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Background: In monocentric studies, patients with mild cognitive impairment (MCI) and Alzheimer's disease
(AD) dementia exhibited alterations of functional cortical connectivity in resting-state functional MRI (rs-
fMRI) analyses.Multicenter studies provide access to large sample sizes, but rs-fMRImay be particularly sensitive
to multiscanner effects.
Methods: We used data from five centers of the “German resting-state initiative for diagnostic biomarkers”
(psymri.org), comprising 367 cases, including AD patients, MCI patients and healthy older controls, to assess
the influence of the distributed acquisition on the group effects. We calculated accuracy of group discrimination
based onwhole brain functional connectivity of theposterior cingulate cortex (PCC)using pooled samples aswell
as second-level analyses across site-specific group contrast maps.
Results: We found decreased functional connectivity in AD patients vs. controls, including clusters in the
precuneus, inferior parietal cortex, lateral temporal cortex and medial prefrontal cortex. MCI subjects showed
spatially similar, but less pronounced, differences in PCC connectivity when compared to controls. Group dis-
crimination accuracy for AD vs. controls (MCI vs. controls) in the test data was below 76% (72%) based on the
pooled analysis, and even lower based on the second level analysis stratified according to scanner. Only a subset
of quality measures was useful to detect relevant scanner effects.
Conclusions:Multicenter rs-fMRI analysis needs to employ strict quality measures, including visual inspection of
all the data, to avoid seriously confounded group effects.While pending further confirmation in biomarker strat-
ified samples, these findings suggest that multicenter acquisition limits the use of rs-fMRI in AD and MCI
diagnosis.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Criteria for prodromal Alzheimer’s disease (AD) (Albert et al., 2011;
Dubois et al., 2010; Dubois et al., 2007; Dubois et al., 2014) and AD de-
mentia (McKhann et al., 2011) diagnosis include structural imaging
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markers, such as MRI based hippocampus volumetry, molecular imag-
ing markers, such as amyloid PET, and functional imaging markers,
such as 18FDG-PET. All these imaging markers have already been evalu-
ated in large multicenter cohorts, such as ADNI, EDSD, NEST-DD and
others (Doraiswamy et al., 2014; Herholz, 2010; Kilimann et al., 2014;
Risacher et al., 2009).

Particularly, FDG-PET has proven a precise predictor of imminent
conversion from mild cognitive impairment (MCI) to AD dementia
(Ito et al., 2015). At the same time, PET imaging is relatively expensive
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Table 1
Demographic characteristics, all sites

AD MCI Controls

No. cases (women)1 84 (46) 115 (59) 151 (82)
Age (SD) [years]2 72.0 (9.0) 72.6 (8.0) 69.0 (7.8)
MMSE (SD), number3 22.4 (4.4), 84 26.7 (1.8), 115 28.9 (1.0) 115
MoCA (SD), number4 – 22.7 (3.0), 22 26.4 (2.1), 19
education (SD) [years]5 10.9 (2.4) 12.4 (3.3) 12.9 (3.1)

MMSE – Mini Mental State Examination (Folstein et al., 1975)
MoCA – Montreal Cognitive Assessment (Nasreddine et al., 2005)

1 Not significantly different between groups, χ2 = 0.315, 2 df, p = 0.85.
2 Significantly different between groups, F(2, 347) = 7.5, p b 0.001.
3 Significantly different between groups, Kruskal Wallis Test, p b 0.001.
4 Significantly different between groups, Kruskal Wallis Test, p b 0.001.
5 Significantly different between groups, F(2, 323) = 11.4, p b 0.001.

Table 2
Demographic characteristics, one site excluded.

AD MCI Controls

No. cases (women)1 53 (31) 79 (43) 118 (61)
Age (SD) [years]2 72.4 (8.8) 74.8 (6.0) 70.4 (6.2)
MMSE (SD), number3 22.5 (4.4), 53 26.5 (1.8), 79 28.8 (1.0) 97
MoCA (SD), number4 – 22.7 (3.0), 22 26.4 (2.1), 19
education (SD) [years]5 11.4 (2.1) 13.0 (3.4) 13.6 (3.1)

MMSE – Mini Mental State Examination (Folstein et al., 1975)
MoCA – Montreal Cognitive Assessment (Nasreddine et al., 2005)

1 Not significantly different between groups, χ2 = 0. 689, 2 df, p = 0.71.
2 Significantly different between groups, F(2, 247) = 9.8, p b 0.001.
3 Significantly different between groups, Kruskal Wallis Test, p b 0.001.
4 Significantly different between groups, Kruskal Wallis Test, p b 0.001.
5 Significantly different between groups, F(2, 246) = 9.73, p b 0.001.
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and availability of PET scanners is limited. Resting state fMRI (rs-fMRI)
has been discussed as a functional imaging alternative for 18FDG-PET
(Teipel et al., 2015). Decline of default mode network connectivity, a
brain network encompassing key regions of AD pathology such as pos-
terior cingulate, precuneus, inferior parietal lobes, prefrontal cortex and
medial temporal lobes (Fox et al., 2005), has been shown in AD demen-
tia and MCI patients compared to age matched controls in a range of
studies (Chhatwal et al., 2013; Greicius et al., 2004; Thomas et al.,
2014). Results on diagnostic accuracies are mixed, ranging from 62%
to N90% group separation of MCI or AD dementia cases from healthy
control cases in monocenter studies (Dyrba et al., 2015b; Koch et al.,
2012). Such variation across studies likely not only reflects differences
in the cohorts, but also variation in acquisition parameters of rs-fMRI se-
quences between studies. High variability of group discrimination
across sites, however, would severely diminish the value of rs-fMRI as
an imaging biomarker of AD.

Multicenter studies in healthy people revealed high variability of
task related functional MRI image properties, such as transient signals,
smoothness and the shape of the hemodynamic response function,
even when multicenter data stemmed from the same brand and
model of scanners (Zou et al., 2005). Consistent with these findings,
test-retest reliability studies of rs-fMRI suggest high intra-individual
variability of resting state connectivity even in healthy people repeated-
ly scanned at the same scanner (Chen et al., 2015; Jovicich et al., 2016;
Lin et al., 2015; Meindl et al., 2010; Orban et al., 2015; Shirer et al.,
2015), including long-term evaluation after more than 12 months
(Blautzik et al., 2013; Chou et al., 2012; Guo et al., 2012). Multiscanner
evaluation suggests high variability of signal-to-noise and contrast-to-
noise ratios, particularly when using field strengths of 3T and higher
(Jovicich et al., 2016; Lin et al., 2015;Magnotta et al., 2006). In an explic-
it linear model, center accounted for a large amount of variance across
voxel-wise resting state connectivity (Suckling et al., 2012).

Several rs-fMRI multicenter studies have investigated alterations of
functional connectivity in AD and other neuropsychiatric conditions,
but without consideration of multiscanner effects (Esslinger et al.,
2011) even though protocols differed between sites in some studies
(Chhatwal et al., 2013; Demertzi et al., 2015; Martucci et al., 2015;
Sripada et al., 2014; Thomas et al., 2014). Some of these studies used
the same scanner type across sites (Demertzi et al., 2015; Esslinger et
al., 2011; Thomas et al., 2014), but some did not (Chhatwal et al.,
2013; Martucci et al., 2015; Sripada et al., 2014).

Several studies reported techniques to reduce inter-scanner
variability, mostly, however, in data from healthy people. One
study probed a wide range of processing steps to reduce test-retest
variability (Shirer et al., 2015). Another study comparing different
connectivity metrics found most stable results for cross-correlation
as compared to cross-coherence and partial cross-correlation
(Fiecas et al., 2013). Two studies in healthy adults and young people
at risk of psychosis, respectively, used scanner as a covariate in a
second-level linear ANOVA model (Anticevic et al., 2015; Biswal et
al., 2010), another study in healthy adults used conjunction analysis
across scanners (Long et al., 2008). Only one previous study explicit-
ly modelled center effects in healthy older people and MCI cases
using a meta-analysis of between group effects across four different
cohorts (Tam et al., 2015).

Here, we used rs-fMRI data of people with AD dementia, MCI and
healthy older controls from the “German resting-state initiative for
diagnostic biomarkers” (www.psymri.org) collected at five sites to
compare previously employed measures of scan quality across sites
(Jenkinson et al., 2002; Yan et al., 2013a), determine the effect of mul-
ticenter acquisition on between group effects, and assess diagnostic
accuracies from different univariate analysis approaches. We expect-
ed to find large heterogeneity of between group effects that would
likely impair the use of multicenter rs-fMRI data as diagnostic
biomarker for AD.We used thewidely established structural measure
of hippocampus volume that has been found to be stable against
multicenter effects (Ewers et al., 2006) as an internal benchmark for
the functional connectivity metric.
2. Material and methods

The original data set consisted of 367 rs-fMRI scans that have been
retrieved retrospectively from five sites within the framework of the
“German resting-state initiative for diagnostic biomarkers” (www.
psymri.org). After a first round of visual quality check, 350 rs-fMRI
datawere retained, whereas 17 scanswere dropped due to severe prob-
lemswith scan quality, incomplete scans or scans covering only parts of
the brain. From the remaining 350 scans, all 100 scans from one site
(site V) were rated as borderline quality due to severe susceptibility ef-
fects and subsequent analyses were conducted both with and without
the scans from this site. Distribution of demographic characteristics of
participants across sites is summarized in Tables 1 and 2; the number
of participants per scanner is shown in supplementary table 1.

The retained data included scans from 84 patients with clinically
probable AD according to NINCDS-ADRCA criteria (McKhann et al.,
1984), 115 individuals fulfilling Mayo criteria of amnestic MCI
(Petersen et al., 1999) and 151 healthy elderly control individuals. All
participants were free of any significant neurological, psychiatric, or
medical condition (except for AD or MCI in patients), in particular cere-
brovascular apoplexy, vascular dementia, depression, or subclinical hy-
pothyroidism, as well as substance abuse. Healthy controls were
required to have no cognitive complaints and scored within one stan-
dard deviation of the age and education adjusted norm in all subtests
of the Consortium to Establish a Registry of Alzheimer’s Disease
(CERAD) cognitive battery (Morris et al., 1989).

Written informed consent was provided by all subjects, or their rep-
resentatives. The studywas approved by local ethics committees at each
of the participating centers, and has been conducted in accord with the
Helsinki Declaration of 1975.

http://www.psymri.org
http://www.psymri.org
http://www.psymri.org
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2.1. Imaging and data acquisition

Data were obtained from five different 3.0 Tesla MRI scanners. Ac-
quisition parameters for the rs-fMRI sequences are given in Table 3. In
one center (site I), the subjects were instructed to keep their eyes
open, whereas in the remaining centers (sites II-V) all subjects were re-
quested to close their eyes, relax, but not to fall asleep. Functional MRI
was based on echo-planar imaging using scan durations between 6
and 9min for the rs-fMRI sequence. The number of acquired time points
was between 120 and 240 with a voxel size ranging from 2 × 2 × 2.6 up
to 3.28 × 3.28 × 4.4 mm3 (Table 3). Anatomical scans were obtained
from all scanners with an isotropic resolution of 1 mm3 during the
same session.

2.2. MR processing

The anatomical T1-weighted image for each participant was seg-
mented into gray matter, white matter, and cerebrospinal fluid (CSF)
partitions of 1.5 mm isotropic voxel-size using the tissue prior free seg-
mentation routine of theVBM8-toolbox (Gaser et al., 1999) that extends
Statistical Parametric Mapping (SPM8) (Friston et al., 2007). The
Diffeomorphic Anatomical Registration Through Exponentiated Lie al-
gebra (DARTEL) algorithm (Ashburner, 2007) was applied to normalize
the T1-weighted graymatter andwhitematter partitions to theMontre-
al Neurological Institute (MNI) reference coordinate system using the
default brain template included in VBM8. Individual flow-fields
resulting from the DARTEL registration to the reference template were
used to warp the gray matter segments. Voxel values of the warped
gray matter segments were only modulated for the non-linear compo-
nent of the deformation field, thus accounting at this step for differences
in head size which are modeled by the affine component of the
transformation.

FunctionalMRI data processingwas carried out usingData Process-
ing Assistant for Resting-State fMRI (DPARSF 3.2) (Chao-Gan and Yu-
Feng, 2010), considering the recommendations from a recent systemat-
ic evaluation of processing alternatives (Shirer et al., 2015). After the re-
moval of the first six images to account for gradient field stabilization,
the rs-fMRI data was slice time corrected and realigned to the temporal
mean image. Slice time correction addresses the problem that, for func-
tional MRI, the 3D image of one time point is typically obtained by ac-
quiring a series of 2D slices, with each slice being acquired one after
another within the full period of one repetition time, for instance
three seconds (Table 3). Thus, different slices of one 3D image measure
the brain activity at a slightly different moment in time (Sladky et al.,
2011). Slice time correction compensates for phase shifts in the time se-
ries signal using the cardinal sine interpolation based on the fast Fourier
transform (Sladky et al., 2011). Sladky et al. found that this correction
step improved the stability of estimates and magnitude of effects ob-
tained from event-related and block design paradigms in task-based
functional MRI (Sladky et al., 2011). It is also commonly applied to rs-
fMRI data for both approaches seed-based functional connectivity and
independent component analysis (Dyrba et al., 2015b; Koch et al.,
2012; Meindl et al., 2010; Power et al., 2014; Yan et al., 2013b), which
assess the correlation or homogeneity of the time series signal of remote
brain regions or voxels. Controversially, previous studies only found
minor, non-significant effects of applying slice time correction to rs-
fMRI data (Shirer et al., 2015; Wu et al., 2011). These observations
may be due to the subsequent step of bandpass filtering, which elimi-
nates high-frequency components of the data with a wavelength of
less than ten seconds and, thus, reduces the influence of slight short-
term inaccuracies. The anatomical T1-weighted image for each partici-
pant was coregistered to the mean functional image. The deformation
fields generated by DARTEL from the anatomical T1-weighted images
were used to project the functional scans from each subjects’ native
image space into the MNI reference space. We combined this step
with the reslicing of all functional data to an isotropic resolution of 3
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mm. The subsequent nuisance regression included covariates of head
movement (rotation, translation, and derivatives) and the mean time
courses for the global brain signal, the white matter segment signal,
and the CSF segment signal. Although global signal regression was
found to introduce negative correlations (Murphy et al., 2009; Shirer
et al., 2015), studies consistently reported that it effectively reduces
the signal-to-noise ratio (Power et al., 2014; Shirer et al., 2015; Yan et
al., 2013a). Recently, Shirer et al. evaluated the influence of global signal
regression on group separation but only found a minor, non-significant
effect (Shirer et al., 2015). Subsequently, the images were band-pass fil-
tered using the frequency band0.1–0.01Hz and smoothed using a 6mm
full-width-at-half-maximum(FWHM)Gaussian kernel. Ventral posteri-
or cingulate cortex (PCC) functional connectivity maps were calculated
using a spherical seed with 4 mm radius, which was set at MNI position
0,-53,26 (Hedden et al., 2009). Finally, Pearson correlation coefficients
of the signal time courses were adjusted to be normally distributed
using Fisher's Z-transform (Fisher, 1915): z = 0.5 ln [(1 + r)/(1− r)].

2.3. Extraction of hippocampus volumes

Amask for the hippocampus was obtained bymanual delineation of
the hippocampus in the reference template (Grothe et al., 2012) using
the interactive software package Display (McConnell Brain Imaging
Centre at the Montreal Neurological Institute) and a previously de-
scribed protocol for segmentation of the medial temporal lobe
(Pruessner et al., 2000). Individual gray matter volumes of the hippo-
campuswere extracted automatically from thewarped graymatter seg-
ments by summing up the modulated gray matter voxel values within
hippocampus ROI in the reference space.

3. Statistics

3.1. Quality control measures for scanner effects

We compared previously employed scan characteristics across scan-
ners and diagnostic groups, including:

• Framewise displacement (FD) – mean and percentage above thresh-
old (0.5 mm) (Jenkinson et al., 2002; Power et al., 2012; Power et
al., 2014; Yan et al., 2013a)

• Temporal signal-to-noise ratio (tSNR) (Marcus et al., 2013; Welvaert
and Rosseel, 2013)

• Standardized DVARS – root mean square of change in signal intensity
from one time point to the next (Power et al., 2012)

• Percentage of outlier voxels (Zuo et al., 2014)
• Foreground to background energy ratio (FBER) (Zuo et al., 2014)
• Fractional amplitude of low frequency fluctuations (fALFF) (Yan et al.,
2013b).

Additionally, we compared the regional correlations between PCC
and anterior medial prefrontal cortex (aMPFC) time courses between
scanners and groups, based on spherical seed regions with a radius of
4 mm at MNI coordinates 0, −53, 26 (PCC) (Hedden et al., 2009) and
−6, 52, −2 (aMPFC) (Andrews-Hanna et al., 2010).

To limit the number of measures, we decided not to use some previ-
ously employedmeasures (Zuo et al., 2014), such as entropy focus crite-
rion (EFC) (Atkinson et al., 1997), image smoothness (IS) (Zuo et al.,
2014), or ghost-to-signal ratio (GSR). The GSR needsmanual interaction
for the definition of the area of ghost artifacts in native subject space and
was obsolete for the detection of poor scan quality as our scans
underwent visual inspection. We excluded EFC and IS which target
strong blurring, motion, and noise and become redundantwhen includ-
ing tSNR, percentage of outlier voxels, FD, and FBER.

A description of the quality measures can be found in the supple-
mentary material section.
3.2. Spatial pattern of group differences

Wedetermined differences in voxel-wise correlations of PCC activity
between AD patients and controls and between MCI patients and con-
trols using two different univariate approaches to take scanner effects
into account:

• First, we determined group differences using a fixed effects linear
model with diagnosis and scanner as independent factors, henceforth
referred to as pooled analysis with scanner covariate. Significant clus-
ters were identified with at least 10 voxels passing the uncorrected
threshold of p b 0.01.

• Secondly, we used a second level analysis with linear models of be-
tween group differences at the first level and a one-sample t-test of
the between group effects across the 3 scanners for AD vs. control
comparison and 5 scanners for the MCI vs. control comparison at the
second level. Significant clusters were identified with at least 10
voxels passing the uncorrected threshold of p b 0.01.

Additionally, we assessed the spatial coherence of voxel-wise group
differences between single scanners using conjunction analysis (Friston
et al., 2005). Conjunction analysis resembles an ANOVA model for de-
tecting group effects for more than two groups, but allows setting a
threshold k to define the minimum number of effects, so that a second
level group effect is considered to be present in a given voxel if a signif-
icant group difference had been found for at least k individual scanners
(Friston et al., 2005). With our data, the value of k could range from 1,
indicating an effect for at least one single scanner, to 5, indicating that
a group effect must be present for each of the five scanners.

3.3. Accuracy of group discrimination

We defined regions of interest (ROI) as those brain regions that
showed significant group differences in the voxel-based compari-
sons of AD or MCI and healthy control subjects. Specifically, we
binarized the statistical maps thresholded at p b 0.01 as described
above for each statistical approach (i.e., pooled analysis, and second
level analysis) yielding 2 (statistical approach) × 2 (AD vs. controls
and MCI vs. controls) = 4 different ROIs. For each of these ROIs, we
extracted averaged Fisher's Z-transformed correlation coefficients.
To this end, the individual voxel-wise correlation maps in MNI stan-
dard space were multiplied by the thresholded binary ROIs, and the
voxel values within each ROI were averaged for each individual
scan, yielding scalar markers as predictors in linear logistic regres-
sion analyses.

