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Abstract: Echo planar imaging (EPI), a fast magnetic resonance imaging technique, is a powerful tool
in functional neuroimaging studies. However, susceptibility artifacts, which cause misinterpretations
of brain functions, are unavoidable distortions in EPI. This paper proposes an end-to-end deep
learning framework, named TS-Net, for susceptibility artifact correction (SAC) in a pair of 3D
EPI images with reversed phase-encoding directions. The proposed TS-Net comprises a deep
convolutional network to predict a displacement field in three dimensions to overcome the limitation
of existing methods, which only estimate the displacement field along the dominant-distortion
direction. In the training phase, anatomical T1-weighted images are leveraged to regularize the
correction, but they are not required during the inference phase to make TS-Net more flexible for
general use. The experimental results show that TS-Net achieves favorable accuracy and speed
trade-off when compared with the state-of-the-art SAC methods, i.e., TOPUP, TISAC, and S-Net. The
fast inference speed (less than a second) of TS-Net makes real-time SAC during EPI image acquisition
feasible and accelerates the medical image-processing pipelines.

Keywords: susceptibility artifacts; deep learning; high-speed; echo planar imaging; reversed phase-
encoding

1. Introduction

Echo planar imaging is a fast magnetic resonance imaging (MRI) technique that has
served as an important non-invasive tool in cognitive neuroscience [1]. EPI is widely used
to record the functional magnetic resonance imaging (fMRI) data for studying human
brain functions [2]. It is also the technique of choice to acquire the diffusion-weighted
imaging (DWI) data for analyzing brain connection patterns [3]. Despite its popularity,
EPI is prone to susceptibility artifacts (SAs) [4,5] and eddy-current artifacts [6,7], which
consist of geometric distortions. The geometric distortions cause misalignments between
the functional image and the underlying structural image, subsequently leading to errors in
brain analysis, e.g. incorrect localization of neural activities in the functional brain studies.
Therefore, an accurate geometric distortion correction method is crucial for applications
that rely on EPI images.

In this study, we investigate the susceptibility artifact correction (SAC), as SAs are
inevitable in EPI [5]. Interestingly, two EPI images, which are acquired using identical
sequences but with reversed phase-encoding (PE) directions, have opposite patterns of
geometric distortions caused by SAs [8,9]. Consequently, the middle version of the reversed-
PE image pair is considered the distortion-free image. Chang and Fitzpatrick proposed to
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correct the SAs in two reversed-PE images by finding the corresponding points between
two reversed-PE images; the corrected image was then formed by the mean intensity of the
corresponding points [4]. Since displacements are estimated in lines along the PE direction
independently, the estimated displacement field is not smooth, subsequently leading to
unrealistic corrections. Andersson et al. proposed a method, called TOPUP, by modeling
the displacement at each voxel as a function of discrete cosine basis functions [10]. This
method estimates the entire displacement field along the PE direction, thereby avoiding the
unsmooth problem.

Several reversed-PE based SAC methods have adopted an image registration ap-
proach, in which the corrected image is treated as the intermediate version of the two
distorted input images. The two distorted reversed-PE images are transformed to the
corrected image by an equal displacement amount but with the opposite directions. This
registration approach for reversed-PE SAC was firstly proposed in [9]. Ruthotto et al.
introduced a regularization term, inspired by the hyper-elastic registration, to constrain the
displacement field in the registration framework, thereby achieving more realistic corrected
images [11]. Hedouin et al. introduced the block-matching algorithm that estimates the
displacement field at the block level of the given EPI image pair [12]. In another approach,
Irfanoglu et al. introduced an anatomical regularizer based on the T2-weighted (T2w) image
to the registration framework so as to align better the corrected images to the underlying
anatomical structure [13]. Duong et al. utilized T1-weighted (T1w) for correction regular-
ization, as the T1w images are routinely acquired in brain studies [14,15]; this method is
called TISAC.

The above SAC methods require an iterative-optimization algorithm to estimate the
displacement field and then compute the corrected images. This computation-intensive
optimization step can take from 1 to 12 min, for an image pair of size 192 × 192 × 36 vox-
els [15]. Recently, Duong et al. proposed an end-to-end deep learning framework, called
S-Net, to map a pair of 3D input reversed-PE images to a displacement field in the phase-
encoding direction, and to provide the corrected image pair [16]. S-Net is trained using
a set of reversed-PE image pairs. A new image pair is corrected by feeding the distorted
image pair to the trained S-Net model directly, thereby reducing the processing time. The
results of S-Net demonstrate the feasibility of using a deep network for the SAC problem.
While providing a competitive correction accuracy, S-Net could still be improved in terms
of correction accuracy, robustness to input image sizes, and imaging modalities.

