictors (i.e., lacking of statistical significance; de-
tails can be found in Sun et al.5 and Lv et al.32). In addition, reported
accuracies using the original data were adequately equal to 100.00%. It
is hoped that more ideal/reliable models will be built in the future,
with more experiment-proven sequences. As for the only plant,
A. thaliana, there were only two predictors developed: PEA-m5C31

and iRNA-m5C.32 Especially, the latest iRNAm5C method presented
accuracies of 70.7% and 74% over 10-fold cross-validation (CV) and
independent tests using combined features “KNFC + MNBE + NV,”
respectively. On the other hand, only a few feature-extraction tech-
niques have been used in two published methods. Therefore, there
is still a big hope for improving predictive performances by applying
other new feature-encoding techniques. In summary, we were mainly
focused on improving the performances of the identification of m5C
sites in A. thaliana in this article (Table 1).

We first investigated eight kinds of sequence-representing methods;
namely, position-specific propensity (PSP), Kmer, enhanced nucleic
acid composition (ENAC), xxKGap, electron-ion interaction pseudo-
potentials (EIIPs) and EIIPs of trinucleotides (PseEIIPs), general par-
allel correlation PseDNC (PC-PseDNC-general), nucleotide chemical
property and nucleotide density (NCP + ND), and BE. Then, four
well-performing features, “PSP + Kmer + PseEIIP + PseDNC,” cho-
sen by preliminary results, were incorporated to build the prediction
model. Four different classifiers (SVM, RF, AdaBoost, and Naive
Bayes [NB]) were separately applied for comparison, where the best
performing model was optimized using the SVM method. The sche-
matic flowchart of this work is shown in Figure 1.

RESULTS AND DISCUSSION
Predictive Performances Using One Kind of Feature

First, we plotted enriched and depleted nucleotides of the training da-
tasets in Figure 2, which directly reflected the differences of position-
specific nucleotide frequencies between positive and negative samples
by Zi;j =Z +

i;j � Z�
i;j (i.e., the position-specific nucleotide propensity

(PSNP) matrix described in Materials and Methods). Obvious differ-
ences can be observed between m5C and non-m5C sequences as well
as upstream and downstream regions. Generally, the C and U bases
are almost enriched in positive samples, whereas the A and G bases
are almost enriched in negative sequences. However, nucleotides
near the center (C, labeled as 0) show a completely different distribu-
tion, where C and U are more likely located in negative samples at
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http://www.moleculartherapy.org


Feature Selection

A. thaliana

Performances 
(SVM)

Model Optimizing

Feature  Extractions

Combing Well-performing Features 
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positions 1, 2, and 4 and�6,�3,�2 and�1, respectively. At the same
time, A and G refer to distribution in positive samples at positions 1,
2, 4, and 10. On the other hand, occupied distinction downstream is
obviously weaker than upstream. Specifically, C is, on average, 5% en-
riched in positive samples, and A is enriched 3% in negative samples
upstream. However, the average difference of enriched and depleted
nucleotides is approximately 1.4% downstream. It can be generally
concluded that the characteristics of nucleotide location between
m5C and non-m5C instances can be obviously found; i.e., m5C sites
could be identified using the sequence information. Furthermore, the
position-specific property is hoped to be an effective feature-extrac-
tion method to directly represent RNA sequence.