To obtain an estimate of the accuracy of group discrimination for
each modality and analysis technique, we used block-wise cross valida-
tion with repeated random sampling, based on Gaussian-distributed
random numbers generated in R. We repeatedly split the data set into
63.2% of training data and 36.8% of test data. For each of the repeatedly
drawn training samples, the logistic regression parameters were esti-
mated and subsequently applied to the remaining test data set. Classifi-
cation accuracy, sensitivity, and specificity as well as area under the
receiver operating characteristic curves were recorded for each test
data set. The entire cross-validation process was iterated 1000 times
to determine the variability of the estimates of accuracy across runs.
We determined nonparametric bootstrap confidence intervals with
the 2.5 and 97.5 percentiles defining the lower and upper limits of the
confidence interval ((Efron and Tibshirani, 1993), Chapter 13). Logistic
regression analysis was calculated in R, using function glmwith the pa-
rameter 'family' = binary.

To define a benchmark for the effect size of group discrimination,we
repeated the bootstrapped determination of the area under the receiver
operating characteristic curves for the widely established measure of
hippocampus volume, averaged across left and right hemispheres.
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3.4. Scanner effects

We employed variance component analysis using libraries “nlme”
and “ape” in R with the function “varcomp” to determine the effect of
scanner on functional connectivity, with diagnosis as fixed effect covar-
iate and scanner as randomeffect covariate.We determined the propor-
tion of variance attributable to scanner relative to the variance
attributable to error. Variances were scaled to sum to 1.
4. Results

4.1. Quality control measures for scanner effects

Framewise displacement showed comparable displacements across
sites, both in mean values as well as in percentage of framewise dis-
placement N0.5 mm. Similarly, the foreground-to-background energy
ratio, the fractional amplitude of low frequency fluctuations in PCC,
and the mean functional connectivity between PCC and anterior medial
prefrontal cortex indicated no outlying center (Supplementary Fig. 1 to
5). When looking at single sites, differences between diagnostic groups
showed a general trend in the expected direction that only occasionally
reached statistical significance. For instance, cognitively impaired pa-
tients showed slightlymore headmotion than controls (Supplementary
Fig. 1) and lower temporal signal-to-noise ratio (supplementary figure
6). Meanwhole brain temporal signal-to-noise ratio, themean percent-
age of outlier voxels, and standardized DVARS identified an outlier in
the site V data, with significantly decreased tSNR and standardized
DVARS, and increased number of outlier voxels in the healthy control
group compared to the MCI and AD group (Supplementary Figs. 6 to
8), one-sided Wilcoxon tests, p b 0.01. Site II showed a significantly re-
duced tSNR compared to the other sites (Supplementary Fig. 6), two-
sided t-test, p b 0.001; but this systematic bias was evenly distributed
across all subject groups.
Fig. 1. AD vs. control comparison Group effects of PCC functional connectivity differences betwe
scanners with scanner as covariate, and (Panel b) a second level analysis with scanner as seco
significance of p b 0.01, are projected onto an anatomical MRI scan in MNI space. Numbers
section in MNI space. Color bars represent color coding for Cohen's d effect size estimates (Coh
4.2. Spatial pattern of group differences

We found group differences between AD patients and controls and
between MCI patients and controls both in the pooled data analysis as
well as the second level analysis only at an uncorrected level of signifi-
cance of p b 0.01, but no effects at an uncorrected p-value of 0.001. Func-
tional connectivity of the PCC was smaller in AD and MCI cases
compared to controls when the data of site V were removed from the
analysis. Peak areas of group effects were located in the mid temporal
cortex, anterior cingulumand inferior parietal cortex (including angular
gyrus) for the AD vs. control comparison, and in the precuneus, middle
cingulate cortex, insula cortex, fusiform gyrus and medial temporal
lobes (including amygdala and parahippocampal cortex) for the MCI
vs. controls comparison (Figs. 1 and 2). The conjunction analysis re-
vealed small clusters in only few regions when setting the minimum
number of effects to k = 2, i.e. when group effects were significant in
data from at least two scanners (data not shown). For the MCI vs. con-
trols comparison, no cluster survived when the number of effects k
was N2. When the data of site V were included in the analysis, effects
were in the opposite direction with larger functional connectivity in
the AD and MCI cases compared to controls (data not shown).
4.3. Accuracy of group discrimination

These analyses were only conducted in the sample without includ-
ing the data of site V. The distribution of MCI and control cases was rel-
atively well balanced across the four sites. Since the distribution of AD
cases was imbalanced across sites, the analyses for the AD vs. control
comparisons were repeated across all sites and across the only two
sites with a balanced number of AD cases and controls.