To reduce computation time and increase robustness, existing SAC methods estimate
the displacement field only along the phase-encoding direction (i.e., 1D distortion model).
This is based on the fact that the distortions in the PE direction are prominent, whereas the
distortions in the other directions are insignificant. In this study, we propose a generalized
approach to enhance the correction accuracy by considering the distortions in all three
directions (i.e., 3D distortion model). The 3D displacement field is predicted through
a 3D convolutional encoder–decoder given a 3D reversed phase-encoding image pair.
The convolutional network is trained end-to-end using the T1w modality as an auxiliary
condition. The proposed method is called anatomy-guided deep learning SAC, or TS-Net
in which the letter “T” arises from T1w.

The new contributions of this paper are highlighted as follows:

1. We design a deep convolutional network to estimate the 3D displacement field. The
deep network is designed to make TS-Net robust to different sizes, resolutions, and
modalities of the input image by using batch normalization (BN) layers and size-
normalized layers.

2. We estimate the displacement field in all three dimensions instead of only along the
phase-encoding direction. In other words, TS-Net predicts the displacement field that
captures the 3D displacements for every voxel. This, to our knowledge, is a significant
improvement compared to most existing SAC methods [10,16], which estimate the
distortions only along the PE direction and ignore the distortions along with the other
two directions.
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3. We introduce a learning method that leverages T1w images in the training of TS-
Net. The motivation is that the T1w image is widely considered as a gold standard
representation of a subject’s brain anatomy [17], and it is readily available in brain
studies [18]. To make TS-Net more applicable for general use, the T1w image is used
only in training for network regularization, but not in the inference phase.

4. We provide an extensive evaluation of the proposed TS-Net on four large public
datasets from the Human Connectome Project (HCP) [19]. First, an ablation study is
conducted to analyze the effects of using different similarity measures to train TS-Net,
the effects of various components in the TS-Net framework, and the effects of using a
pre-trained TS-Net when training a new dataset. Second, TS-Net is compared with
three state-of-the-art SAC methods, i.e., TOPUP [10], TISAC [15], and S-Net [16], in
terms of correction accuracy and processing time.

The remainder of this paper is organized as follows. Section 2 describes the materials
and the proposed method. Section 3 presents the experimental results, and Section 4
discusses the proposed method and results. Finally, Section 5 summarizes our work.

2. Materials and Methods

In this section, Section 2.1 describes the EPI datasets used for experiments. Section 2.2
introduces the proposed TS-Net method. Section 2.3 presents the methods used for con-
ducting experiments.

2.1. EPI Datasets

To evaluate the SAC methods, we used four EPI datasets (fMRI-3T, DWI-3T, fMRI-7T,
and DWI-7T), which are the unprocessed data of the Subjects with 7T MR Session from
the public Human Connectome Project repository. The functional and diffusion MRI
datasets were used to study functional connectivity of the human brain and reconstruct the
complex axonal fiber architecture, respectively [20,21]. These four datasets were acquired
using different acquisition sequences, imaging modalities, field strengths, resolutions, and
image sizes; thus, the datasets are diverse in size and distortion property. Table 1 shows
a summary of the four datasets. Note that the apparent diffusion coefficient map was
not acquired in the DWI datasets. The b-values were 1000, 2000, and 3000 s/mm2 for the
DWI-3T dataset, and 1000 and 2000 s/mm2 for the DWI-7T dataset.

Table 1. A summary of the datasets used in the experiments.

Datasets No.
Subjs.

Gender Dis-
tribution

Age
Distribution

Image Size
(Voxels)

Resolution
(mm3)

Acquisition
Sequences

BW
Hz/Px

Field
Strength

PE
Directions

fMRI-3T 182

Males: 72
22–25 years: 24

90 × 104 × 72 2 × 2 × 2

Multi-band 2D
gradient-echo

EPI,
factor of 8

2290 3T LR and RL
26–30 years: 85

Females: 110
31–35 years: 71

over 36 years: 2

DWI-3T 180

Males: 71
22–25 years: 23

144 × 168 × 111 1.25 × 1.25 × 1.25
Multi-band 2D
spin-echo EPI,

factor of 3
1488 3T LR and RL

26–30 years: 84

Females: 109
31–35 years: 71

over 36 years: 2

fMRI-7T 184

Males: 72
22–25 years: 24

130 × 130 × 85 1.6 × 1.6 × 1.6

Multi-band 2D
gradient-echo

EPI,
factor of 5

1924 7T AP and PA
26–30 years: 85

Females: 112
31–35 years: 73

over 36 years: 2

DWI-7T 178

Males: 69
22–25 years: 21

200 × 200 × 132 1.05 × 1.05 × 1.05
Multi-band 2D
spin-echo EPI,

factor of 2
1388 7T AP and PA

26–30 years: 85

Females: 109
31–35 years: 70

over 36 years: 2
Abbreviations: BW = Readout bandwidth; LR = left-to-right; RL = right-to-left; AP = anterior-to-posterior; PA = posterior-anterior.
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2.2. The Proposed TS-Net Method

This section introduces a 3D anatomy-guided deep learning framework, called TS-
Net, to correct the susceptibility artifacts in a 3D reversed-PE image pair (see Figure 1).
The proposed TS-Net includes a deep convolutional network to map the 3D image pair
to the 3D displacement field U. It also has a 3D spatial transform unit to unwarp the
input-distorted images with the predicted displacement field, providing the corrected
images. In contrast to existing SAC methods [15,16], TS-Net estimates the 3D displacement
field, or three displacement values for each voxel. Thus, the displacement field U can be
represented as [Ux, Uy, Uz], where Ud is the displacement field in the d direction.

Figure 1. The proposed learning framework (TS-Net) for correcting the SAs in reversed-PE images. TS-Net accepts a pair of
3D reversed-PE images and produces the 3D displacement field and the corrected images.

The 3D spatial transform unit is the interpolation operator to unwarp or resample the
input images by the estimate displacement field [22]. Let U denote the displacement field
of image I1 to the corrected image, then −U is the displacement field of image I2 to the cor-
rected image because of the inverse distortion property of the reversed-PE image pair. The
spatial transform unit produces the corrected images, expressed as E1 =

[
I1 ⊗ (G + U)

]
,

and E2 =
[
I2 ⊗ (G−U)

]
, where ⊗ is the linear interpolation and G = [Gx, Gy, Gz] is the

regular grids in the x, y, and z directions.
The deep convolutional network can be considered as a mapping function fθ :

(I1, I2) → U, where θ is the set of network parameters. The deep network, which is
inspired by S-Net [16], U-Net [23], and DL-GP [24], is U-Net-like architecture with an
encoder and a decoder (see Figure 2). The encoder takes a two-channel input (which is
the reverse PE image pair) and extracts the latent features. The decoder takes the latent
features to predict the displacement field.

Both the encoder and the decoder use a kernel size of 3 × 3 × 3 voxels for their
convolutional layers to extract information from the neighboring voxels. This kernel size is
selected because it requires fewer trainable parameters than larger kernel sizes, thereby
improving computational efficiency. Each convolutional layer is followed by a BN layer to
mitigate changes in the distribution of the convolutional layer’s input [25].
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Figure 2. The convolutional encoder–decoder for mapping a pair of reversed-PE images to the 3D
displacement field. Box: output feature maps of a layer. Number inside each box: number of feature
maps in the layer. Number below each box: feature map size relative to the full input image size.

To make TS-Net cope with different input image sizes, we add a size-normalization
layer before the encoder and a size-recovery layer after the decoder. The size-normalization
layer uses zero-padding so that each input dimension is divisible by 16. The size-recovery
layer crops the decoder output to the size of the input image. To resize images, TS-
Net uses zero-padding instead of interpolation to maintain the spatial resolution of the
input images. Maintaining the original spatial resolution is critical in SAC because the
displacements in the EPI images are small and sensitive to image interpolation. Note
that the configuration of the introduced convolutional encoder–decoder, e.g. the number
of layers, batch normalization, and upsampling layers, was experimentally selected, see
Section 3.1.

In our previous deep-learning-based SAC method [16], the network parameters θ are
estimated by optimizing the objective function that promotes the similarity between the
pair of corrected images and enforces the local smoothness of the predicted displacement
field. In this study, we regularize the training by introducing a T1w-based regularizer to the
loss function. This regularizer can improve the TS-Net training as the T1w image is widely
considered a gold standard representation of a subject’s brain anatomy [17]. Note that T1w
images are used in the training phase, not in the testing phase.

The T1w-based regularizer penalizes the distances from the corrected images to the
corresponding T1w structural image. Since T1w and EPI are in different modalities, we use
the normalized mutual information (NMI) to measure the similarity between the output
images and the T1w image because it is effective for multi-modal images. Let A denote the
T1w image, and the T1w-based regularizer is then defined as

Lanat(E1, E2, A) = 1 − NMI(E1, A) + NMI(E2, A)

2
. (1)

The loss for TS-Net training is

L(I1, I2, A, U) =Lsim(E1, E2) + λLsmooth(U) + γLanat(E1, E2, A), (2)

whereLsim is the dissimilarity between the pair of corrected images. Lsmooth is the diffusion
regularizer, denoting the non-smoothness of the predicted displacement field. The positive
and user-defined regularization parameters λ and γ represent the trade-off between the
similarity of the corrected images, the smoothness of the displacement field, and the
similarity of the T1w image to the output images.