Many kinds of feature-extraction approaches have been developed to
effectively encode RNA sequences, which can be conveniently ob-
tained using several state-of-the-art toolkits, such as Pse-in-
One2.0,34 BioSeq-Analysis2.0,35 iLearn,36 PyFeat,37 and so forth.
Here, four kinds of feature-representing techniques associated with
nucleotide frequencies were first investigated, including PSP, Kmer,
ENAC, and xxKGap. Corresponding experimental results using the
RF classifier are listed in Table 2, where 10-fold CV, and independent
tests were used for training (left) and testing datasets (right), respec-
tively. For three kinds of PSP features (i.e., PSNP, PSDP, and PSTP,
associated with frequencies of nucleotides, dinucleotides, and trinu-
334 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
cleotides, respectively), performances were gradu-
ally increased. It can be seen that accuracies over
10-fold CV and independent tests were only
65.48% and 65.05% for PSNP features; however,
accuracies of 67.29% and 74.98%, respectively,
were quickly achieved for PSTP. Compared to
the latest tool, iRNAm5C,32 the accuracy over
the independent test using only 39-dimensional
PSTP features has achieved 74.00%, although it
was 3.41% lower over 10-fold CV. Thus, the distri-
bution of trinucleotides is exactly an effective
description to represent m5C sequences. As for
three Kmer features (i.e., nucleic acid composition
[NAC], DNC, and TNC, associated with ks = 1, 2,
and 3, respectively), predictive accuracies
increased with k, where TNC features showed bet-
ter accuracies of 69.26% and 72.55% for training
and testing datasets. As a variation of the NAC
technique, ENAC also showed good perfor-
mances, with accuracies of 69.11% and 71.9% on
two datasets. Additionally, xxKGap results were
also listed with different conditions, including
monoMonoKGap (mMKGap), monoDiKGap
(mDGap), and diMonoKGap (dMGap), with
ks = 1, 2, and 3, corresponding to dinucleotide
and trinucleotide frequencies within kgaps. It can be observed that
there were not obvious improvements for those listed nine features
with k increasing, and mM2Gap showed relatively best performances
with 10-fold and independent accuracies of 68.80% and 77.20%.

Additionally, other five kinds of feature vectors, including EIIP,
PseEIIP, PC-PseDNC-general (l=3, u=0.2), BE, and NCP + ND
were also applied for model constructing; the evaluated results are
listed in Table 3. It can be found that PseEIIP and PseDNC features
performed well among those five approaches, where corresponding
training accuracies achieved 69.24% and 68.63% with testing accu-
racies of 72.60% and 72.65%, respectively. It was also noted that pre-
dictive performances of BE were actually unsatisfied, where training
accuracy is only 66.55%. For the PC-PseDNC method implemented
in Pse-in-One 2.0,34 two important parameters, l and w, were opti-
mized using the grid search ð1%l%10 with Dl = 1;
0:1%w%1 with Dw = 0:1Þ. Combining predictive accuracies and
number of features, PC-PseDNC-general (3,0.2) (i.e., l= 3;w= 0:2;
abbreviated as PC-PseDNC hereinafter) was finally chosen.

In general, evaluated accuracies were approximately 68%–69% (10-
fold CV) and 72%–73% (independent test) for several well-perform-
ing features, including PSTP (independent test: 74.98%), DNC, TNC,
ENAC, xxKGAP (mM2Gap: independent test, 77.20%), PseEIIP, and



Figure 2. Differences of Position-Specific Nucleotide Frequencies between

Positive and Negative Samples by Zi;j =Z +
i;j � Z�

i;j

Enriched nucleotides correspond to the condition Zi;j > 0 while depleted to Zi;j < 0.
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PseDNC. It is known that PSP features reflect characteristics of statis-
tical frequencies for positive and negative samples. Thus, the PSP-
based model cannot convince researchers if the number of training
instances does not reach a certain level. Additionally, compared
with the reported tools, evaluated accuracies were not exactly satisfac-
tory. At the same time, a single kind of feature can only indicate one
aspect of sequence information. Therefore, we further incorporated
multiple kinds of sequence-encoding methods to obtain comprehen-
Table 2. Evaluated Performances of Frequency-Associated Feature-Extraction