For the AD vs. controls comparison, mean AUCs in the test data
ranged from 74% for the second level data to 82% for the pooled data,
and accuracies ranged from 69% for the second level data to 76% for
en AD patients and controls, using (Panel a) a fixed effect analysis pooling all scans across
nd level factor. Significant cluster of at least 10 voxel passing an uncorrected threshold of
in the upper left corner of each image slice indicate the MNI z-coordinate, i.e. the axial
en, 1977) for the pooled analysis, and T values for the second level analysis, respectively.



Fig. 2.MCI vs. control comparison Group effects of PCC functional connectivity differences betweenMCI patients and controls, using (Panel a) a fixed effect analysis pooling all scans across
scanners with scanner as covariate, and (Panel b) a second level analysis with scanner as second level factor. Significant cluster of at least 10 voxel passing an uncorrected threshold of
significance of p b 0.01, are projected onto an anatomical MRI scan in MNI space. Numbers in the upper left corner of each image slice indicate the MNI z-coordinate, i.e. the axial
section in MNI space. Color bars represent color coding for Cohen's d effect size estimates (Cohen, 1977) for the pooled analysis, and T values for the second level analysis, respectively.
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the pooled data (Table 4 and Figure 3). For theMCI vs. controls compar-
ison, AUCs (accuracies) ranged from 71% (66%) for the second level data
to 81% (72%) for the pooled data (Table 4 and Figure 4).

For comparison, the AUCs for left and right averaged hippocampus
volume were 86% [2.5/97.5th percentile confidence interval 77%/95%]
for the AD vs. controls comparison, and 74% [2.5/97.5th percentile confi-
dence interval 65%/84%] for the MCI vs. controls comparison.

To determine if levels of accuracy measures (AUC and overall
accuracy) differed significantly between the values derived from
the pooled vs. the 2nd level data, we used the degree of overlap
between confidence intervals of the bootstrapped cross-validation
data following Afshartous' rule (Afshartous and Preston, 2010).
This rule considers the correlation of accuracy measures between
samples and the ratio of the standard errors of the accuracy
measures of both samples. Following this approach, neither AUCs
nor overall accuracies were significantly different between the
pooled and the 2nd level test data for the AD vs. controls and the
MCI vs. controls comparisons, respectively, at a two tailed signifi-
cance level of p b 0.05.
4.4. Scanner effects

Excluding site V, for the AD vs. control comparison, the proportion of
variance attributable to scanner relative to the error variance was 6.6%
across all sites and 6.3% for the two sites with balanced group distribu-
tion, and was 5.1% for the MCI vs. control comparison.

5. Discussion

In a relatively largemulticenter data set of retrospectively pooled rs-
fMRI data we found spatially restricted differences in PCC whole brain
functional connectivity between AD patients and controls and MCI pa-
tients and controls, both in a pooled analysis and a second level analysis
stratified according to scanner. The effects were in the expected direc-
tion with connectivity smaller in AD/MCI than in controls when remov-
ing the data of one site that had failed on visual data inspection, the
quality assessments for tSNR and the standardized DVARS, but met all
other quality assessments employed. Our findings lead to two major
conclusions: Multicenter rs-fMRI using seed based functional



Table 4
Group discrimination in the test sample

AD vs. controls

AUC pooled
all

AUC pooled
sub

AUC 2nd level
all

AUC 2nd level
sub

Mean 0.816 0.822 0.739 0.757
Lower CI 0.73 0.721 0.63 0.635
Upper CI 0.898 0.918 0.836 0.87

Ac pooled all Ac pooled sub Ac 2nd level all Ac 2nd level sub
Mean 0.761 0.738 0.708 0.688
Lower CI 0.667 0.634 0.619 0.585
Upper CI 0.841 0.854 0.794 0.805

MCI vs. controls
AUC pooled
all

AUC 2nd level
all

Mean 0.805 0.713
Lower CI 0.719 0.617
Upper CI 0.885 0.803

Ac pooled all Ac 2nd level all
Mean 0.72 0.662
Lower CI 0.644 0.575
Upper CI 0.808 0.74

Ac – Accuracy.
AUC – Area under the ROC curve.
sub - subsample from two scanners with matched numbers of AD patients and controls.
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connectivity has limited accuracy in the discrimination of AD and MCI
cases from controls, and requires careful data quality checks beyond
evaluation of global quality metrics, including visual inspection of all
the data.

The regional distribution of diagnostic group effects in PCC connec-
tivity found in the subset of data passing the visual quality check resem-
bles the results in previous monocenter studies that reported reduced
connectivity in MCI or AD within the posterior cingulate gyrus, inferior
parietal lobes and medial temporal lobes (Balthazar et al., 2014;
Binnewijzend et al., 2012; Chhatwal et al., 2013; Greicius et al., 2004;
Koch et al., 2012; Thomas et al., 2014). Overall, the effect sizes of
group differences were small, with regional effects passing only an un-
corrected level of p b 0.01. This finding suggests that multiscanner var-
iability decreases between group effects in functional connectivity. This
interpretation is supported by the contribution of 5.2% to 6.6% of the
overall variability by scanner related variance in the variance compo-
nent analysis. In addition, the poor overlap of between group effects
across scanners in the conjunction analysis indicatesmajor confounding
of group differences by multiscanner variability.

Levels of diagnostic accuracy ranged between 69% based on second
level analysis and 76% based on pooled analysis for the AD vs. control
comparisons and 66% and 72% for the MCI vs. control comparisons, re-
spectively, in our study. These values are at the lower range of those pre-
viously reported from monocenter studies that involved small samples
and failed to employ a cross-validation analysis (Balthazar et al., 2014;
Koch et al., 2012).They are, however, close to previous estimates from
the test data of cross-validated monocenter studies (Dyrba et al.,
2015b). It is important to note that the benchmark for assessing perfor-
mance of a technique is the cross-validated accuracy in the test data, not
the accuracy in the training data. According to this benchmark, ourmul-
ticenter study is at the level of accuracy of monocenter studies. Thus, al-
though the use of multicenter data increases the degrees of freedom of
the test statistics it did not increase the power of group discrimination
due to confounding inter-scanner variance. Onehas to consider, howev-
er, that the identification of the peak areas that were included in the ac-
curacy estimation was not part of the cross-validation so that effects
may be slightly overestimated.

The levels of accuracy for functional connectivity in our study were
below the levels of accuracy for hippocampus volume, one of the best
established imaging markers of AD to date (for review see (Teipel et
al., 2013)), reaching 86% and 74% AUC for the AD vs. controls compari-
son, respectively. For the MCI vs. controls comparison, the mean AUC
for pooled data functional connectivity (81%) was numerically higher
than the AUC for hippocampus (74%). The confidence interval of the
hippocampus AUC, however, was largely contained within the confi-
dence interval of the functional connectivity measures, suggesting that
the functional connectivity measures were not significantly more accu-
rate for the MCI vs. controls discrimination than the easily accessible
hippocampus volumetry.

The results were clearly sensitive to scan quality. Whenwe included
the large data set of site V that had severe susceptibility artifacts, the di-
rection of the group differences was inverted. When we considered the
global scan quality measures, the tSNR (Marcus et al., 2013) and stan-
dardized DVARS (Power et al., 2012) suggested that insufficient signal
in the healthy control group was driving this effect. Interestingly,
other metrics employed in other multiscanner data pooling activities,
including the intrinsic functional connectivity for two key areas of the
DMN (Zuo et al., 2014), fractional ALFF (Yan et al., 2013b; Zuo et al.,
2014), foreground to background energy ratio (Zuo et al., 2014), or sub-
ject headmotion (Jenkinson et al., 2002; Power et al., 2012; Power et al.,
2014; Yan et al., 2013a), were inconspicuous for these data, suggesting
that determining tSNR (Marcus et al., 2013), standardized DVARS
(Power et al., 2012), and visual inspection of all the data are indispens-
able formultiscanner data pooling. This is relevant since large scale data
pooling efforts such as the PCP Quality Assessment Protocol
(preprocessed-connectomes-project.org/quality-assessment-protocol/
index.html) and the 1000 functional connectomes project (Yan et al.,
2013b; Zuo et al., 2014) focus on the detection and correction of spatial
displacements and headmotion thatwere inconspicuouswith the site V
data.

Despite the high relevance of multiscanner variability of rs-fMRI
data (Jovicich et al., 2016; Lin et al., 2015; Magnotta et al., 2006), the
largemajority of studies onmulticenter rs-fMRI in neuropsychiatric dis-
eases did not take multiscanner effects into account, even if protocols
differed between sites (Chhatwal et al., 2013; Demertzi et al., 2015;
Esslinger et al., 2011; Martucci et al., 2015; Sripada et al., 2014;
Thomas et al., 2014). Regional effects of groupdifferences strongly over-
lapped between a fixed effect analysis, including scanner as covariate,
and a second level analysis stratified according to scanner, but were
more extended for the pooled analysis. Numerically, group discrimina-
tion was smaller based on the second level analysis compared to the
pooled analysis, albeit this difference was not statistically significant. A
second level analysis of voxel-wise functional connectivity using
Fisher's z-transformed correlation coefficients resembles a center-wise
voxel-based meta-analysis (Teipel et al., 2012) that determines voxel-
wise effect size within sites and then assesses the confidence level of
the voxel-wise effect size estimates across sites. Such an approach has
been used in one previous study across four cohorts of 129 MCI cases
and 99 controls (Tam et al., 2015). The main outcome of this previous
study were Cohen's d (Cohen, 1977) effect size estimates that ranged
between 0.10 to 0.48, representingmoderate effect sizes of MCI vs. con-
trol differences in regions of interests that were empirically derived
from proximity metrics without a priori region selection. These moder-
ate effect sizes agree with the effect sizes of group differences below
Cohen's d = 1 in our peak voxel analysis (figures 1a and 2a).

