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Background: Lipid-emulsion propofol (LP) has cardioprotective effects against ischemia-reperfusion injury, but 

it has lipid-related side effects. Microemulsion propofol (MP) is a lipid-free propofol emulsified with 10% purified 

poloxamer 188 (PP188). PP188 is a nonionic surfactant and has cardioprotective effects. However, some reports 

have suggested that reduced cardioprotective effects were observed when the cardioprotective agents were used in 

combination even though each cardioprotective agent has cardioprotective effects. The aims of this study were to 

examine and compare the cardioprotective effects of MP and LP. 

Methods: 50 isolated rat hearts were perfused with modified Kreb’s solution. They were divided into 4 groups 

and underwent 30 minutes of ischemia and 60 minutes of reperfusion. Control group: ischemia-reperfusion was 

performed without treatment. LP, MP and PP groups: LP, MP and PP188 were infused during the pre-ischemic and 

reperfusion period, respectively. Hemodynamic parameters and coronary effluent flow rate (CEFR) were measured. 

Infarct size was determined using triphenyl-tetrazolium staining.

Results: In the MP group, systolic pressure was maintained near baseline, the systolic pressure was higher than 

that in the other groups and HR was lower than that in the other groups during reperfusion. Diastolic pressure was 

transiently increased in the PP group after treatment and at 5 minutes after reperfusion compared with that in the 

control group and in the the LP group. There were no differences in dP/dtmax and CEFR between groups. Infarct size 

in the LP, MP and PP groups was smaller than that in the control group, but there were no significant differences 

between these three groups.

Conclusions: MP has cardioprotective effects similar to those of LP. MP can be used for cardiac anesthesia in cases 

with ischemia-reperfusion injury to avoid the lipid-related side effects of LP. (Korean J Anesthesiol 2012; 62: 358-364)
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Introduction

Extracorporeal circulation is required in cardiac trans

plantation or in open heart surgery during which the heart 

undergoes artificial ischemia and reperfusion, which play an 

important role in reperfusion injuries including reversible 

myocardial stunning and irreversible damage such as 

myocardial infarction. Although most of the general anesthetic 

drugs have negative inotropic effects, there are agents that 

have a cardioprotective effect in myocardial ischemia and 

reperfusion injury [1]. Particularly, propofol has been reported 

to have cardioprotective effects through reduction of free 

oxygen radicals [2] and calcium overload phenomenon [3]. 

In addition, propofol allows hemodynamic stability during 

anesthesia, and it has been widely used in cardiac surgery and 

for postoperative sedation in the intensive care unit. However, 

several lipid-associated problems such as hypertriglyceridemia, 

pulmonary embolism and extrinsic contamination due to rapid 

bacterial growth at room temperature, have been reported with 

the long-term use of lipid-emulsion propofol (LP: DiprivanⓇ, 

AstraZeneca, London, UK) [4-6]. To eliminate these adverse 

effects of lipid-emulsion propofol, microemulsion propofol 

(MP: AquafolⓇ, Daewon Pharmaceutical Co., Ltd., Seoul, 

Korea) emulsified with hydrophilic polymer (10% purified 

poloxamer 188) was developed. Poloxamer 188 (PP188) is 

nontoxic surface-active agent that has cytoprotective effects. 

PP188 is incorporated into the lipid bilayers, thereby decreasing 

their susceptibility to oxidative stress and inflammation [7-

11]. Inhaled anesthetics, propofol, and PP188 provide cardio

protection against ischemia and reperfusion injury via different 

mechanisms [11], but despite these distinct mechanisms 

several studies have demonstrated that no additive or superior 

protection was observed with the combination of these 

cardioprotective agents [12,13].

Previous studies mainly focused on pharmacokinetic and 

pharmacodynamic characteristics of MP, and MP demonstrated 

pharmacokinetic and pharmacodynamic properties similar 

to those of LP [14]. However, the difference between LP and 

MP in terms of myocardial protection against ischemia and 

reperfusion injury during cardiac surgery is unknown.

The purpose of this study was to compare the myocardial 

protective effects between LP and MP emulsified with PP188 

by measuring hemodynamic parameters and infarct size in 

Langendorff perfused rat hearts.