Independent Tests, Right, Were Separately Used for Training and Testing Data

Feature Subset

Training Datasets

Acc (%) MCC Sn (%) Sp (

PSNP 65.48 0.31 57.78 73.1

PSDP 65.07 0.31 56.78 73.3

PSTP 67.29 0.35 61.30 73.2

NAC 64.96 0.30 61.32 68.6

DNC 68.74 0.38 64.17 73.3

TNC 69.26 0.39 61.92 76.5

ENAC 69.11 0.38 64.53 73.6

mM1GAP 68.11 0.36 62.94 73.2

mM2GAP 68.80 0.38 63.32 74.2

mM3GAP 69.09 0.38 63.75 74.4

mD1GAP 67.57 0.36 60.33 74.8

mD2GAP 68.33 0.37 60.92 75.7

mD3GAP 68.38 0.37 60.41 76.3

dM1GAP 68.05 0.37 60.52 75.5

dM2GAP 68.39 0.37 60.37 76.4

dM3GAP 68.43 0.37 60.35 76.5

Acc, accuracy.
sive predictors, which can well reflect sequence information of nucle-
otide frequencies, physiochemical properties, electron-ion interac-
tion, and so forth.

Predictive Performances Using Combined Features

Based on the discussion earlier, comprehensive predictive perfor-
mances of multiple features proceeded further and are summarized
in Table 4, where the second column “Fea_num” indicates the num-
ber of combined features. For the integration of three PSPs “PSNP +
PSDP + PSTP,” predictive accuracies were 67.39% and 73.30% over
10-fold CV and independent tests, respectively. Also, 84-dimensional
Kmer features “NAC + DNA + TNC” displayed better results (for the
10-fold CV test: accuracy, 69.13%; MCC = 0.39; for the independent
test: accuracy, 73.85%, MCC = 0.48). When the two features were in-
tegrated as “PSP + Kmer,” training and testing accuracies were rapidly
increased to 71.47% and 77.60%, respectively. Besides, when we
incorporated all four kinds of frequency-associated features as
“PSP + Kmer + ENAC + mM2Gap,” better training and testing accu-
racies of 71.72% and 78.15%, respectively, were obtained. As for the
combination of “PseEIIP + PC-PseDNC,” no better results were ob-
tained. It is also noted that the feature combination of four kinds of
feature-extraction methods, “PSP + Kmer + PseEIIP + PC-PseDNC,”
showed the best performances (in total, 287 features), where overall
accuracies reached 71.77% and 78.30% over 10-fold CV and indepen-
dent tests, respectively. In addition, ENAC features were also com-
bined with the 287 features mentioned earlier, written as “PSP +
Kmer + PseEIIP + PC-PseDNC + ENAC,” where the accuracy of
training datasets was only improved 0.59% but �1.55% for testing
Techniques Using the RF Classifier, Where 10-fold CV, Left, and

sets

Testing Datasets

%) Acc (%) MCC Sn (%) Sp (%)

9 65.05 0.32 49.60 80.50

6 67.52 0.36 57.54 77.50

8 74.98 0.51 65.87 84.10

0 68.75 0.38 69.70 67.80

0 72.60 0.45 70.40 74.80

9 72.55 0.45 68.90 76.20

8 71.90 0.44 71.90 71.90

8 71.45 0.43 69.50 73.40

9 77.20 0.55 80.60 73.80

2 73.50 0.47 71.40 75.60

2 72.15 0.44 68.80 75.50

4 72.10 0.44 68.00 76.20

5 72.70 0.46 68.60 76.80

7 72.95 0.46 69.00 76.90

0 72.10 0.44 68.10 76.10

2 73.10 0.46 68.10 78.10
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Table 3. Same as Table 2 but for Other Five Feature-Representing Methods

Feature Subset

Training Datasets Testing Datasets

Acc (%) MCC Sn (%) Sp (%) Acc (%) MCC Sn (%) Sp (%)

EIIP 66.65 0.34 59.27 74.02 70.85 0.42 68.40 73.30

PseEIIP 69.24 0.39 62.03 76.44 72.60 0.45 68.80 76.40

PC-PseDNC 68.63 0.37 63.47 73.79 72.65 0.45 70.00 75.30

BE 64.37 0.29 57.48 71.26 66.55 0.33 63.60 69.50

NCP + ND 66.67 0.34 60.92 72.41 70.25 0.41 69.30 71.20

Acc, accuracy.

