
Classification of HIV-1 Sequences Using Profile Hidden
Markov Models
Sanjiv K. Dwivedi1,2, Supratim Sengupta1,3*

1 School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India, 2 School of Sciences, Indian Institute of Technology, Indore, Indore,

India, 3Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, India

Abstract

Accurate classification of HIV-1 subtypes is essential for studying the dynamic spatial distribution pattern of HIV-1 subtypes
and also for developing effective methods of treatment that can be targeted to attack specific subtypes. We propose
a classification method based on profile Hidden Markov Model that can accurately identify an unknown strain. We show
that a standard method that relies on the construction of a positive training set only, to capture unique features associated
with a particular subtype, can accurately classify sequences belonging to all subtypes except B and D. We point out the
drawbacks of the standard method; namely, an arbitrary choice of threshold to distinguish between true positives and true
negatives, and the inability to discriminate between closely related subtypes. We then propose an improved classification
method based on construction of a positive as well as a negative training set to improve discriminating ability between
closely related subtypes like B and D. Finally, we show how the improved method can be used to accurately determine the
subtype composition of Common Recombinant Forms of the virus that are made up of two or more subtypes. Our method
provides a simple and highly accurate alternative to other classification methods and will be useful in accurately annotating
newly sequenced HIV-1 strains.
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Introduction

HIV affects millions of people worldwide and poses significant

public health challenges especially in developing countries which

lack the resources to effectively combat the AIDS pandemic. A

major characteristic of HIV virus is its ability to rapidly mutate

into different forms thereby eluding the ability of drugs to

effectively attack and destroy it. While a complete cure for HIV/

AIDS still eludes researchers, more recently a cocktail of drugs has

proved quite effective in considerably enhancing the life-span of

patients [1] infected by the virus. However, the drug cocktails have

to be designed to target a specific strain of virus and it is therefore

essential to know the strain which infects the patient in order to

prescribe an effective course of treatment.

HIV-1 strains have been classified into three distinct groups – M

(major), O (outlier) and N (non-M, non-O) based on their genetic

variability. Most HIV-1 viruses fall in group M which has been

further sub-divided [2,3] into distinct subtypes –

A,B,C,D,F,G,H,J,K based on phylogenetic clustering of se-

quences. Some subtypes like A (and F) have been further sub-

divided into sub-subtypes A1, A2 (and F1, F2) also based on

phylogenetic clustering of sequences within the subtype.

Analysis of the geographical spread of different HIV strains [4]

indicates that subtype C is found predominantly in China, India,

Nepal and South Africa; while subtype B is most commonly found

in patients residing in the Americas, Australia, Japan, Thailand

and Western Europe. Subtypes A and D are common in Africa

while subtype F has been found predominantly in Central Africa,

South America and Eastern Europe. However, the ease of trans-

continental mobility implies that patients infected by a strain not

typically found in a particular region can often appear in that

region [5,6]. This has important implications for treatment since

many retroviral drug cocktails are specifically tailored for

a particular strain. It is therefore essential to develop an efficient

method for subtype determination of an HIV-1 strain. