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Purpose: This study aims to describe the total EEG energy during episodes of intracranial hy-

pertension (IH) and evaluate its potential as a classification feature for IH. New methods: We 
computed the sample correlation coefficient between intracranial pressure (ICP) and the total 
EEG energy. Additionally, a generalized additive model was employed to assess the relationship 
between arterial blood pressure (ABP), total EEG energy, and the odds of IH. Results: The median 
sample cross-correlation between total EEG energy and ICP was 0.7, and for cerebral perfusion 
pressure (CPP) was 0.55. Moreover, the proposed model exhibited an accuracy of 0.70, sensitivity 
of 0.53, specificity of 0.79, precision of 0.54, F1-score of 0.54, and an AUC of 0.7. Comparison 
with existing methods: The only existing comparable methods, up to our knowledge, use 13 vari-

ables as predictor of IH, our model uses only 3, our model, as it is an extension of the generalized 
model is interpretable and it achieves the same performance. Conclusion: These findings hold 
promise for the advancement of multimodal monitoring systems in neurocritical care and the 
development of a non-invasive ICP monitoring tool, particularly in resource-constrained environ-

ments.

1. Introduction

Intracranial hypertension (IH) is a frequently encountered clinical condition in neurocritical care patients, which often requires 
urgent medical intervention and, in certain cases, surgical treatment [1]. This condition can have devastating consequences because 
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Fig. 1. Schematic representation of the presented analysis.

it leads to secondary brain damage due to a drop in cerebral perfusion pressure (CPP) and subsequent decrease in cerebral blood 
flow (CBF), particularly in patients with compromised cerebral autoregulation [2].

ICP management must be personalized for each patient and at each moment in a holistic view, including structural and temporal 
variability, as well as host-specific responses to treatments [1].

To accomplish this, the utilization of multimodal monitoring (MM) that incorporates information regarding the patient’s neuro-

logical state is fundamental. MM allows us to determine alterations in cerebral oxygenation or metabolism, facilitating personalized 
treatment and reducing the risk of secondary brain injury [3].

The electroencephalogram (EEG) is a relatively inexpensive, noninvasive, portable method that provides real-time monitoring 
of electric brain activity [4]. Several studies have investigated the relationship between ICP and EEG experimentally, sometimes 
reaching with contradictory results. Stein [5] observed a decrease in EEG frequencies in unanesthetized cats with an increase in 
intracranial pressure. However, in [6] found no apparent correlation between intracranial pressure measured in the intraventricular 
space and EEG in twenty-six adult cats. Forster [7] observed a decrease in amplitude in the intermediate range of EEG frequen-

cies and the loss of higher frequencies. Langfitt and collaborators [8] presented an experimental model of IH in monkeys using a 
balloon insufflation in the extradural space, and they observed immediate changes in the EEG, primarily localized in the region 
surrounding the balloon when a rapid insufflation was generated. These experimental studies employed methods not recommended 
for intracerebral pressure measurement, did not have statistical analysis and employed different experimental models that do not 
allow comparison with each other. Additionally, a significant limitation is the difficulty in quantifying and interpreting the results 
in real time. Therefore, the use of quantitative EEG (qEEG) can be useful to observe real-time changes in neurological activity in 
real time and facilitate its interpretation. qEEG is a time-compressed simplified display derived from mathematical and analytical 
techniques applied to the raw EEG signal [9].

The main objectives of this article, presented as a proof of concept, are twofold. Firstly, it seeks to evaluate the changes in total 
energy and the evolution of different EEG sub-bands in relation to variations in intracranial pressure (ICP) and cerebral perfusion 
pressure (CPP), based on a previous porcine experiment conducted by the research group. Secondly, it aims to assess the feasibility 
of incorporating the total energy of the EEG into a machine learning tool, specifically a generalized additive model, and explore its 
potential utilization as an alarm in a multimodal monitoring system for neurocritical patients.

2. Materials and methods

In Fig. 1, we present a schematic representation of the analysis conducted in this article.

• Step 1: Data is obtained from a previously published animal experiment [10], consisting of 60,000 samples of ICP, ABP, and 
EEG obtained during 12 HI episodes in 3 pigs, as described in [10] and summarized in subsection 2.1 and Appendix A.

• Step 2: The data has been filtered and pre-processed as explained in subsection 2.2.1 and Appendix A.3.

• Step 3: Meta-signals, i.e., signals derived from the originally observed ones, such as CPP, EEG sub-bands, and their respective 
energies, are calculated as described in subsection 2.2.

• Step 4 is explained in subsection 2.2.3 Cross-Correlation Coefficient and in 2.3 Generalized additive model and classification perfor-

mance.

In the Appendix D, Table D.4, we present a checklist based on the ARRIVE guidelines 2.0 to allow the reader to assess the reliability 
of the findings [11].

2.1. Intracranial pressure experiment

The data analyzed in this article come from an animal experiment carried out at the Hospital Italiano de Buenos Aires, in compliance 
with all Argentinean laws. The experimental protocol was approved by the Institutional Committee for the Care and Use of Laboratory 
2

Animals of the Instituto de Medicina Translacional e Ingeniería Biomédica under protocol number 0007/19. Although a comprehensive 
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explanation of the experiment was provided in [10], in Appendix B, we present the key aspects related to the rationale behind the 
experimental design, animal preparation, induction of intracranial hypertension, and data acquisition. This approach ensures the 
self-contained nature of the present paper.

The sample frequency was 200 Hz for EEG and 120 Hz for ICP and femoral arterial blood pressure, which were subsequently 
resampled at 200 Hz.