Molecular Therapy: Nucleic Acids
datasets. If we considered all kinds of features listed in Tables 2 and 3
(for xxKGap, only mM2Gap was included), there were 1,571 features
in total, with evaluated accuracies of 71.93% and 75.71% for training
and testing datasets, respectively.

Considering the number of features and corresponding perfor-
mances, the integration of four types of features, “PSP + Kmer +
PseEIIP + PC-PseDNC,” was finally used to optimize prediction
model. Here, four different classifiers, including RF, SVM, AdaBoost,
and NB implemented in the scikit-learn package (sklearn),38 were
separately applied to construct predictive models; the results are given
in Table 5. It was found that three algorithms—RF, SVM, and Ada-
Boost—all showed better results, where average accuracies were up
to 71.89% and 79.55% for the training and testing datasets. Here,
default parameters were used in preliminary experiments, where
n_esti = 100 was set as the number of decision trees in the RFmethod,
and C = 1 and gamma = “scale,” (i.e., gamma = 1/(num_fea $ X.var())
were chosen in the SVMmethod. Among the four listed methods, the
SVM classifier gave the overall best performance (10-fold CV: accu-
racy = 72.72%, MCC = 0.46; independent test: accuracy = 79.90%,
MCC = 0.60), where the related AUC values achieved were 0.70
and 0.88, respectively.

Parameter Optimization and Comparison with Published

Predictors

Parameter optimization is also a critical process for improving the
performances of constructed models. Here, two important parame-
ters of the SVM method, C and gamma, were simply selected using
the dimension-reduction method.38 The best performing model was
finally obtained with C = 1.5 and default gamma, corresponding to
predictive performances (for training datasets: accuracy = 73.06,
MCC = 0.47, and AUC = 0.80; for testing datasets: accuracy =
80.15%, MCC = 0.60, and AUC = 0.88).

Table 6 gave a comparison of our introduced tool iRNA-m5C_SVM
and the only two existing predictors, PEA-m5C31 and iRNA-m5C,32

in A. thaliana. For a fair comparison, the same independent datasets
in this article were used to obtain performances of the PEA-m5C
tool (see details in Lv et al.32). It can be seen that only 44.30% ac-
curacy was obtained for the PEA-m5C model.31 Compared with the
latest iRNA-m5C method,32 accuracies were improved from initially
336 Molecular Therapy: Nucleic Acids Vol. 21 September 2020
70.70% to finally 73.06% and from 74.0% to 80.15% for training and
testing datasets, respectively. Although predictive performances of
10-fold CV only improved 2.36%, the accuracy of the independent
test was improved 6.15%. It has been mentioned earlier that the
feature combination “KNFC + MNBE + NV” showed the best per-
formance in the iRNA-m5C32 predictor. However, besides the basic
Kmer technique, the sequence information on PSP, electron-ion
interaction potential, and physicochemical properties was consid-
ered in this method. At the same time, we also optimized the pa-
rameters of the SVM classifier to obtain the best results. Figure 3
visually demonstrated ROC curves of this method (left) and com-
parison between the latest iRNA-m5C tool32 and our method
(right). The AUC values for training and testing datasets achieved
were 0.80 and 0.88, respectively, where the iRNA-m5C tool32 re-
ported AUC values of 0.77 over 10-fold CV. It is believed that
our methods can obtain higher accuracies for m5C identification
than two existing tools in A. thaliana. It is hoped that new bench-
mark datasets will be collected further with larger amounts of exper-
iment-proved m5C sequences. Then, a more accurate machine-
learning-based predictor can be established to predict m5C sites.
On the other hand, although, in total, seven kinds of features
have been investigated, there are still other powerful feature-extrac-
tion techniques worth exploring. Efficient machine learning classi-
fiers and even deep learning methods also should be considered
to improve performances.