Materials and Methods

This experimental study was approved by Institutional 

Animal Care and Use Committee. Male Sprague-Dawley rats 

(250-350 g) were allowed access to food and water until the 

day of surgery. Rats were anesthesized with pentobarbital (25-

30 mg, intraperitoneally). After confirming the loss of light 

reflex and responsiveness, rats were heparinized with sodium 

heparin (250 IU, intraperitoneally) and were intubated with a 

16G catheter via tracheostomy. Ventilation was maintained with 

animal ventilator (SN-480-7, Shinano Co., Nagano, Japan) with 

mixed gas (oxygen 95%, carbon dioxide 5%) at a respiratory 

rate of 50 breaths per minutes and a tidal volume of 3-4 ml. 

After median sternotomy, heart was rapidly excised en bloc and 

then was immersed in ice-cold perfusion solution to prevent 

myocardial injury during the remaining procedure. All hearts 

(coronary arteries) were perfused retrogradely via the aorta 

on the Langendorff apparatus with modified Kreb’s solution 

containing 118 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 1.2 mM 

KH2PO4, 25 mM NaHCO3, 10 mM glucose, 1.9 mM CaCl2, and 

0.5 mM Na-EDTA. The perfusate solution was maintained at 

37 ± 0.2oC using a thermostatically controlled water circulating 

system (GP-200, NESLAB Instrument Inc., USA) and was kept 

at pH 7.4 ± 0.02 with 3L/min mixed gas (oxygen 95%, carbon 

dioxide 5%). Perfusion pressure was maintained at 55 mmHg by 

a 75-cm high fluid column with an overflow pump (Masterflex, 

Cole-Parmer Instrument Co., USA), and was measured at 

the level of the aortic root via a pressure transducer. A 3 mm 

saline-filled latex balloon connected to the pressure transducer 

(Ohmeda P23XL transducer, Ohmeda, Oxnard, CA, USA) was 

inserted into the left ventricle through the mitral valve via a left 

atrial incision and balloon volume was adjusted to maintain a 

diastolic pressure of 10 mmHg after equilibration of the heart.

All hearts were perfused on Langendorff apparatus and were 

stabilized for about 30 minutes in order to obtain the baseline 

measurements. Each group received a sequential experimental 

protocol including pretreatment, global ischemia and reperfu

sion. After stabilization, pretreatment was performed for 15 

Fig. 1. Experimental protocol. After stabilization, each group was 
subjected to a 15 minutes pre-treat period, 30 minutes of global 
ischemia and 60 minutes of reperfusion. Specific agents were applied 
to each group as follows: perfusate and mixed gas (95% O2 + 5% CO2) 
only for control group; mixed gas with perfusate containing 6 μg/
ml lipid-emulsion propofol for LP group; 6 μg/ml microemulsion 
propofol for MP group; 60 μg/ml poloxamer 188 for PP group. 
Hemodyamic variables were measured at after stabilization, after 
pre-treat period and 5, 30, 60 minutes after reperfusion started 
(Dashed arrows). After all processes were completed, triphenyl 
tetrazolium staining was performed to calculate infarct size.
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minutes in each group (as described below). By blocking the 

perfusion towards the hearts, global ischemia was induced 

for 30 minutes and this was then followed by restarting the 

perfusion for 60 minutes. Experiments were conducted in the 

4 groups, the control group underwent pretreatment and 

reperfusion without any medication, and the LP, MP and PP 

groups were treated with LP, MP and PP188 (LutrolⓇ F68, 

Sigma-Aldrich Korea Ltd., Kyunggi-Do, Korea), respectively 

during the pretreatment time and reperfusion. Each group 

was placed in a random order by using block randomization 

(Fig. 1).

Using the pressure sensor, hemodynamic parameters were 

measured after stabilization (baseline), before ischemia (after 

pretreatment), and at 5, 30 and 60 minutes after reperfusion. 

These parameters were automatically stored in the computer 

using MP-100 system (BiopacⓇ System Inc., Goleta, CA, USA) 

and Acknowledge software (MP 100 manager version 3.8.2, 

BiopacⓇ system Inc., Goleta, CA, USA). A cannula was inserted 

into the coronary sinus to measure the coronary effluent flow 

rate. Coronary effluent flow rate was defined as the flow per 

minute at each measurement point.

Perfusion fluid containing LP and MP corresponding to 

6 μg/ml of propofol solution were used during pretreatment 

and reperfusion. Because MP contains 10% PP188, PP188 was 

diluted in the same way as MP which corresponded to 60 μg/ml 

of PP188 in the perfusion fluid.