2.2. EEG features calculation

2.2.1. EEG preprocessing

The EEG signals were initially filtered using a band-stop Butterworth filter to remove the power-line noise frequency at 50 Hz, 
specific to Argentina. Subsequently, each EEG was decomposed into 5 sub-bands using a band-pass Butterworth filter based on their 
frequency ranges: alpha (8-13 Hz), beta (14-30 Hz), delta (<4 Hz), gamma (>30 Hz) and theta (4-7 Hz). The filter order was 4 for 
all filters used. Finally, the statistics, i.e. the EEG total energy and the Energy corresponding each sub-band, were estimated over 
each filtered sub-band using a sliding rectangular window of 3 seconds (600 samples) and a shift of 1 second (200 samples) between 
each pair of windows. As shown in Appendix B, a strong correlation was observed among all EEG electrodes, possibly attributed to 
the small brain size of the pig. Therefore, all correlation calculations were performed between ICP (CPP) and the total energy (𝐸𝑇𝑜𝑡) 
calculated from the C3 electrode, which is closest to the lesion caused by the Foley catheter. In any case, to estimate the GAM we 
have used all the electrodes, because although the trends are similar, their absolute values are not.

2.2.2. EEG energy

We defined 𝐸𝐸𝐺𝛼 , 𝐸𝐸𝐺𝛽 , 𝐸𝐸𝐺𝛿 , 𝐸𝐸𝐺𝛾 and 𝐸𝐸𝐺𝜃 as the energy contribution, measured in μV2, of each EEG sub-band and 
𝐸𝑇𝑜𝑡 as the total EEG Energy, measured also in μV2.

The 𝐸𝑇𝑜𝑡 is calculated as,

𝐸𝑇𝑜𝑡(𝑤) =𝐸𝐸𝐺𝛼(𝑤) +𝐸𝐸𝐺𝛽 (𝑤) +𝐸𝐸𝐺𝛿(𝑤) +𝐸𝐸𝐺𝛾 (𝑤) +𝐸𝐸𝐺𝜃(𝑤) (1)

Where 𝑤 represents the EEG sliding windows and the energy in each band for each sliding windows is calculated as

𝐸𝑟(𝑤) =
𝑁∑

𝑛=1
𝐸𝐸𝐺2

(𝑤,𝑟) (2)

Where 𝑟 represents one of the EEG sub-bands and 𝑛 refers to the n-th sample within the w-slicing window and 𝑁 stands for the 
length of the respective window.

2.2.3. Cross-correlation coefficient

In order to evaluate the correlation between two different signals, the Sample Cross-Correlation coefficient (SCC) (9) is often 
computed. The SCC measures the similarity between a time series (X) of length T and lagged versions of another time series (Y) as a 
function of the lag (𝑘 = 0, ±1, ±2, ±𝑇 − 1) and it is calculated as

𝑆𝐶𝐶(𝑘)(𝑋,𝑌 ) =
𝐶(𝑘)𝑋𝑌

𝑠𝑋𝑠𝑌
, (3)

Where 𝐶𝑋𝑌 represents the cross-covariance between X,Y with lag k, and 𝑠𝑋 and 𝑠𝑌 are the sampled standard deviations of variable X 
and Y defined as 𝑠𝑋 =

√
((𝐶(𝑋, 𝑋)(𝑘 = 0))) and 𝑠𝑌 =

√
((𝐶(𝑌 , 𝑌 )(𝑘 = 0))), respectively. In our case we will evaluate the CSS between 

the Total Energy (𝑋 in equation (3)) and the ICP or (CPP) (𝑌 in equation (3)).

2.3. Generalized additive model and classification performance

Unlike the previously explained tools, with the GAM, our interest is not focused on the trends of Energy in relation to the trends 
of PIC. Instead, we aim to study whether the absolute values of the former can be used to predict whether the PIC is above 20 mmHg 
(which we will refer to as positive instances) or below 20 mmHg (which we will refer to as negative instances), so we can use a 
regression approach.

Since each electrode measures local cortical electrical activity while ICP is a global variable, we can consider the information 
from the 8 electrodes in each pig as representing compatible electrocortical activity associated with a specific combination of ICP 
and ABP. Although Appendix B demonstrates a high correlation among most of the electrodes, the instantaneous values provided by 
𝐸𝑇𝑜𝑡 differ across electrodes. Therefore, we have a total of 24 distinct electrodes (8 electrodes × 3 pigs), resulting in 60,800 samples.

Unlike the previously presented methods, our current focus is not on studying the trends of 𝐸𝑇𝑜𝑡 in relation to ICP. Instead, our 
objective is to determine whether the instantaneous value of 𝐸𝑇𝑜𝑡 can predict if the instantaneous ICP value is greater (positive 
instance) or lower (negative instance) than 20 mmHg. Since each electrode measures local cortical electrical activity while ICP is a 
global variable, we can consider the information from the 8 electrodes in each pig as representing compatible electrocortical activity 
associated with a specific combination of ICP and ABP. Although Appendix B demonstrates a high correlation among most of the 
electrodes, the instantaneous values provided by 𝐸𝑇𝑜𝑡 differ across electrodes. Therefore, we have a total of 24 distinct electrodes (8 
3

electrodes × 3 pigs), resulting in 60800 samples.
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These samples were randomly divided into two sets: 42560 samples (70% of the total) for the training set and 18240 samples 
(30% of the total) for the test set. A generalized additive model (GAM) [12] was fitted in the training set and used to predict 
the corresponding test set. Various metrics were calculated, including accuracy, balanced accuracy, recall, F1-score, sensitivity, 
specificity, area under the ROC curve (AUC), and precision of the test set, all of them are explained in Appendix C. The accuracy 
and balanced accuracy were also calculated using a 5-fold cross-validation scheme. This procedure was repeated ten thousand times, 
resulting in ten thousand possible models. Only the models for which the null hypothesis of non-significance was rejected at a 
significance level of 0.05 were analyzed.