Since the corrected images E1 and E2 have the same modality, we investigate three
possible unimodal similarity metrics: mean squared error (MSE), local cross-correlation
(LCC) [26], and local normalized cross-correlation (LNCC) [27] (refer to Appendix A.1 for
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a detailed description of the metrics). We experimentally found that LNCC metric is the
best choice in terms of the trade-off between training accuracy and processing time (see the
analysis in Section 3.1). Thus, LNCC is used as the Lsim.

2.3. Experimental Methods

To evaluate TS-Net, for each dataset, we first split the subjects randomly into two
parts: A and B. Then, the training set was formed by randomly selecting reversed-PE image
pairs of each subject in Part A; this strategy reduces the data repetition of subjects. The
test set was formed from all reversed-PE pairs of each subject in Part B. The training sets
were used to select the hyper-parameters and train the TS-Net models, and the test sets
were used to evaluate the correction accuracy of the TS-Net models. The training set of
each dataset was further divided into a training set and a validation set with a ratio of 9:1.
Table 2 summarizes the training, validation, and test sets of the four datasets.

Table 2. A summary of the training, validation, and test sets for each of the four datasets.

Datasets
Training Set Validation Set Test Set

No. Subjects No. Pairs No. Subjects No. Pairs No. Subjects No. Pairs

fMRI-3T 140 1685 16 187 26 1395

DWI-3T 135 392 15 44 30 90

fMRI-7T 138 2890 15 322 31 1269

DWI-7T 133 140 15 15 30 60

The proposed TS-Net was implemented using Keras [28] deep learning library. For
training TS-Net, the Adam optimizer was used with the learning rate α = 0.001 and the
exponential decay rates β1 = 0.9 and β2 = 0.999, as suggested by Kingma and Ba [29]. The
Tree of Parzen Estimator algorithm was used to select suitable values for regularization
parameters λ and γ [30–32]. In training each dataset, we selected the maximum batch size
that could fit into the available GPU memory to reduce the training time. The batch sizes
and regularization parameters used in training TS-Net are shown in Table 3.

Table 3. Values of hyper-parameters in training TS-Net on the four datasets.

Params fMRI-3T DWI-3T fMRI-7T DWI-7T

λ 0.1771 0.002 0.9323 0.025

γ 0.01 0.01 0.01 0.01

Batch size 4 1 1 1

We then compared the proposed TS-Net with two iterative-optimization methods,
i.e., TOPUP and TISAC, and a state-of-the-art deep learning method, i.e., S-Net. The
comparison is in terms of the correction accuracy and processing speed. To evaluate the
correction accuracy of the proposed method, we trained S-Net and TS-Net for 1500 epochs
with each dataset. The trained models were used to compute the corrected image pairs of
the test sets. For TOPUP (we used the TOPUP implementation in the FSL package, website:
fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup, accessed on 1 May 2020) and TISAC, the corrected
image pairs were obtained by implementing the iterative-optimization algorithms. Here,
the correction accuracy is measured in terms of LNCC similarity between the pair of
reversed-PE images.

The experiments were conducted using images from the datasets directly, without any
pre-processing step. The experiments for evaluating processing times were performed on a
system that has an Intel Core i5-9600K CPU at 3.6 GHz, 32 GB of RAM, and an NVIDIA
GeForce RTX2080 GPU with 8 GB memory. The other experiments were performed on a
system that has an Intel Xero Gold 5115 CPU at 2.4 GHz and an NVIDIA GeForce GTX
Titan Xp with 12 GB memory.

fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup
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3. Results

In this section, Section 3.1 presents the results of the ablation study. Section 3.2 shows
the results of the proposed method and other representative SAC methods in terms of
correction accuracy and processing time.

3.1. Ablation Study of the Proposed Method

This section analyzes the proposed TS-Net method in five aspects: (i) the effects of
using different similarity measures; (ii) the effects of the different network configurations
in TS-Net; (iii) the effects of using the 3D distortion model and T1w regularization; (iv) the
effects of using a pre-trained TS-Net in training other datasets; (v) the visualization of the
predicted displacement field.

Effects of similarity measures in network training: In this experiment, for each training
set, we trained TS-Net models using different similarity losses: (i) MSE; (ii) LCC; (iii)
LNCC. The effects of using different similarity measures were evaluated in two aspects:
the validation loss and the training time of each epoch. The validation loss was measured
as the mean similarity measures for output image pairs across subsets of the training sets.
We conducted experiments on the four datasets: fMRI-3T, DWI-3T, fMRI-7T, and DWI-7T.
Figure 3 shows the validation loss versus time when training TS-Net with the similarity
loss as MSE, LCC, and LNCC. It can be seen that TS-Net trained with the LNCC measure
produces the lowest validation loss, while TS-Net trained with the MSE measure produces
the highest validation loss. TS-Nets trained with the LNCC and LCC measures produce
a competitive LCC validation loss on two datasets (DWI-3T and fMRI-7T). Considering
the validation loss versus the training time, it is clear that the LNCC measure is a better
choice than the MSE and the LCC for training TS-Net. Based on this experiment, the LNCC
metric was subsequently used as the similarity loss for all the remaining experiments.
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Figure 3. Validation loss of the models trained with three types of similarity loss (MSE, LCC, and LNCC) versus training
time (in hours) on the four datasets: (a) fMRI-3T; (b) DWI-3T; (c) fMRI-7T; (d) DWI-7T. Top row: validation loss in terms of
MSE. Middle row: validation loss in terms of LCC. Bottom row: validation loss in terms of LNCC.

Effects of the network configurations in TS-Net: In this experiment, we analyzed the
effects of four different network configurations: (i) TS-Net without batch normalization
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and with an upsampling layer (UL); (ii) TS-Net with instance normalization (IN) [33] and
with UL; (iii) TS-Net with BN and transposed convolution (TC) [34]; (iv) TS-Net with
BN and UL (the proposed method). The validation loss during the training phase was
computed as the average LNCC measure between the output image pairs, across subsets
of the training sets. This validation loss was then used to compare different network
configurations.

Figure 4a shows the validation loss versus the training time on three datasets: fMRI-3T,
DWI-3T, and DWI-7T; each subfigure includes the validation loss for the four network
configurations. Several observations can be made. First, using batch normalization (the
proposed TS-Net, green curve) provides a lower validation loss compared to not using
batch normalization (blue curve). Second, using batch normalization (the proposed TS-
Net, green curve) provides a similar or lower validation loss compared to using instance
normalization (orange curve). Third, using the upsampling layer (the proposed TS-Net,
green curve) has a similar validation loss compared to using the transpose convolution
(magenta curve). These results justify our selected configuration for TS-Net.

Effects of using the 3D distortion model and anatomical guidance by T1w: In this exper-
iment, we trained three types of networks: (i) TS-Net with the 1D distortion model as
used in S-Net [16]; (ii) TS-Net with the 3D distortion model and without T1w guidance; (iii)
TS-Net with the 3D distortion model and T1w guidance (the proposed method). Figure 4b
shows the validation loss versus the training time on three datasets: fMRI-3T, DWI-3T, and
DWI-7T. Several observations can be made. First, the proposed TS-Net with T1w guidance
(green solid curve) has lower validation losses than the TS-Net without T1w guidance
(brown dash-dotted curve). This result shows that incorporating T1w guidance can im-
prove the correction accuracy. Second, the proposed TS-Net using the 3D distortion model
(green solid curve) produces significantly lower validation losses than TS-Net using the 1D
distortion model (magenta dashed curve). This result shows that the 3D distortion model
used in the proposed TS-Net provides more accurate correction than the 1D distortion
model (i.e., only along the phase-encoding direction), which is used in S-Net and existing
iterative-optimization SAC methods.

Effects of using a pre-trained TS-Net: In this experiment, we explored whether using a
TS-Net model pre-trained on one dataset can reduce the training time on another dataset,
compared to a randomly initialized TS-Net. To this end, we trained two TS-Net models:
(i) from scratch; (ii) using an initial network, which had been pre-trained for 1500 epochs
on the fMRI-3T dataset. Figure 4c shows the validation loss versus training time on
three datasets: DWI-3T, fMRI-7T, and DWI-7T. The figure shows that the validation loss
when training TS-Net using a pre-trained model (cyan dash-dotted curve) is much lower
than when training from scratch (green solid curve). The result suggests that TS-Net
is able to learn generalized features for correcting the susceptibility artifacts from one
dataset. Subsequently, adopting the learned features in training other datasets leads to a
faster converge.

Visualization of the predicted displacement fields: Figure 5 shows the samples of the dis-
placement field estimated by the trained TS-Net for the four test sets. The displacement field
is shown in three directions (left–right, anterior–posterior, and superior–inferior). TS-Net
can estimate the geometric distortions along the directions that are not the dominant PE
direction. The visual results indicate that TS-Net is able to predict realistic 3D displacement
fields, i.e., the displacements in the phase-encoding direction are more dominant than those
in the other two directions.