After reperfusion, the hearts were perfused with cold cardio

plegic solution and immersed in ice-cold perfusate to achieve 

cardiac arrest. Then the hearts were immediately frozen 

to -20oC. Whole ventricular muscles were sliced at 2 mm 

intervals and stained with triphenyl tetrazolium. The slices were 

incubated for 10 minutes in 1% solution of buffered triphenyl 

tetrazolium (2, 3, 5-triphenyl tetrazolium chloride: C19H15ClN4, 

TTC) at 37oC and then immersed in 10% buffered formaldehyde 

for 20 minutes. The stained slices were then placed between 

two sheets of glass with 1.7 mm shims at the corners for 

squashing the slices to a uniform thickness, and the size of the 

damaged and the whole part of the ventricular muscles were 

measured using UTHSCSA Image Tool, version 3.0 (S. Brent 

Dove, University of Texas Health Science Center in San Antonio, 

Texas, USA). Then the heart volume of the damaged heart and 

the entire heart volume were calculated and infarct size was 

determined as the ratio (%) of the heart volume of the damaged 

heart to the entire heart volume. 

A total of 50 hearts were prepared for this experiment. Among 

these, 6 extracted hearts were excluded due to a surgical error 

or inappropriate cardiac function until stabilization. Finally, 44 

hearts were included in the statistical analysis; the control group 

contained 14 hearts, the LP, MP and PP groups contained 10 

hearts, respectively.

All statistics were calculated using SigmaPlot for Windows 

version 12.0 (Systat Software, Inc., IL, USA). Data were subjected 

to one-way analysis of variance (ANOVA) and one-way repeated 

measures ANOVA, and if statistical significance was established, 

Fig. 2. The changes in the left ventricular end systolic pressure 
(LVESP). Values are expressed as mean ± SD. Control group: no 
treatment during pre-ischemic and reperfusion period, LP, MP and 
PP groups: lipid emulsion propofol, microemulsion propofol and 
PP188 were infused during pre-ischemic and reperfusion period, 
respectively. Baseline: immediately after stabilization, Tx: pre-
ischemic treatment, R5: at 5 minutes after reperfusion, R30: at 30 
minutes after reperfusion, R60: at 60 minutes after reperfusion. 
Probability value was indicated as follows; *P < 0.05 vs. baseline, 
†vs. Tx, ‡vs. R5, §vs. R30, ∥vs. control group, ¶vs. LP group, **vs. MP 
group. In the control group and in the LP group, LVESP significantly 
decreased during the reperfusion period compared with baseline, 
however in the MP group there was no significant decrease in LVESP.

Fig. 3. The changes in the left ventricular end diastolic pressure 
(LVEDP). Values are expressed as mean ± SD. Control group: no 
treatment during pre-ischemic and reperfusion period, LP, MP and 
PP groups: lipid emulsion propofol, microemulsion propofol and 
PP188 were infused during pre-ischemic and reperfusion period, 
respectively. Baseline: immediately after stabilization, Tx: pre-
ischemic treatment, R5: at 5 minutes after reperfusion, R30: at 30 
minutes after reperfusion, R60: at 60 minutes after reperfusion. 
Probability value was indicated as follows; *P < 0.05 vs. baseline, 
†vs. Tx, ‡vs. R5, §vs. R30, ∥vs. control group, ¶vs. LP group, **vs. MP 
group. LVEDP was significantly higher in the MP group than in the 
control group and in the LP group. At R5, in the PP group, LVEDP was 
significantly increased than that at baseline and at Tx.
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values of the control group and those of the other groups were 

compared using Bonferroni t-test. For all studies, statistical 

significance was considered at P < 0.05.

Results

Left ventricular end systolic pressure (LVESP, Fig. 2)

In the control group and in the LP group, LVESP was decreased 

after 5 minutes, 30 minutes and 60 minutes of reperfusion and the 

values were significantly lower compared to the baseline value 

(Control group: P < 0.001, LP group: P = 0.001). In contrast, the MP 

group did not show significant changes in LVESP (P = 0.307) 

and in the PP group LVESP was decreased after reperfusion 

compared to the baseline value but the difference was not 

statistically significant (P = 0.070). After 30 and 60 minutes of 

reperfusion, LVESP was significantly higher in the MP group 

and in the PP group than in the control group (at 40 minutes 

of reperfusion: P = 0.009, at 60 minutes of reperfusion: P = 

0.001).