A GAM is a statistical approach that is used to model nonlinear relationships between a response variable and multiple predictor 
variables. GAMs extends the capabilities of Generalized Linear Models (GLMs) by allowing for capturing more flexible and complex 
relationships between the response variable and the predictors. The extension of the usual linear model is possible using smoothing 
functions, such as splines [13], to model the relationship between the predictor variables and the response variable instead of a linear 
relationship as in traditional GLMs. Our proposed model is

𝑙𝑜𝑔(𝑝∕(1 − 𝑝)) = 𝜇 + 𝛽𝐴𝐵𝑃 ×𝐴𝐵𝑃 (𝑤) + 𝛽𝐸𝑇𝑜𝑡
×𝐸𝑇𝑜𝑡(𝑤) + 𝑠(𝐴𝐵𝑃 (𝑤)) + 𝑠(𝐸𝑡𝑜𝑡(𝑤)) + 𝜖𝑖 (4)

In the equation, 𝑝 represents the probability of the response variable being equal to 1, indicating the likelihood of the event (ICP >
20 mmHg) occurring. The term 𝑙𝑜𝑔(𝑝∕(1 − 𝑝)) corresponds to the logarithm of the odds ratio, which is the ratio of the probability of 
success (ICP > 20 mmHg) to the probability of failure (ICP < 20 mmHg), ranging from 0 to infinity. The rectangular windows 𝑤 refer 
to the segments or intervals over the ABP, 𝐸𝑡𝑜𝑡 are calculated. The right part of the equation is divided into two components: the 
parametric component and the nonparametric component. In the parametric part, 𝛽0 represents the general mean, while 𝛽𝐴𝐵𝑃 and 
𝛽𝐸𝑇𝑜𝑡

represent the parameters associated with ABP and 𝐸𝑇𝑜𝑡, respectively. These parameters capture the linear relationship between 
the predictor variables and the response variable.

In the nonparametric part, 𝑠(𝐴𝐵𝑃 ) and 𝑠(𝐸𝑇𝑜𝑡) represent the additive contributions of ABP and 𝐸𝑇𝑜𝑡 to the response, respec-

tively. The function 𝑠(⋅) represents a smooth function that characterizes the relationship between the independent variables and the 
response. In this case, a thin plate spline function with a maximum of 3 degrees of freedom was used to model the nonparametric 
components. The GAM model (4) was implemented using the ‘gam’ package [14] in R software [15].

3. Results

In accordance with the materials and methods outlined above, we conducted a comprehensive analysis of EEG characteristics 
during a total of 12 intracranial hypertension events observed in three pigs experiments. Our analysis encompassed the temporal 
evolution of the EEG, the correlation between the EEG energies and ICP (or CPP) and the power of 𝐸𝑡𝑜𝑡 as an ICP states classificator.

3.1. Temporal evolution of EEG and ICP (CPP)

Fig. 2 shows the temporal evolution of ICP (represented by solid blue line), CPP (represented by a dashed blue line) and the total 
energy of the EEG (𝐸𝑡𝑜𝑡, Eq. (1)) (represented by a solid red line). The EEG signals were recorded using the C3 electrode for three 
different pigs: pig 1, pig 2 and pig 3, as shown in Fig. 2.a, Fig. 2.b and Fig. 2.c, respectively. Based on visual examination of the 
figure, it is evident that when ICP increases during each episode, 𝐸𝑡𝑜𝑡 decreases. A contrasting behavior is observed in relation to CPP. 
Specifically, the energy of the EEG exhibits improvement when ICP decreases and CPP increases, as expected. The contribution (in 
absolute values) of each EEG rhythm is depicted in Fig. 3(I-III) for pig 1,2 and 3 respectively and presented numerically in Table 1. 
It is shown that 𝐸𝑇𝑜𝑡 (light blue dashed line) is primarily influenced by the energy of the Delta and Theta rhythms (computed 
according to Eq. (2)). The contributions of the Alpha, Beta, and Gamma rhythms seem to have only a minor impact on 𝐸𝑇𝑜𝑡. This 
observation is further supported by the data presented in Table 1. The table presents the contribution of each rhythm (expressed 
as a percentage of 𝐸𝑇𝑜𝑡) during both the baseline and hypertension plateau periods within each generated episode. To evaluate 
the statistical significance of the differences between the energy levels of the two states for each rhythm and episode, we used the 
Wilcoxon signed-rank test. Most of the differences were found to be statistically significant at a 5% significance level, except for the 
cases marked with (*) in Table 2.

The median contributions during the baseline periods were 8% for alpha, 2% for beta, 69% for delta, 0.14% for gamma and 20% 
for theta rhythms, respectively. Similarly, during the intracranial hypertension plateau, the median contributions were 7% for alpha, 
2% for beta, 73% for delta, 0.15% for gamma and 18% for theta rhythm, respectively.

3.2. CrossCorrelation between EEG and ICP (CPP)

In Table 2, we present the maximum SCC between 𝐸𝑇𝑜𝑡 (Eq. (1)) and ICP as well as CPP. The correlations between ICP and 𝐸𝑇𝑜𝑡

at lag 0 are all negative, indicating an inverse relationship between ICP and 𝐸𝑇𝑜𝑡, as observed in Fig. 2. The maximum correlation 
coefficient is -0.8 (episode J), while the minimum is -0.33 (episode B). Only one episode (episode E) does not exhibit a statistically 
significant correlation. Only two episodes (episodes A, I) show the maximum correlation at lag 0. In five episodes (episodes B, C, 
D, E, F), the maximum correlation occurs at negative lags, indicating that changes in ICP precede changes in 𝐸𝑇𝑜𝑡. In other five 
episodes (episodes G, H, J, K, L), the lag is positive, suggesting that changes in 𝐸𝑇𝑜𝑡 precede changes in ICP. The median value of 
4

the coefficients with negative lag is -0.66, while for positive lag, it is -0.75. Considering the maximum lag instead of the correlation 
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Fig. 2. Intracranial pressure (ICP, blue solid line), cerebral perfusion pressure (CPP, blue dashed line), and total EEG energy (𝐸𝑇𝑜𝑡, Eq. (1)) (red solid line) for pigs 
1, 2 and 3 in a top, middle and bottom subplots, respectively. The y-axis on the left side represents the values for ICP and CPP, while the y-axis on the right side 
represents the values for 𝐸𝑇𝑜𝑡 Energy. Each episode between each pig is named with latin capital letters. There is a recovery time between two successive episodes 
marked by solid black vertical lines. Each episode is generated by the inflation and deflation of a balloon in the brain parenchyma. The indicated hours correspond to 
the actual hours at the time of the experiment.

Table 1

Contribution (in percentage) of each EEG subband energy (Eq. (2)) for the baseline and hypertension plateau 
periods in each episode for the experimental pigs.

Episode Periods

Baseline Plateau

alpha beta delta gamma theta alpha beta delta gamma Theta

A 4 1 79 0.35 15 4 2 80 0.7 13

B 4 1 82 0.18 14 2 1 90 0.2 7

C 3 1 82 0.26 13 3 2 88 0.6 7

D 3 2 80 0.35 14 5 4 77 1.3 13

E 19 3 53 0.16 25 18 3 55 0.2 23

F 18 2 52 0.20 26 17 3 56 0.3 24

G 12 2 66 0.12 20 12 2 65 0.1 21

H 9 1 63 0.04 27 7 2 68 0.1 23

I 11 2 61 0.07 26 13 2 60 0.1 24

J 8 1 67 0.06 24 5 1 77 0.1 17

K 7 2 70 0.08 20 9 2 72 0.1 19

L 6 1 75 0.08 17 7 1 74 0.1 18

at lag 0 results in an 11% increase in correlation. Regarding the correlations between CPP and 𝐸𝑇𝑜𝑡 given in lag 0, all coefficients 
are positive indicating a direct relationship between CPP and 𝐸𝑇𝑜𝑡. The maximum correlation coefficient is 0.92 (episode A), while 
the minimum is 0.4 (episode B). However, two episodes (episodes E, G) do not exhibit a statistically significant correlation. Only 
two episodes (episodes a, i) show the maximum correlation at lag 0. There are six episodes (episodes B, C, D, E, F, H) where the 
maximum correlation occurs at negative lags indicating that changes in CPP precede changes in 𝐸𝑇𝑜𝑡. Four episodes (episodes G, J, 
K, L) have a positive lag, suggesting that changes in 𝐸𝑇𝑜𝑡 precede changes in CPP. The median value of the coefficients with negative 
lag is 0.54, while for positive lag, it is 0.56. However, when comparing the maximum coefficient with the one at lag 0, there is a 
5

20% improvement in using the maximum coefficient.
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Fig. 3. Energy for each EEG subbands (Eq. (2)). Delta (yellow), Theta (green), Alpha (blue), Beta (purple) and the Total Energy (𝐸𝑇𝑜𝑡, dashed light blue line). The 
subplots (a), (b) and (c) correspond to pigs 1, 2, 3, respectively. As in Fig. 2, each episode between each pig is named with latin capital letters and there is a recovery 
time between two successive episodes marked by solid black vertical lines. The indicated hours correspond to the actual hours at the time of the experiment.

Table 2

Maximum Sample Cross-Correlation Coefficient (SCC) between Total Energy 𝐸𝑡𝑜𝑡 (Eq. (1)) 
and ICP (column 2), Lag at maximum SCC (eq. (3)) (column 3), SCC at Lag 0 (column 4) 
and for CPP (column 5), Lag at maximum SCC (column 6), SCC at Lag 0 (column 7) for 
each episode (column 1) as marked in Fig. 2. All SCC values are statistically significant 
at 0.05, except for those marked with (*).

Episode ICP CPP

Max SCC Lag SCC at 0 lag Max SCC Lag SCC at 0 lag

A -0.77 0 -0.77 0.92 0 0.92

B -0.62 -73 -0.33 0.69 -66 0.40

C -0.71 -41 -0.57 0.71 -40 0.58

D -0.66 -44 -0.49 0.65 -37 0.54

E 0.77 -173 -0.16(*) 0.77 -173 -0.16(*)

F -0.76 -25 -0.74 0.73 -46 0.65

G -0.76 81 -0.38 0.69 93 0.15(*)

H -0.75 10 -0.74 0.45 -11 0.45

I -0.39 0 -0.39 0.52 0 0.52

J -0.90 31 -0.80 0.89 24 0.81

K -0.74 30 -0.65 0.67 32 0.57

L -0.70 62 -0.59 0.73 71 0.55

3.3. Predictive power of 𝐸𝑇𝑜𝑡 for identifying ICP states

We followed the procedure outlined in section 2.3 and selected only the models for which we rejected the null hypothesis of the 
McNemar’s Test on the confusion matrix, i.e., ACC > NIR. Out of the ten thousand models evaluated, only three thousand seven 
hundred and fifty-eight models met this condition.

A necessary step is to evaluate whether these models exhibit overfitting, which refers to fitting the noise in the data rather than 
the true underlying data, thus limiting their ability to generalize results to new data. To assess this, we calculated the accuracy and 
balanced accuracy, accounting for any class imbalance, for both the train and test sets, and subtracted them in each iteration. Fig. 5
6

illustrates the differences between these two measures. When subtracting the accuracy values (Fig. 5, left), we obtained an empirical 
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Fig. 4. The nonparametric main effect analysis of two factors: 𝐸𝑇𝑜𝑡 (i) and arterial blood pressure (ABP) (i) including their respective credible intervals. The units on 
the x-axis correspond to the physical quantities represented, while the y-axis is dimensionless.

Fig. 5. Histograms illustrating the difference in (i) accuracy and (ii) balanced accuracy, calculated between the train and test sets for each iteration.

distribution with a mean of 0.01, a standard deviation of 0.02, a median of 0.01, a first quartile of -0.0051, a third quartile of 0.03 
and a skewness of -0.17. In contrast, when subtracting the balanced accuracy (Fig. 5, right), the empirical distribution exhibited the 
following statistics: a mean of -0.05, a standard deviation of 0.03, a median of -0.06, a first quartile of -0.08, a third quartile of -0.03, 
and a skewness of 0.004.

Fig. 6 illustrates the performance measures of the classification for all interactions in the test set. The following metrics are 
presented: accuracy (median: 0.70, IQR: 0.02), precision (median: 0.55, IQR: 0.07), recall (median: 0.53, IQR: 0.15), F1 score 
(median: 0.54, IQR: 0.06), and AUC (median: 0.71, IQR: 0.03).

Fig. 7 shows a heatmap of the pairs (sensitivity, specificity) (x-axis, y-axis) for each interaction. The color scale varies from dark 
blue, indicating 0 occurrences of that combination to light yellow representing 231 occurrences. Sensitivity ranges from 0.27 to 0.80, 
with a median (IQR) of 0.53 (0.15), while specificity ranges from 0.60 to 0.96, with a median (IQR) of 0.79 (0.10).

Finally, Fig. 4, shows the plot for the nonparametric effect in a fitted GAM model with the following performance metrics: 
accuracy = 0.6388, sensitivity = 0.71, specificity = 0.60 and AUC = 0.70. In Fig. 4(left), the effect of the ABP variable on the 
odds of ICP exceeding 20 mmHg is shown. The odds range from -1.5 to 0.5. Between the ranges of 50-80 and 85-105, ABP appears 
to have a protective effect against hypertension. Between 80 and 85, the odds of observing ICP > 20 mmHg are positive. However, 
it is worth noting that the effect of ABP on the odds is considerably smaller compared to that of 𝐸𝑇𝑜𝑡 , as illustrated in Fig. 4(right). 
7

The odds range varies from -8 to 2, and for values beyond 30000, the odds of ICP > 20 mmHg become negative.
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Fig. 6. Histograms illustrate the distribution of accuracy (i), precision (ii), recall (iii), F1 score (iV), and AUC (v) calculated for each iteration on the test set.

Fig. 7. Heatmap illustrates the sensitivity (x-axis) and specificity (y-axis) values calculated for each iteration on the test set.

4. Discussions

This contribution introduces a model that serves as an initial exploration into the use of EEG as a non-invasive method for 
estimating intracranial pressure, emphasizing its role as a proof of concept. The practical application of this model in clinical settings 
is not yet within immediate reach. While invasive measurement of intracranial pressure is recommended, it comes with potential 
complications, such as infections and hematomas, and is not universally accessible. A recent Synapse study [16] highlighted that 
nearly 50% of patients with acute brain injuries are not subject to invasive monitoring, with the lack of availability being a significant 
contributing factor. In a recent survey conducted in Latin America [17], it was observed that 53% of respondents opt for invasive 
monitoring, with only 7% applying it universally to patients with severe traumatic brain injuries. This underscores the urgency of 
developing non-invasive, complication-free, and cost-effective methods for intracranial pressure estimation, especially considering 
the limited cases undergoing invasive monitoring in clinical practice.

To the best of our knowledge, there is currently no established standard animal model for investigating intracranial hypertension 
8

and its correlation with EEG. The preceding studies present variations that may initially seem contradictory, as discussed in the intro-
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duction. However, it’s important to note that these experiments are outdated and do not adhere to recommended methodologies for 
measuring intracranial pressure, lacking sophisticated statistical analyses, as proposed in this study. Undoubtedly, the methodology 
employed in generating intracranial hypertension and measuring intracranial pressure plays a pivotal role. In this investigation, we 
utilized an intraparenchymal measurement catheter, a currently recommended approach for invasive measurement of intracranial 
pressure, and the elevation method has been substantiated through various publications [10,18–20].

The time evolution of ICP (CPP) and the 𝐸𝑇𝑜𝑡 is shown in Fig. 2. In Fig. 2.a (first pig), a progressive decline 𝐸𝑇𝑜𝑡 over time and an 
interesting phenomenon of hysteresis as the decrement of 𝐸𝑇𝑜𝑡 matches closely with ICP elevation (CPP decrement), but the recovery 
of 𝐸𝑇𝑜𝑡 is delayed and incomplete following the restoration of baseline ICP (and CPP). This observation may indicate brain damage. 
In contrast, Fig. 2.b shows the second pig, which exhibits a lag with 𝐸𝑇𝑜𝑡 decrement occurring much later than CPP and ICP changes 
during the first and second ICH episodes. However, during the last episode in the same pig, it seems that the 𝐸𝑇𝑜𝑡 falls before the ICP 
elevation even begins. This discrepancy could be due to the accumulated brain damage from previous episodes. This accumulated 
damage at the beginning of each episode could be analogue to the heterogeneity of brain damage seen in patients admitted to a 
neurocritical care unit.

One could argue that electroencephalographic modifications may result from the inflation and deflation of the balloon, either 
directly through some mechanical effect or indirectly due to the necrosis produced. However, while there is a possibility that the 
inflation of the balloon alters the results of the electrodes closest to it due to the necrosis of the tissue, the same changes, in the 
variation in 𝐸𝑇𝑜𝑡, were observed in all electrodes, even those furthest from the balloon (see Fig. 2). Thus, if there were an alteration 
attributable to the balloon, it is local, minor, and unlikely to have modified the overall results. We can conclude that the EEG 
alteration was more likely due to intracranial hypertension or reduced cerebral perfusion pressure.

The sample Cross-Correlation Coefficient between 𝐸𝑇𝑜𝑡 and ICP (and CPP) suggests that 𝐸𝑇𝑜𝑡 is inversely correlated with ICP and 
directly correlated with CPP. In particular, the correlation with CPP is stronger, with a coefficient of 0.92, compared to the coefficient 
of -0.8 with ICP. This stronger correlation with CPP could be attributed to the ischemic process that occurs as a secondary response 
to the elevation of intracranial pressure, influencing 𝐸𝑇𝑜𝑡. In some episodes, the absence of a significant correlation at lag 0 may be 
due to the presence of noise in the EEG data or the existence of a delayed ischemic process from previous episodes.

The observation that EEG changes precede ICP changes in 41% of episodes and CPP changes in 50% of episodes suggests the 
potential influence of factors not accounted for in our analysis. This pattern aligns with findings in [21,22], where paroxysms 
preceded an increase in ICP due to vascular coupling. According to their explanation, the heightened demand for oxygen during 
paroxysms leads to vasodilatation and subsequent ICP elevation. However, in our study, we did not identify paroxysms preceding 
the rise in ICP induced by balloon inflation. Consequently, the observed effects may not be directly attributed to the neurovascular 
coupling described in [23]. While paroxysms were not found before ICP elevation, we did observe instances where ICP elevation 
sometimes preceded electroencephalographic modifications, and at other times, occurred in the reverse order. This divergence could 
stem from an unknown or minimally studied compensation and coupling mechanism. Alternatively, it might be attributed to the 
temporal averaging employed in both our article and [21,22]. These averages may obscure the true onset of the impact on the 
two signals, causing ICP to seemingly precede or lag behind EEG intermittently, suggesting a potential mathematical artifact. It’s 
crucial to emphasize that these findings do not undermine the robustness of the results obtained with the GAM or the validity of the 
cross-correlations, including those reported in [21,22]. Nevertheless, the observed divergence may be noteworthy, as it may reveal 
unexplored neurovascular coupling mechanisms that, to our knowledge, may not have been investigated to date.