Conclusions

As an important post-transcriptional modification, m5C plays
crucial roles in the biological process. In this work, multiple
sequence features were combined to construct a comprehensive
SVM-based model to predict RNA m5C sites in A. thaliana. Specif-
ically, four better performing feature-extraction techniques were
incorporated, including PSP (PSNP, PSDP, and PSTP), nucleotide
composition (NAC, DNC, and TNC), electron-ion interaction pseu-
dopotentials of trinucleotide (PseEIIP), and physicochemical-prop-
erty-incorporated dinucleotide composition (PC-PseDNC-general).
Finally, the optimal model showed a prediction accuracy of
73.06%, with an AUC of 0.80 over 10-fold CV. As for the indepen-
dent test, the accuracy achieved 80.15%, with an AUC of 0.88.
Compared with the latest iRNA-m5C predictor, the evaluated accu-
racy was improved 4.25% on average. Although there is still some



Table 4. Performances of Combined Features Over 10-fold CV, in Training Datasets, and Independent Tests, in Testing Datasets

Feature Combination Fea_numa

Training Datasets Testing Datasets

Acc (%) MCC Sn (%) Sp (%) Acc (%) MCC Sn (%) Sp (%)

PSP (PSNP + PSDP + PSTP) 120 67.39 0.35 60.88 73.89 73.30 0.48 63.30 83.30

Kmer (NAC + DNC + TNC) 84 69.13 0.39 63.41 74.85 73.85 0.48 71.80 75.90

PSP + Kmer 204 71.47 0.43 67.01 75.93 77.60 0.56 71.60 83.60

PSP + Kmer + ENAC 352 71.27 0.43 66.50 76.04 76.80 0.54 72.20 81.40

PSP + Kmer + ENAC + MM2Gap 384 71.72 0.44 67.86 75.59 78.15 0.56 74.10 82.20

PseEIIP + PseDNC 83 69.38 0.39 63.26 75.50 72.45 0.45 70.10 74.80

PSP + Kmer + PseEIIP + PseDNCb 287 71.77 0.44 67.56 75.99 78.30 0.57 73.90 82.70

PSP + Kmer + PseEIIP + PseDNC + MM2Gap 319 71.73 0.44 67.86 75.60 78.18 0.57 74.10 82.25

PSP + Kmer + PseEIIP + PC-PseDNC + ENAC 435 72.06 0.44 68.05 76.08 76.75 0.54 73.40 80.10

PSP + Kmer + PseEIIP + PC-PseDNC +
ENAC + MM2Gap

476 71.74 0.44 67.44 76.04 77.00 0.54 74.50 79.48

All 1,571 71.93 0.44 68.18 75.69 75.71 0.51 74.50 76.92

Acc, accuracy.
aThe “Fea_num” column indicates the number of combined features.
bPerformances with maximum accuracies.
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room for further improvement, we believe that the proposed model
can be a useful choice to predict m5C sites in RNA sequences.
MATERIALS AND METHODS
Datasets

In this study, benchmark datasets constructed by Lv et al.32 were
applied, including 6,289 positive and 6,289 negative sequences. Spe-
cifically, positive samples were selected from Gene Expression
Omnibus (GEO) datasets (https://www.ncbi.nlm.nih.gov/geo/) using
the accession number GEO: gse94065,39 where the CD-HIT pack-
age40 was adapted to remove redundant sequences with a threshold
of 80%. Then, 6289 negative samples were randomly chosen from
their genomes to construct balanced benchmark datasets. Finally,
1,000 positive and 1,000 negative samples were randomly selected
as independent datasets, and the rest were treated as training datasets,
including 5,289 positive and 5,289 negative sequences (see details in
Lv et al.32).
Feature-Extraction Methods