Left ventricular end diastolic pressure (LVEDP, Fig. 3)

At 5 minutes of reperfusion, LVEDP was increased in the 

control group and in the PP group compared to the baseline 

value and LVEDP progressively decreased at 30 and 60 minutes 

of reperfusion (P < 0.001). In the LP group, LVEDP after 

reperfusion was maintained near baseline, and at 60 minutes 

of reperfusion, LVEDP was significantly decreased compared to 

the baseline value (P = 0.008). In the MP group also, LVEDP was 

maintained near baseline (P = 0.428). In the LP group and in 

the MP group, LVEDP was lower than that in the control group 

at 5 minutes of reperfusion (P < 0.001) and in the LP group, the 

LVEDP value was lower than that in the control group even at 30 

minutes of reperfusion (P = 0.003). 

Heart rate (HR, Fig. 4)

In the LP group, HR was decreased after pretreatment, but 

after reperfusion it was maintained near baseline (P = 0.032). 

In the MP group, HR was decreased after pretreatment and low 

values were continued during reperfusion (P < 0.001). In the 

PP group, HR was decreased only at 5 minutes of reperfusion (P 

= 0.002), and the HR values were higher than those in the MP 

group after pretreatment, at 30 and 60 minutes after reperfusion 

(P = 0.001, P < 0.001 and P = 0.021, respectively).

Left ventricular pressure development over time 
(dP/dtmax, Fig. 5)

At 5 min of reperfusion, dP/dtmax was significantly reduced 

than the baseline values of all 4 groups (Control group, PP188 

Fig. 4. The changes in heart rate (HR). Values are expressed as 
mean ± SD. Control group: no treatment during pre-ischemic 
and reperfusion period, LP group: lipid emulsion propofol was 
infused during pre-ischemic and reperfusion period, MP group: 
microemulsion propofol was infused during pre-ischemic and 
reperfusion period, PP group: PP188 was infused during pre-
ischemic and reperfusion period. Baseline: immediately after 
stabilization, Tx: pre-ischemic treatment, R5: at 5 minutes after 
reperfusion, R30: at 30 minutes after reperfusion, R60: at 60 minutes 
after reperfusion. Probability value was indicated as follows; *P < 
0.05 vs. baseline, †vs. Tx, ‡vs. R5, §vs. R30, ∥vs. control group, ¶vs. 
LP group, **vs. MP group. In the MP group, HR was significantly 
reduced after reperfusion compared with that at the baseline.

Fig. 5. The changes in the maximum rate of change in left ventricular 
pressure (dP/dtmax). Values are expressed as mean ± SD. Control 
group: no treatment during pre-ischemic and reperfusion period, LP 
group: lipid emulsion propofol was infused during pre-ischemic and 
reperfusion period, MP group: microemulsion propofol was infused 
during pre-ischemic and reperfusion period, PP group: PP188 was 
infused during pre-ischemic and reperfusion period. Baseline: 
immediately after stabilization, Tx: pre-ischemic treatment, R5: at 5 
minutes after reperfusion, R30: at 30 minutes after reperfusion, R60: 
at 60 minutes after reperfusion. Probability value was indicated as 
follows; *P < 0.05 vs. baseline, †vs. Tx, ‡vs. R5, §vs. R30, ∥vs. control 
group, ¶vs. LP group, **vs. MP group. All groups demonstrated 
decreased values after reperfusion but there was no significant 
difference in dP/dtmax among the LP, MP and PP groups.
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group: P < 0.001, LP group: P = 0004, MP group: P = 0.006). In 

the LP and MP groups, dP/dtmax gradually recovered after 5 

minutes of reperfusion. At 5, 30 and 60 minutes of reperfusion, 

dP/dtmax was significantly decreased in the PP group compared 

to the baseline values (P < 0.001). At 30 minutes of reperfusion, 

dP/dtmax was significantly higher in the PP group than in the 

control group, and at 60 minutes of reperfusion, dP/dtmax was 

significantly higher in the LP, MP and PP groups than in the 

control group (at 30 minutes of reperfusion: P = 0.020, at 60 

minutes of reperfusion: P = 0.006).

Coronary effluent flow rate (CEFR, Fig. 6)

In the LP group, CEFR gradually decreased after reperfusion, 

the values at 30 and 60 minutes of reperfusion were lower 

than the baseline and/or after pretreatment values (P = 0.003). 

During reperfusion periods, CEFR was higher in the LP group 

than in the control group (at 5 minutes of reperfusion: P < 

0.001, at 30 minutes of reperfusion: P = 0.008, at 60 minutes of 

reperfusion: P = 0.004). In the MP group and in the PP group 

also, CEFR gradually decreased during reperfusion periods and 

was lower than the baseline and/or after pretreatment values (P 

< 0.001 for the MP group and the PP group). The CEFR values 

in the MP group and in the PP group were numerically higher 

than those in the control group, and only the CEFR value at 5 

minutes of reperfusion was statistically significant (P < 0.001). 