Although there are episodes where the maximum correlation is not reached at lag 0, the improvement in correlation by considering 
the highest coefficient is relatively small, with an improvement of 11% for the correlation with ICP and 20% for the correlation with 
CPP. For these, 𝐸𝑇𝑜𝑡 could be considered a suitable biomarker for incorporation into a Multimodal monitoring system. This would 
allow for the monitoring of different physiological variables in order to personalize treatment in neurocritical patients [1] as reflects 
the neural damage from the ICP raises (or CPP deterioration).

The EEG Energy (dashed light blue line in Fig. 3) is primarily influenced by the Delta Rhythm (yellow line in Fig. 3), followed 
by the Theta Rhythm (green line in Fig. 3) across all pigs. This observation further supports the idea presented in [24] that the 
changes in EEG activity during hypertension predominantly occur at medium frequencies. Additionally, in our case, it is possible that 
higher-frequency rhythms are decreased due to the sedation administered during the experiment, which is a commonly observed 
phenomenon in routine clinical practice. Nevertheless, given the small difference in the powers of the alpha, beta, and gamma bands 
between the baseline and hypertension periods, we believe that while statistical significance is present, this difference lacks clinical 
significance.

A prospective study involving 21 neurocritical patients with head trauma and subarachnoid hemorrhage further supports the 
aforementioned relationship [21]. In their analysis, they used the relative spectral power for each frequency band (Delta, Theta and 
Alpha), and also employed spectral entropy. Through the application of the Granger test to evaluate causality, they found that in 
most cases there is a strong causal influence between both variables. This study is significant as it is one of the initial investigations to 
demonstrate this relationship in humans. However, the authors acknowledge certain limitations, particularly regarding the potential 
influence of sedative drugs, antiepileptic drugs, and medications used for IH treatment on the EEG recordings may therefore have 
influence on this relationship. To mitigate these biases, we developed an experimental study that involved generating IH events 
without the administration of treatment drugs and maintaining stable anesthetic drug doses. Similar to the aforementioned study, 
we have also observed a strong relationship between ICP and EEG in our experimental setting. Recently, there has been a recognized 
need to incorporate additional variables in ICP monitoring [1]. As illustrated in Fig. 1, not all episodes of intracranial hypertension 
9

exhibit the same energy. Consequently, 𝐸𝑡𝑜𝑡 decreases during each hypertensive period. As a result, baseline periods with normal 



Heliyon 10 (2024) e28544F. Pose, C. Videla, G. Campanini et al.

Table 3

Point-wise (and confidence interval) for maximum and minimum Accuracy, 
Sensitivity, Specificity, Precision, F1-score, and AUC obtained in the models 
presented in [27] along with the obtained with the proposed GAM.

Feature Min Max GAM

Accuracy 0.70 (0.62,0.78) 0.77 (0.69,0.85) 0.70 (0.68,0.72)

Sensitivity 0.49 (0.31,0.67) 0.65 (0.49,0.81) 0.53 (0.51,0.55)

Specificity 0.79 (0.67,0.91) 0.92 (0.85,0.98) 0.79 (0.76,0.81)

Precision 0.64 (0.46,0.83) 0.87 (0.75,0.98) 0.56 (0.55,0.58)

F1-score 0.50 (0.35,0.65) 0.58 (0.42,0.74) 0.54 (0.52,0.56)

AUC 0.74 (0.64,0.85) 0.86 (0.78,0.93) 0.71 (0.69,0.74)

ICP, at the end of the experiment, have 𝐸𝑇𝑜𝑡 values lower than those at the beginning of the experiment. Therefore, 𝐸𝑇𝑜𝑡 could be a 
candidate for summarizing the cerebral damage caused by the elevation of ICP or the reduction of CPP.

An important aspect of neuromonitoring has received limited attention is the potential utilization of EEG as a non-invasive 
measure for monitoring ICP. This is particularly significant in resource-limited regions or situations where traditional non-invasive 
monitoring methods, such as transcranial Doppler [25] or optic nerve sheath measurements [26], can not be employed due to 
cost constraints, lack of trained personnel, or other limitations. In this context, we are exploring the possibility of employing the 
𝐸𝑇𝑜𝑡 derived from EEG signals not as a direct surrogate for ICP, but rather as a tool for classifying ICP levels above or below a 
specific threshold, such as 20 mmHg. Although 𝐸𝑇𝑜𝑡 may not serve as the definitive variable for ICP assessment, its potential for 
classification makes it a promising candidate for inclusion into machine learning algorithms or as an alert system for identifying 
episodes of elevated intracranial pressure.

To our knowledge, the only published study on using EEG as a classifier for ICP is [27]. In this study, various machine learning 
techniques, including Logistic Regression (LR), Naive Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM), were 
employed to evaluate different variables as classifiers of ICP below or above the threshold of 25 mmHg. In our study, we utilized 
a modeling approach known as the Generalized Additive Model (GAM). Unlike more data-dependent and generalization-focused 
methods commonly associated with machine learning, GAM is closely aligned with the classical linear regression model—a funda-

mental pillar of traditional statistics. The distinctive strength of GAM over linear regression lies in its ability to ease the assumption 
of linearity, opting instead for a non-parametric fit. In our specific application, we implemented a spline basis within the GAM 
framework.

As a general guideline, [28] recommend a minimum sample size of at least 10 observations per parameter included in a linear 
model. In our model, which comprises the intercept, the parameter for ABP, and corresponding parameters for 𝐸𝑡𝑜𝑡, we possess a 
dataset consisting of more than 42,560 observations. This ample dataset ensures that we have a sufficiently robust foundation for 
estimating the involved parameters.