Sensors 2021, 21, 2314 9 of 16

2 4 6 8
Time (in second) 1e4

0.35

0.40

0.45

0.50

0.55

Va
l. 
lo
ss

1 2 3 4 5 6 7
Time (in second) 1e4

0.60

0.65

0.70

0.75

0.80

Va
l. 
lo
ss

1 2 3 4 5
Time (in second) 1e4

0.70

0.75

0.80

0.85

Va
l. 
lo
ss

TS-Net without BN, with UL
TS-Net with IN and UL
TS-Net with BN and TC
TS-Net with BN and UL (proposed)

fMRI-3T DWI-3T DWI-7T
(a) Comparison of the validation loss on four models: (i) TS-Net without batch normalization and with
upsampling layer (UL); (ii) TS-Net with instance normalization and UL; (iii) TS-Net with batch normalization
(BN) and transposed convolution; (iv) TS-Net with BN and UL (proposed method).
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T1w guidance (proposed method).
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Figure 4. Ablation study of TS-Net in terms of (a) network configurations, (b) the 3D distortion model and anatomical
guidance, and (c) using a pre-trained model. Plots show the validation loss of trained models versus training time
(in seconds).

3.2. Comparison with Other Methods

This section compares TS-Net with three SAC methods, i.e., TOPUP, TISAC, and S-Net.
Figure 6 shows sample slices of uncorrected and corrected images from each of the four
test sets. Each example includes two reversed-PE images (Rows 1 and 2) and the absolute
difference between the two images (Row 3). The arrows indicate the regions where TS-Net
produces significantly improved correction in comparison with three other SAC methods.
It can be seen that TS-Net removes distortions in the uncorrected images significantly.
In general, TS-Net produces the output images that are comparable to or better than the
outputs of TOPUP, TISAC, and S-Net. Note that the SAC methods work with 3D images;
however, for visualization, 2D slices are presented in the figures. For a larger view of the
TS-Net outputs, see Figure A1 in Appendix B.

Table 4 summarizes the accuracy of uncorrected and corrected images in terms of
LNCC on four different test sets. Paired t-tests were performed on the LNCC measures
between TS-Net outputs and each of four image types: uncorrected images, TOPUP
outputs, TISAC outputs, and S-Net outputs. The null hypothesis is H0 : mS-Net = mother.
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All computed P values are smaller than 0.001; this indicates that the null hypothesis is
rejected at a confidence level of 99.9%. In other words, TS-Net produces image pairs with
significant differences (i.e., improvements) in terms of accuracy compared to the output
image pairs of other methods.

(a) fMRI-3T (b) DWI-3T

(c) fMRI-7T (d) DWI-7T

Figure 5. Samples of three predicted displacement fields (in voxel) of TS-Net from the four test
sets. In each subfigure, left image: displacement field in the left–right (LR) direction; middle image:
displacement field in the anterior–posterior (AP) direction; right image displacement field in the
superior–inferior (SI) direction. The dominant phase-encoding dimension (direction) is shown in red
text; the other two other dimensions are shown in white text.

For visual clarity, Figure 7 shows the box plots for comparing the LNCC measures of
the four SAC methods. The results in Table 4 and Figure 7 show three notable observations.
First, TS-Net produces output images that have significantly higher LNCC measures than
the uncorrected images; in other words, TS-Net does reduce the susceptibility artifacts.
Second, TS-Net produces output images that have higher LNCC measures than the outputs
of the TISAC method in four out of four datasets, and the outputs of the TOPUP methods in
three out of four datasets. This means that TS-Net has better correction accuracy compared
to the two iterative-optimization methods, i.e., TISAC and TOPUP. Third, TS-Net also
produces higher LNCC measures than S-Net in four out of four datasets. Compared to
S-Net, the proposed TS-Net has several differences, one of which is its use of T1w images
in training. This result demonstrates that including the gold-standard representation of a
subject’s brain anatomy helps regularize the susceptibility artifact correction in TS-Net.
Note that TS-Net does not require the T1w image in the inference phase, which explains its
comparable processing speed with S-Net, as analyzed next.

To compare the processing speed, we first randomly selected 50 distorted image pairs
for each of the four datasets. We then recorded the time for correcting the selected image
pairs by four SAC methods: TOPUP, TISAC, S-Net, and TS-Net. Table 5 shows the average
processing time per image pair of TS-Net and the three SAC methods. Over the four
datasets, TS-Net is 396.72 times faster than TOPUP, 29.45 times faster than TISAC, and only
1.05 times slower than S-Net. Both deep learning-based SAC methods (TS-Net and S-Net)
can be accelerated by five times when using the GPU instead of the CPU. Note that, in
the experiments for all datasets, the proposed TS-Net has 260,187 trainable parameters,
whereas the S-Net model has 259,241 trainable parameters. In other words, the proposed
TS-Net requires only 0.36% more trainable parameters than S-Net.
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(a) fMRI-3T (b) DWI-3T

, , , , , , , , , , , , , , ,

(c) fMRI-7T (d) DWI-7T

Figure 6. Sample visual results of SAC methods from the four test sets. In each subfigure, Column
1: input uncorrected images. Columns 2, 3, 4, and 5: output corrected images produced by TOPUP,
TISAC, S-Net, and TS-Net, respectively. Rows 1 and 2: reversed phase-encoding EPI images. Row 3:
the color bar of the absolute different maps. Row 4: the absolute difference between the image pair.
Row 5: the corresponding T1w image of the reversed-PE images and the estimated displacement fields
of the compared SAC methods. For visualization, only the displacement field in the phase-encoding
direction of TS-Net is shown. Row 6: the color bar of the displacement fields, in which the number
expresses the number of voxels shifted.