In the process of constructing a machine-learning-based predictor,
feature extraction plays an extremely crucial role. In this paper, seven
kinds of feature-encoding methods were chosen to represent the
sequence information described as follows.
PSP

PSP is an effective nucleotide-encoding approach that has been suc-
cessfully applied to the identification ofmany functional sites in biolog-
ical sequences.41–44 In thismethod, the position-specific information is
well represented using occurrence frequencies in positive and negative
samples. Considering an RNA sequence R=R1R2R3::R2x+ 1, the PSNP
matrix can be written as a ½4�ð2x + 1Þ�-dimensional vector
ZPSNP = ½Z1Z2:::Z2x+ 1�=

2
664
Z1;1 Z1;2 ::: Z1;2x+ 1

Z2;1 Z2;2 ::: Z2;2x+ 1

Z3;1 Z3;2 ::: Z3;2x+ 1

Z4;1 Z4;2 ::: Z4;2x+ 1

3
775; (Equation 1)

where Zi;j =Z +
i;j � Z�

i;j gives the difference of frequencies of the ith
nucleotide at the jth position between positive ðZ +

i;j Þ and negative
ðZ�

i;jÞ samples. Finally, the ð2x + 1Þ-length RNA sequence can be en-
coded as

VPSNP =
h
f1 f2.fj. f2x+ 1

iT
(Equation 2)

Here, fj is the element from the ZPSNP matrix

fi =

8>><
>>:

Z1;j when Nj =A;
Z2;j when Nj =C;
Z3;j when Nj =G;
Z4;j when Nj =U;

j= 1; 2; :::; 2x+ 1: (Equation 3)

Similarly, PSDP-associated dinucleotides can be written as a
½16�ð2xÞ�-dimensional vector

ZPSDP =

2
664
Z1;1 Z1;2 ::: Z1;2x

Z2;1 Z2;2 ::: Z2;2x

::: ::: ::: :::
Z16;1 Z16;2 ::: Z16;2x

3
775 (Equation 4)

The corresponding feature can be expressed as

VPSDP =
h
f1 f2 :: f2x

iT
; (Equation 5)
Molecular Therapy: Nucleic Acids Vol. 21 September 2020 337

https://www.ncbi.nlm.nih.gov/geo/
http://www.moleculartherapy.org


Table 5. Comparison of Different Classifiers Using the Feature Combination “PSP + Kmer + PseEIIP + PC-PseDNC”

Classifier

Training Datasets Testing Datasets

Acc (%) MCC Sn (%) Sp (%) AUC Acc (%) MCC Sn (%) Sp (%) AUC

RF 71.77 0.44 75.99 67.56 0.79 78.30 0.57 73.90 82.70 0.85

SVMa 72.72 0.46 65.46 79.98 0.80 79.90 0.60 79.40 80.40 0.88

AdaBoost 71.19 0.42 68.33 74.04 0.78 80.45 0.61 77.10 83.80 0.88

NB 66.60 0.34 55.08 78.12 0.71 69.82 0.40 73.00 66.63 0.77

Acc, accuracy.
aPerformances with maximum accuracies using the SVM algorithm.

Molecular Therapy: Nucleic Acids
and PSTP-associated trinucleotides are displayed as a ½64�ð2x �
1Þ�-dimensional vector,

ZPSTP =

2
664
Z1;1 Z1;2 ::: Z1;2x�1

Z2;1 Z2;2 ::: Z2;2x�1

::: ::: ::: :::
Z64;1 Z64;2 ::: Z64;2x�1

3
775: (Equation 6)

The RNA sequence can be represented as

VPSTP =
h
f1 f2 :: f2x�1

iT
: (Equation 7)

Kmer

Kmer is a common method to represent RNA sequences, which is
simply expressed as the occurrence frequencies of k-neighboring nu-
cleotides in bioinformatics.31,32,35,45 Here, we considered three kinds
of feature vectors with ks = 1, 2, and 3, corresponding to NAC, DNC,
and TNC, respectively.