In Table 3, we present the maximum and minimum values (along with their 95% confidence intervals) of selected classification 
performance measures as reported in [27], as well as the results obtained with the GAM model. We observe that the precision, 
sensitivity, and F1-score of the GAM model are not statistically different from those achieved by the best model in [27]. However, 
in the remaining performance indicators, our results fall between the highest and lowest performances, indicating that our approach 
does not surpass the highest performance but also does not perform worse than the lowest performance. It is worth noting that, except 
for LR (Logistic Regression), the models presented in [27] lack interpretability. One notable advantage of GAMs is their ability to 
maintain interpretability through the non-parametric component of the model and its relationship with the odds of the independent 
variables. In our model (see Fig. 4), we observe the protective effect of 𝐸𝑇𝑜𝑡 when its value exceeds 35000, as well as the influence 
of ABP within the ranges of 50 mmHg to 80 mmHg and 85 mmHg to 105 mmHg. Therefore, an alarm could be generated whenever 
these parameters deviate from these values.

In [29], a retrospective analysis was conducted on the records of 100 patients with various pathologies, including traumatic brain 
injury, subarachnoid hemorrhage, or intracerebral hemorrhage conditions to compare the ability of several methods, namely nerve 
sheath diameter, pulsatility index, estimated ICP using transcranial Doppler, and neurological pupil index measured using automated 
pupillometry, as classifiers for intracranial hypertension, the reported area under the curve (AUC) values for each of these methods 
are presented, they are 0.78 (95% CIs 0.68-0.88) for ONSD, 0.85 (95% CIs 0.77-0.93) for PI, 0.86 (95% CIs 0.77-0.93) for eICP, and 
0.71 (95% CIs 0.60-0.82) for NPI. It can be observed that the AUC of our GAM model is 0.71 (95% CIs 0.69,0.74), indicating no 
statistically significant difference with respect to these methods.

5. Limitations

One limitation of our study is that it was conducted using an animal model rather than human subjects. Although pigs were 
selected due to their anatomical similarities to humans, it is crucial to acknowledge that there may still be inherent differences 
between species. However, previous studies have suggested that pigs can provide valuable insights into human physiology and allow 
for translation of data and conclusions to humans [30,31].

The cyclic nature of the experiment could be a confounding factor that affects the results, as the electrical activity does not fully 
recover during the periods between two hypertensive events. The purpose of the experiment was not to simulate any pathophysi-
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ological process but to induce controlled intracranial hypertension and observe its potential impact on the electroencephalogram. 
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Although it is known that intracranial hypertension episodes in humans do not exhibit this cyclic nature and resolve within short 
time periods, we have developed this cyclic model to minimize the use of animals in accordance with the principles of animal re-

search, namely Replacement, Reduction, and Refinement [32–34]. Additionally, each episode of intracranial hypertension has its 
own steady-state period. Another limitation is the number of cases analyzed; nevertheless, we believe that identifying patterns in 12 
episodes provides a valid proof of concept. Regarding the data acquisition technique, the EEG is highly susceptible to ambient noise, 
and its energy depends on the depth at which the electrodes are placed. Therefore, it is crucial to develop a fixation method, such as 
a headband, as an integral part of the monitoring system. All experiments were carried out in a laboratory, where noise sources such 
as artificial respirators, monitors, and anesthetic machines were present; however, the noise levels were lower compared to those in 
the intensive care unit.

6. Conclusions

While the mechanisms underlying the relationship between intracranial pressure and cortical electrical activity, as measured by 
surface electroencephalogram, are not fully elucidated, our study has demonstrated the feasibility of real-time assessment of neuronal 
activity changes associated with variations in ICP or CPP using quantitative electroencephalography. This discovery underscores the 
potential incorporation of EEG as part of a multimodal monitoring system for neurocritical patients. 𝐸𝑡𝑜𝑡, being capable of quantita-

tively reflecting electroencephalographic modifications induced by elevated ICP or decreased CPP, provides valuable information for 
monitoring potential brain damage in neurocritical patients. Nevertheless, further research is warranted to investigate the impact of 
sedative drugs, potential spatial effects in humans, and the underlying genesis of this relationship.
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Appendix A. Description of the experiment

A.1. Animal preparation

The experimental model was developed in three previously healthy 6-month-old Landrace pigs, each weighing an average of 25-

30 kg. The animals were premedicated with ketamine at a dose of 15 mg/kg and xylazine via intramuscular injection administered 
by the veterinarian. General anesthesia was induced through an atrial vein using 6 mg/kg fentanyl, 4 mg/k propofol, and 1.2-1.5 
mg/kg rocuronium. Intubation was performed using a 7.0 mm cuffed tube. Anesthesia was maintained throughout the experiment 
with a continuous intravenous infusion of propofol at a rate of 0.25-0.30 mcg/kg/min, remifentanil at a rate of 0.5 mcg/kg/min, 
and pancuronium at a rate of 0.04 mg/kg/h. Mechanical ventilation was performed in a pressure-controlled mode with a positive 
pressure at the end of the expiration of 5 cmH2O and a FiO2 of 0.40. The respiratory rate and tidal volume were adjusted to maintain 
normocarbia, which was monitored using a spirometer. Normovolemia was maintained by infusing a complete electrolyte solution 
at a rate of 10-15 ml/kg/h. All anesthesia procedures were performed by contracted veterinarian anesthesiologists.

A.2. Intracranial hypertension induction

IH was induced by inserting 8 French 2-Way Pediatric Foley Catheter (Well Lead Medical®, China) into the brain parenchyma, 
through a burr hole located 20 mm anterior to the coronal suture and 15 mm lateral to the sagittal suture, on the side opposite to 
the placement of an ICP catheter (Codman® Intracranial Pressure Monitor). In a subsequent necropsy studies, the intraparenchymal 
lesion produced by the inflation of the balloon was observed. [10] The IH events were carried out as follows:

• Induction of IH: A 0.9% saline solution was infused using a continuous infusion pump into a balloon to achieve different slopes 
of ICP rise until the desired ICP value was reached.