The results of TS-Net over the four datasets show that the inference time of TS-Net is
linearly proportional to the size of the input images. To correct an image pair with a size
of 90 × 104 × 72, TS-Net takes 0.65 s using CPU and 0.14 s using GPU. On average, the
inference speed of TS-Net is approximately 1.08 million voxels per second with CPU and
5.98 million voxels per second with GPU.
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Table 4. Accuracy in terms of local normalized cross-correlation for different test sets: fMRI-3T,
DWI-3T, fMRI-7T, and DWI-7T. The best measurements are given in bold.

Datatypes
fMRI-3T DWI-3T fMRI-7T DWI-7T

mean ± std mean ± std mean ± std mean ± std

Uncorrected 0.335 * ± 0.023 0.142 * ± 0.020 0.229 * ± 0.023 0.120 * ± 0.018

TOPUP 0.753 * ± 0.024 0.468 * ± 0.031 0.583 * ± 0.024 0.371 * ± 0.025

TISAC 0.674 * ± 0.036 0.436 * ± 0.058 0.427 * ± 0.036 0.364 * ± 0.048

S-Net 0.608 * ± 0.027 0.242 * ± 0.039 0.412 * ± 0.027 0.182 * ± 0.025

TS-Net 0.692 ± 0.022 0.571 ± 0.034 0.648 ± 0.022 0.398 ± 0.031
The asterisk symbol (*) indicates that the computed p is less than 0.001 for the null hypothesis
H0 : mTS-Net = mother. A p value below 0.001 means that the null hypothesis is rejected at a confidence level of
99.9%. In other words, the similarity measure LNCC of TS-Net is significantly different from the compared method.
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Figure 7. Comparisons of the proposed TS-Net versus other three SAC methods in terms of the LNCC-based accuracy on
the test sets. Due to differences in the LNCC ranges of the datasets, the plots are drawn in different y-axis ranges for clarity.
In each box plot, the top line is the maximum LNCC value excluding the outliers; the bottom line is the minimum LNCC
value excluding the outliers; the middle line is the median LNCC value; the solid rectangle is the interquartile range of the
LNCC values; the points are the outliers.

Table 5. Processing time (in seconds) of SAC methods for correcting a pair of reversed-PE images.

Methods Processor
fMRI-3T

90 × 104 × 72
DWI-3T

144 × 168 × 111
fMRI-7T

130 × 130 × 85
DWI-7T

200 × 200 × 132
(Mean ± std) (Mean ± std) (Mean ± std) (Mean ± std)

TOPUP CPU 252.55 ± 3.61 997.39 ± 9.04 535.71 ± 44.29 1944.65 ± 18.72

TISAC 25.76 ± 11.81 57.73 ± 12.03 28.48 ± 5.14 126.13 ± 26.25

S-Net 0.63 ± 0.03 2.21 ± 0.03 1.36 ± 0.03 4.55 ± 0.04

TS-Net 0.65 ± 0.04 2.30 ± 0.05 1.45 ± 0.04 4.92 ± 0.06

S-Net GPU 0.13 ± 0.14 0.42 ± 0.18 0.22 ± 0.16 0.72 ± 0.25

TS-Net 0.14 ± 0.16 0.43 ± 0.21 0.23 ± 0.18 0.80 ± 0.26

4. Discussion

This section discusses the proposed TS-Net in three aspects: robustness, generalizabil-
ity, and feasibility. In terms of robustness, TS-Net can predict realistic 3D displacement
fields, i.e., the most dominant displacements in the phase-encoding direction regardless
of the PE direction order, resulting in high-quality corrected images. The experiments
conducted on four different datasets show that TS-Net performed consistently on different
image resolutions, image sizes, image modalities, and training set sizes. Furthermore, it
can cope with different phase-encoding directions.

In terms of generalizability, TS-Net is able to learn the generalized features of the
susceptibility artifacts in reversed-PE image pairs from one dataset. A trained TS-Net
can be easily transferred to a new dataset, effectively reducing the training time. This
observation is similar to the generalization capability of the deep networks [35]. Therefore,
TS-Net can employ the network initialization techniques, e.g. MAML [36] and Reptile [37],
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to address the problem of a long training time, which is a common bottleneck in deep
learning algorithms.