ENAC

The ENAC is a variant of the NAC method, which calculates nucle-
otide occurrence frequencies in a length-fixed sequence window.46

The window can continuously loop through all nucleotides from 50

to the 30 terminus. Here, the default length 5 was used, forming a
½ð2x + 1 � 4Þ�4�-dimensional feature vector.

xxKGAP

xxKGAP composition is a major method implemented in PyFeat,37

which considered kgaps in the nucleotide sub-sequences. Frequencies
Table 6. Comparison of the Constructed Model with Two Published Methods

Method

Training Datasets

Acc (%) MCC Sn (%) Sp (%) AU

PEA-m5Ca

iRNA-m5C 70.70 0.42 65.70 75.70 0.77

This work 73.06 0.47 66.42 79.70 0.80

Acc, accuracy.
aResults of the PEA-m5C tool31 were excerpted from Lv et al.32 (i.e., obtained using indepen
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of these sub-sequences are treated as prediction features. Specifically,
for mMKGap features, if kgap = 1, the sequence can be encoded as
frequencies of X_X, i.e., 4� 1� 4= 16-dimensional features. If
kgap = 2, the sequence can be expressed as 4� 2� 4= 32 features.
As for dMKGap, there are, in total, 42 � n�4. The number of features
are increased with the n. In this paper, in total, nine kinds of features,
including mMKGap, mDGKap, dMKGap with ks = 1, 2, and 3, were
studied.

EIIP and PseEIIP

The EIIP approach directly uses EIIP values of 4 nucleotides to repre-
sent corresponding nucleotides (expressed as EIIPA, EIIPC, EIIPG,
and EIIPU), which induces ð2x + 1Þ-dimensional features.

Additionally, the PseEIIP vector can be written as the mean EIIP
value of related trinucleotides:

V =
�
EIIPAAA:fAAA; EIIPAAc:fAAc;.; EIIPUUU :fUUU

�
; (Equation 8)

where fXYZ and EIIPXYZ are the normalized frequency and
associated EIIP value of the ith trinucleotide XYZ by
EIIPXYZ = EIIPX + EIIPY + EIIPZ . These two methods showed
good results for prediction problems.43,47 It is noted that only
EIIP values (A, 0.1260; C, 0.1340; G, 0.0806; and T, 0.1335)48 were
applied in the iLearn package to represent the DNA sequence.36

Here, we still use the EIIP value 0.1335 for the U nucleotide in
RNA sequences. It is obviously found that PseEIIP methods produce
a 64-dimensional feature vector.

PC-PseDNC-General

The PC-PseDNC-general method49–51 incorporates short-range and
long-range information by dinucleotide composition and related
correlations of physicochemical properties. Here, we extracted
Testing Datasets

C Acc (%) MCC Sn (%) Sp (%) AUC

44.30 �0.11 43.20 45.40

74.00 0.48 72.40 75.60

80.15 0.60 79.40 80.90 0.88

dent data objectively).



Figure 3. Evaluated Perfromances

Left: ROC curves for best performing feature combinations

based on the SVM method. Right: comparison of our re-

sults (green) and the iRNA-m5C predictor (orange).
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PC-PseDNC features by the Pse-in-One 2.0 package with 22 physico-
chemical properties included,34 which can be written as a
ð16 + lÞ-dimensional vector

V = ðx1/jx16x16+ 1j/jx16+ lÞT ; (Equation 9)

where the parameter l indicates the highest counted rank (or tier)
in calculations. The detailed description can be found in Liu
et al.34

BE

In the BE method, the sequence can be directly written as a 4�
ð2x + 1Þ-dimensional vector, in which A, C, G, and U are character-
ized as (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1), respec-
tively.52–54
NCP + ND