Infarct size (Fig. 7)

Infarct size was significantly smaller in the LP, MP, and PP 

groups (14.27 ± 2.41%, 15.77 ± 2.40%, 14.40 ± 1.97%, respec

tively) than in the control group (18.71 ± 2.42 %, P < 0.001). 

Discussion

In the current study, we examined the influence of MP on 

myocardial injury resulting from ischemia and reperfusion 

in an isolated rat heart model and compared the myocardial 

protective effects between MP and LP. From a hemodynamic 

point of view, LP and MP produced similar results except for 

transient differences in LVESP and HR. In the MP group, LVESP 

was higher and HR was lower than that in the LP group during 

reperfusion. Moreover, infarct size did not differ significantly 

between the MP group and the LP group, and there seemed 

to be little difference between LP and MP in their myocardial 

protective effects against ischemia-reperfusion injury.

Within the first few minutes of reperfusion after myocardial 

ischemia, bursts of oxygen free radicals are generated [15], and 

these have been implicated as a cause of deleterious effects on 

cellular membrane proteins that maintain ionic homeostasis 

[16]. The beneficial effect of LP lies on its free radical scavenging 

properties during myocardial ischemia and reperfusion 

[2]. In addition, LP acts as a calcium antagonist preventing 

Fig. 6. Coronary effluent flow rate. Values are expressed as mean ± 
SD. Control group: no treatment during pre-ischemic and reperfusion 
period, LP group: lipid emulsion propofol was infused during 
pre-ischemic and reperfusion period, MP group: microemulsion 
propofol was infused during pre-ischemic and reperfusion period, 
PP group: PP188 was infused during pre-ischemic and reperfusion 
period. Baseline: immediately after stabilization, Tx: pre-ischemic 
treatment, R5: at 5 minutes after reperfusion, R30: at 30 minutes after 
reperfusion, R60: at 60 minutes after reperfusion. Probability value 
was indicated as follows; *P < 0.05 vs. baseline, †vs. Tx, ‡vs. R5, §vs. 
R30, ∥vs. control group, ¶vs. LP group, **vs. MP group. The coronary 
effluent flow rate was progressively decreased in all groups. However, 
in the LP group, the coronary effluent flow rate was significantly 
higher than that in the control group.

Fig. 7. Infarct sizes were calculated by using triphenyl tetrazolium 
staining method in all groups. Values are expressed as mean ± SD. 
Control group: no treatment during pre-ischemic and reperfusion 
period, LP group: lipid emulsion propofol was infused during 
pre-ischemic and reperfusion period, MP group: microemulsion 
propofol was infused during pre-ischemic and reperfusion period, 
PP group: PP188 was infused during pre-ischemic and reperfusion 
period. Probability value was indicated as follows; *P < 0.05 vs. 
control group. In the LP, MP and PP groups, the infarct size was 
significantly smaller than that in the control group. There were no 
significant differences in the infarct size between these three groups.
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intracellular calcium overload which causes myocardial injury 

[3,17-19]. The cardioprotective effects of PP188, an emulsifying 

agent in MP were also evaluated. Animal models underwent 2 

hours of cardiopulmonary bypass with or without pretreatment 

with PP188. PP188 was associated with potentially beneficial 

changes in membrane protein expression, reduced capillary 

leakage, less hemodilution [7], and reduced membrane injury 

from ischemia and reperfusion [8,11].

In many previous studies, propofol and PP188 have been 

demonstrated to have myocardial protective effects, but to the 

best of our knowledge there is no report about cardioprotection 

by MP which consists of propofol and PP188. In our study, we 

evaluated whether propofol emulsified with PP188, MP, had an 

additive or synergistic cardioprotective effect against ischemia-

reperfusion injury. LP is known to have myocardial protective 

effect in the concentration range 25-100 μM (4.46-17.83 μg/

ml) in isolated rat hearts [1,2,12]. Clinically, the recommended 

propofol concentration is 3-6 μg/ml for general anesthesia. 