In terms of feasibility, TS-Net can produce higher accuracy than the state-of-the-art
SAC methods, while having a fast processing time. To correct a pair of distorted images,
TS-Net only takes less than 5 s using CPU or less than 1 s using GPU. These high-accuracy
and high-speed capabilities allow TS-Net to be applied in many applications. For example,
TS-Net can be integrated into the MRI scanner to correct SAs in real time; this is typically
not possible with the traditional reversed-PE SAC methods because they are slow.

5. Conclusions

This paper presents an end-to-end 3D anatomy-guided deep learning framework,
TS-Net, to correct the susceptibility artifacts in reversed phase-encoding 3D EPI image pairs.
The proposed TS-Net contains a deep convolutional network to predict the displacement
field in all three directions. The corrected images are then generated by feeding the
predicted displacement field and input images into a 3D spatial transform unit. In the
training phase, the proposed TS-Net additionally utilizes T1w images to regularize the
susceptibility artifact correction. However, the T1w images are not used in the inference
phase to simplify the use of TS-Net.

The visual analysis shows that TS-Net is able to estimate the realistic 3D displacement
field, i.e., the displacements are dominant in the phase-encoding direction, compared with
the other two directions. Evaluation on the four large datasets also demonstrates that the
proposed TS-Net provides higher correction accuracy than TISAC and S-Net in all four
datasets, and TOPUP in three out of four datasets. Over the four datasets, TS-Net runs
significantly faster than the iterative-optimization SAC methods: 396.72 times faster than
TOPUP and 29.45 times faster than TISAC. TS-Net is slightly slower than S-Net, but it still
meets the real-time correction requirement of MRI scanners. Furthermore, the training time
of TS-Net on a new dataset can be reduced by using a pre-trained model.
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Appendix A. Similarity Metrics

This section presents the three similarity metrics, i.e., MSE, LCC, and LNCC, which
are used in Lsim.

https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release


Sensors 2021, 21, 2314 14 of 16

Appendix A.1. Mean Squared Error

The mean squared error between two images E1 and E2 is defined as

MSE(E1, E2) =
1
|Ω| ∑

p∈Ω

[
E1(p) − E(p)

]2, (A1)

where Ω ∈ R3 is the image domain, and |Ω| is the total number of image indexes. A
smaller value of MSE indicates a higher similarity between the images. Thus, the Lsim loss
based on the MSE measure is

LMSE
sim (E1, E2) = MSE(E1, E2). (A2)

Appendix A.2. Local Cross-Correlation

The local cross-correlation metric can be explained as follows. Consider an image X.
Let X̄ be the local mean image obtained by applying an n× n× n averaging filter on X.
The local centered image X̂ is computed as

X̂ = X− X̄. (A3)

For a given voxel p = (x, y, z), let W(p) denote the set of voxels in the n× n× n cube
centered on p. For a pair of images E1 and E2, we compute a local correlation coefficient
image C:

C(p) =

(
∑

pi∈W(p)
[Ê1(pi) Ê2(pi)]

)2

∑
pi∈W(p)

[Ê1(pi)]2 ∑
pi∈W(p)

[Ê2(pi)]2
. (A4)

The LCC measure for images E1 and E2 is now defined as the mean intensity of the
local correlation image C:

LCC(E1, E2) =
1
|Ω| ∑

p∈Ω
C(p). (A5)

A higher LCC indicates more similarity between two output images. We now can
express the Lsim loss based on the LCC measure as

LLCC
sim (E1, E2) = 1− LCC(E1, E2). (A6)

Appendix A.3. Local Normalized Cross-Correlation

The local normalized cross-correlation metric can be defined as follows. Let X̃ be the
variance image of X:

X̃(p) = ∑
pi∈W(p)

[X(pi)]
2 − 1

n3

[
∑

pi∈W(p)
X(pi)

]2. (A7)

Let R be the correlation image between two images E1 and E2:

R(p) = ∑
pi∈W(p)

[E1(pi) E2(pi)] −
1
n3 ∑

pi∈W(p)
E1(pi) ∑

pi∈W(p)
E2(pi). (A8)

The LNCC between two images E1 and E2 is given by

LNCC(E1, E2) =
1
|Ω| ∑

p∈Ω

[R(p)]2

Ẽ1(p) Ẽ2(p)
. (A9)
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A higher LNCC indicates higher similarity between two output images. We now can
express the Lsim loss based on the LNCC measure as

LLNCC
sim (E1, E2) = 1− LNCC(E1, E2). (A10)

Appendix B. Supplementary Figure

(a) fMRI-3T (b) DWI-3T

(c) fMRI-7T (d) DWI-7T

Figure A1. Larger view of the TS-Net outputs from the four test sets. In each subfigure, Column 1:
input uncorrected images. Column 2: output corrected images produced by TS-Net. Column 3: the
zoomed view of cyan rectangles from the TS-Net output.
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