Features NCP and ND are combined to encode RNA sequences with
high performances.55,56 The nucleotide Ni can be written as

Ni =
�
xi; yi; zi; di

�
; (Equation 10)

where xi, yi, and zi indicate the three properties of ring
structure, functional group, and hydrogen bond, respectively. It
is defined as:

xi =

�
1; Ni˛½A;G�
0; Ni˛½C;U � ; yi =

�
1; Ni˛½A;C�
0; Ni˛½G;U� ; zi =

�
1; Ni˛½A;U�
0; Ni˛½C;G�

(Equation 11)

Additionally, di is the accumulated density

di =
1

kSi k
Xl

j= 1

f
�
Nj

�
;
��f �Nj

�
=

�
1 ; jif j Nj ˛½A;C;G;U�
0; otherjcases ;

(Equation 12)

here, kSij k is the length of the subsequence ended in the relevant
nucleotide.
Molecular Therap
Classifiers

Many kinds of machine-learning algorithms
have been successfully applied in bioinformatics.
Here, we used four classifiers implemented in the
sklearn package38,57 for comparison, including
RF, SVM, AdaBoost, and NB.

RF

RF is a popular tree-based ensemble estimator,
where the overall predictive accuracy is
improved by combining a number of decision tree classifiers effec-
tively.58 It has been widely applied in fields of bioinformatics
research.30–32,35,59–61

SVM

SVM is an efficient supervised machine-learning algorithm for
classification, regression, and outlier detection.62–64 It has
been successfully applied in prediction subjects.55,65–73 In this
method, the original input vectors are transformed into a higher
Hilbert space by kernel function. Here, the radial basis kernel
function (RBF) was chosen to seek the best classification
hyperplane.

In comparison, AdaBoost and NB were both used in this work.
Specifically, the AdaBoost method is used to try to fit a sequence
of weak learners (i.e., models that are only slightly better than
random guessing, such as small decision trees) on repeatedly
modified versions of the data. The predictions from all of them
are then combined through a weighted majority vote (or sum) to
produce the final prediction.74,75 The NB method is from a set
of supervised learning algorithms based on applying Bayes’ theo-
rem with the independent assumption.76 Specifically, Gaussian
NB algorithm was implemented for the classifier task.

CV Test

For a convenient and fair comparison with the newest predictor
iRNA-m5C,32 10-fold CV and independent tests were separately
used to evaluate constructed models for training and testing datasets.
For the k-fold CV, benchmark datasets are equally divided into k sub-
sets. Then, the k � 1 subsets are used to train the model, and the re-
maining one is used to test. This process is repeated k times until all
subsets are used once for testing. The final performance is an average
value of all k testing experiments.77

Performance Evaluation

For the two-label classification, four metrics are usually applied to
evaluate performances of the proposed model, formulated as fol-
lows:78–83
y: Nucleic Acids Vol. 21 September 2020 339
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8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

Sn = 1� N +
�

N + 0%Sn%1

Sp = 1� N�
+

N� 0%Sp%1

Acc= 1� N +
� +N�

+

N + +N� 0%ACC%1

MCC =

1�
�N +

�
N + +

N�
+

N�

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1+

N�
+ � N +

�
N +

	�
1+

N +
� � N�

+

N�

	s �1%MCC%1

(Equation 13)

Here, Sn, Sp, Sp, and MCC indicate sensitivity, specificity, accuracy,
and Matthew’s correlation coefficient, respectively. N+ and N� indi-
cate the number of positive and negative sequences considered, in
which incorrectly predicted samples are labeled as N +

� and N�
+ ,

respectively.

In addition, the graph of the ROC84,85 is also widely used to intuitively
display the performance. Specifically, vertical and horizontal coordi-
nates are the true positive rate (TPR) and the false positive rate (FPR),
respectively. Then, the AUC can be obtained to objectively evaluate
performances of the proposed model.
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