• Maintenance: Once the target value was reached, it was maintained stable for 5 minutes, if the clinical conditions allowed.

• Pressure drop: The balloon was deflated at a rate of 1 ml per minute until it was completely empty.
11

• Rest: After the balloon was emptied, it remained deflated for 10 minutes.
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Fig. B.8. Upper triangular matrix presents the maximum sample cross-correlation coefficient (Eq. (3)) between 𝐸𝑇𝑜𝑡 (Eq. (1)) of the EEG electrodes in the i-th column 
and j-th row. The corresponding color code indicates the strength of the correlation. Lower triangular matrix shows the lag (highlighted in bold) associated with the 
cross-correlation.

This protocol was repeated until the desired number of IH events was obtained. After all the events were completed, an IH 
event was induced with the objective of reaching cerebral circulatory arrest (CPP less than 5 mmHg), which was maintained for 1 
hour. Subsequently, the animals were sacrificed by administering an intravenous overdose of propofol (20 mg/kg) and fentanyl (10 
mg/kg), followed by the administration of 40 ml of a 19.1% potassium chloride solution. Before the first balloon insufflation and 
between any two episodes, the balloon remained deflated, resulting in normal ICP. These periods were referred to as steady-state 
episodes.

A.3. Data acquisition

During the experiment, data from ICP, femoral blood arterial pressure (ABP) and 8-channel EEG were recorded. EEG signals 
were recorded using a Neurovirtual PSG/EEG equipment model BWII (Fort Lauderdale, FL), and the signal processing was conducted 
using BMWAnalysis software. The EEG was continuously recorded using 8 electrodes placed at F3, F4, C3, C4, P3, P4, T3, and T4 
with reference to the arithmetic average of electrodes A1 and A2, following the 10–20 system nomenclature. ICP was recorded using 
Codman Express Intracranial pressure (ICP-Codman-Raynham-MA, USA). Numeric and waveform data, including ICP and ABP, from 
the Philips Intellivue monitor MP70 (Philips Healthcare Inc., Andover, MA) were downloaded using custom-made software based on 
the open-source application VSCaptureMP, which is part of the VSCapture software suite [35]. All recorded biosignals and data were 
synchronized with the local area network clock of the hospital. CPP was calculated by subtracting the mean ABP (mABP) and the 
mean ICP (mICP), i.e., 𝐶𝑃𝑃 =𝑚𝐴𝐵𝑃 −𝑚𝐼𝐶𝑃 . The sample frequency was 200 Hz for EEG and 120 Hz for other signals, which were 
subsequently resampled at 200 Hz.

Appendix B. 𝑬𝑻𝒐𝒕 spatial configuration

The maximum cross-correlation of 𝐸𝑇𝑜𝑡 between each pair of electrodes within the same pig is presented in the upper triangular 
matrices shown in Fig. B.8. The high correlation observed may be attributed to the small size of the pig’s brain, indicating that it is 
possible to analyze the EEG data recorded solely at the C3 electrode, as we have done in this paper. Additionally, it is shown that 
electrodes F4 and P4 exhibit considerable noise in pig 2 (Fig. B.8.b) and to a lesser extent in pig 3 (Fig. B.8.c). The lag at which the 
cross-correlation is observed is presented in the lower matrices in Fig. B.8.

Appendix C. Statistical analysis metrics for the prediction model

To evaluate the performance of our classification model, we comparing our results with the results presented in [27] employing 
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the following metrics:
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• Accuracy is a widely used performance metric in classification models. It quantifies the proportion of correct predictions, both 
positive and negative, out of the total number of predictions made by the model. A high accuracy value indicates that the model 
has a good overall performance and is capable of making correct predictions for both the positive and negative classes.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100 (C.1)

• Sensitivity, also referred to as recall or true positive rate, is a metric used to evaluate a classification model’s ability to correctly 
identify positive instances of a specific class. In our study, the positive instances correspond to the presence of intracranial 
hypertension. A high sensitivity value indicates that the model effectively detects positive cases.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100 (C.2)

• Specificity is a metric that assesses the performance of a classification model in correctly identifying negative instances of 
a specific class, such as the absence of intracranial hypertension in our study. A high specificity indicates that the model is 
effective at detecting negative instances.

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
∗ 100 (C.3)

• Precision is a metric that assesses the performance of a classification model in correctly identifying positive instances of a 
specific class. In our study, precision measures the model’s ability to accurately detect cases of intracranial hypertension. A high 
precision value indicates that the model is effective in precisely identifying positive cases.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100 (C.4)

• F1-Score is a measure that combines precision and sensitivity of the model into a single performance metric. In our study, It 
provides a balanced evaluation of the model’s ability to correctly identify positive cases of intracranial hypertension, taking 
into account both false positives and false negatives. A high F1-Score value indicates that the model is effective in accurately 
identifying positive cases of intracranial hypertension.

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
∗ 100 (C.5)

• Receiver Operating Characteristic (ROC) curve is a graphical representation of the performance of a binary classification model. 
It is created by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold settings. The area 
under the ROC curve (AUC) is a commonly used metric to quantify the overall performance of a classification model where a 
higher AUC indicates better overall performance of the model across different threshold settings.

Appendix D. Summary of the experimental procedure

Table D.4

Checklist based on the ARRIVE Essential 10. N/A stands for Not Applicable. Since this is a de-

scriptive (exploratory) experiment designed to observe the correlation between ICP and EEG 
previous and during ICH episodes, concepts such as Blinding, Randomization, and Exclusion/In-

clusion criteria are not applicable.

Item (Sub)Section

Ethical statement 2.1. Intracranial pressure experiment

Study design Appendix A. Description of the experiment

Sample size Appendix A. Description of the experiment

Exclusion/Inclusion criteria N/A

Randomization N/A

Blinding N/A

Outcome measures 2.1. Intracranial pressure experiment

Statistical methods 2.2. EEG features calculation

2.3. Generalized additive model and classification performance

Experimental animals Appendix A.1. Animal preparation

Experimental procedures Appendix A. Description of the experiment

Results 3. Results
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