An interesting question is the effect ofmulticenter acquisition on be-
tween subjects variability in trajectories of intra-individual change from
longitudinal studies. Evidence here is still very limited. One recent study
evaluated reproducibility of rs-fMRI connectivity across 13 different
scanners at baseline and 7 to 60 days of follow-up in five healthy people
per site (Jovicich et al., 2016), including different scanner types and ven-
dors. In this study site differences in test-retest-variability of PCC con-
nectivity were marginally not significant (p b 0.06). This finding
suggests that multicenter acquisition not only introduces higher vari-
ability of between group differences as shown in our current study,

http://preprocessed-connectomes-project.org/quality-assessment-protocol/index.html
http://preprocessed-connectomes-project.org/quality-assessment-protocol/index.html


Fig. 3. Areas under ROC and accuracy for AD vs. control comparisons Box plots of AUC and accuracy levels from cross-validation logistic regression. Levels of AUC (Panel a) and accuracy
(Panel b) were determined using bootstrapped logistic regression models on the discrimination between AD patients and controls following a pooled analysis with center covariate
(“pooled”), and a second level analysis with center as second level factor (“2nd level”), respectively. Analyses were repeated, using all AD and control data (“all”) as well as only data
from a subset of centers where number of AD cases and controls was matched between centers (“sub”).
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Fig. 4. Areas under ROC and accuracy for MCI vs. control comparisons Box plots of AUC and accuracy levels from cross-validation logistic regression. Levels of AUC (Panel a) and accuracy
(Panel b) were determined using bootstrapped logistic regression models on the discrimination between MCI patients and controls following a pooled analysis with center covariate
(“pooled”), and a second level analysis with center as second level factor (“2nd level”), respectively.
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butmay introduce additional noise into the assessment of trajectories of
intra-individual change.

We need to consider several limitations of our study. First, the scan
protocols were different between scanners. This is not the case in a pro-
spectively planned cohort studywith a unified protocol. Still, even in ab-
sence of a harmonized protocol previous studies have pooled rs-fMRI
data in studying neuropsychiatric diseases so that these findings are
pertinent to the present state of research. More homogeneous acquisi-
tion parameters may amend some of the scanner effects but at the
same time limit the usefulness of multicenter acquisition in routine
care, where differences in scanner type and manufacturer will not
allow perfect alignment of scanning parameters across sites. We care-
fully checked the image quality of each single scan by visual inspection.
As a result, we excluded the data of site V. The remaining data had high
image quality upon visual inspection, consistent with the results of the
quality metrics employed. Still, the combination of data from different
scanning protocols and scanner resulted in high inter-scanner variabil-
ity despite sufficient intra-scanner scan quality. In future, we plan to de-
termine the effects of multiscanner acquisition from an ongoing
prospectivemulticenter study inMCI, AD, and healthy controls that em-
ploys a harmonized rs-fMRI protocol across sites. Although we expect
that the multicenter effects may be smaller in such a harmonized
study, we still anticipate that multiscanner effects will limit accuracy
of group discrimination. Secondly, different preprocessing protocols
may be useful to reduce multiscanner variation. Here, we employed a
preprocessing protocol that was oriented on the recommendations
from a systematic evaluation of processing steps (Shirer et al., 2015),
and used cross-correlation as connectivity metric that has been found
more stable than other connectivity metrics, such as cross-coherence
and partial cross-correlation, in a previous study (Fiecas et al., 2013).
We did, however, not systematically explore other processing steps
and connectivity metrics. Thirdly, group discrimination accuracy can
never perform better than the reference standard. The reference stan-
dard in our study for AD andMCI definition lacked CSF or PET biomarker
evidence formost cases, but data came from expert centers experienced
in the early diagnosis of AD andMCI. Still, a final judgment of the added
value of rs-fMRI for AD diagnosis must await systematic evaluation of
diagnostic accuracy in multicenter data from biomarker stratified cases.

In summary, we found spatially restricted group differences in rest-
ing state functional connectivity in AD patients and MCI patients com-
pared to controls, limited by high multiscanner variability. The
accuracy of group discrimination resembled findings from previous
monocenter studies using a training/test data set approach, encouraging
the conclusion that rs-fMRI at least when using seed based functional
connectivity metrics may play a limited role in early diagnosis of AD
orMCI. The discrimination accuracy in the test data did not reach the in-
ternal benchmark set by the established marker of hippocampus
volumetry. This conclusion needs further corroboration in biomarker
qualified multicenter cohorts. From a practical viewpoint, studies
pooling multicenter rs-fMRI data should employ careful data quality
checks that need to include tSNR, standardized DVARS, and visual in-
spection of all the data besides other established global metrics, and
should use explicitmodelling of scanner effects such as provided by sec-
ond level models or center-based meta-analysis when focusing on uni-
variate approaches. Potential usefulness of multivariate non-linear
approaches such as provided by machine learning algorithms that
were successfully employed in reducing multiscanner effects for struc-
tural connectivity data (Dyrba et al., 2015a; Dyrba et al., 2013) is anoth-
er open area of research.
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