We chose a LP concentration of 6 μg/ml, this concentration has 

been clinically proven to be effective in myocardial protection 

against ischemia and reperfusion injury and falls in the 

recommended propofol concentration range. Protein binding 

of propofol ranges from 97 to 99% [20], and only a small fraction 

of administrated propofol exists as free propofol. However, not 

only free propofol in plasma but also propofol which is bound to 

protein or incorporated in cellular membrane can be effective 

in myocardial protection [1]. These findings mean that the total 

LP concentration in the perfusate solution, and not the free 

propofol concentration, is related to myocardial protection. The 

pharmacokinetics and pharmacodynamics of MP were similar 

to those of LP [14,21], and an MP concentration of 6 μg/ml was 

also used in the present study.

To compare infarct size in each group, we decided to use 

ischemic and reperfusion periods of 30 and 60 minutes, 

respectively. The ischemic and reperfusion periods were 

determined based on the previous studies. Infarct size reached 

its maximum after 35 minutes of global ischemia [22] and 

reperfusion for 60 minutes was optimal because the infarct 

appeared homogeneous at that time and did not become larger 

with longer reperfusion periods [23].

In the MP group, LVESP remains constant after initial 

stabilization but the heart rate was significantly reduced at 

5, 30 and 60 minutes of reperfusion. In the PP group, LVESP 

was maintained near baseline unlike that in the LP group, and 

HR recovered towards the baseline value after reperfusion. 

Constant LVESP in the MP group may enable other vital organs 

to maintain blood flow even after ischemia and reperfusion 

injury and the low heart rate may help reduce myocardial 

oxygen demand and subsequent recovery of the injured 

myocardium.

LVEDP in the LP group and in the MP group was significantly 

lower than that in the control group during early reperfusion 

period. The PP group showed increased LVEDP similar to that 

in the control group. These findings implicate that propofol 

decreased LVEDP, which was increased due to ischemia-

induced ventricular wall stiffness. This result is consistent with 

the previously reported propofol-induced myocardial protective 

effects [1]. In the MP group also, the LVEDP values were slightly 

higher than those in the LP group during reperfusion, but 

there were no statistically significant differences in LVEDP 

between the two groups. In all groups, LVEDP during the later 

reperfusion period was decreased towards the baseline values, 

and hence the long-term hemodynamic impact of PP188 could 

be negligible.

Infarct size in the LP, MP, and PP groups was smaller than 

that in the control group and infarct size did not differ between 

these 3 groups. Myocardial tissue edema can develop due to 

various pathologic conditions including myocardial ischemia, 

cardiopulmonary bypass, hypertension, and sepsis. Microvascular 

fluid loss is one of the leading causes of tissue edema, which 

contributes to cardiac dysfunction [24]. This damage to 

microvascular integrity is associated with loss of glycocalyx, 

reduction in the number of negatively charged molecules at the 

endothelial cell surface [25,26]. PP188 has membrane protecting 

effects by a sealing these damaged cell membranes [27]. This 

characteristic property of PP188 could produce myocardial 

protective effect against ischemia-reperfusion injury. According 

to our results, the infarct size in the MP group was similar to 

that in the LP group, even though MP consists of propofol and 

PP188. This finding demonstrated that PP188 did not interfere 

with the myocardial protective effects of propofol but it also did 

not have an additive or synergistic effect with propofol.

In terms of hemodynamics in this study, in the MP group, 

LVESP was maintained near baseline during the reperfusion 

period. But in the LP group, LVESP was lower than the baseline 

value during reperfusion. In the MP group, LVEDP remained 

close to the baseline during reperfusion unlike that in the LP 

group. These features are probably due to the nature of the 

emulsifier used in each propofol. Lipids are known to have 

no beneficial effects on myocardial protection from ischemia 

and reperfusion injury [28]. On the contrary, PP188 is known 

to have myocardial protective effects due to its cell membrane 

protecting effects [7-11]. However, the comparison between 

the MP group and the LP group revealed that hemodynamic 

parameters or infarct size were not significantly different 

between the two groups. In other words, the myocardial 

protective effect of MP was similar to that of LP, and this finding 

supported the conclusion that no additive cardioprotective 

effects were demonstrated with the use of MP. 

In conclusion, we demonstrated that MP administered 
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before and after myocardial ischemia results in hemodynamic 

changes similar to those with LP, and the concentrations of MP 

required for achieving myocardial protective effects following 

ischemia and reperfusion also did not differ from those of 

LP. PP188 used as an emulsifying agent for MP did not any 

influence the myocardial protective effect of propofol in spite 

of its own myocardial protective effects. We suggest that MP 

with less lipid-related side effects can be more useful than LP in 

anesthesia for cardiac surgery.
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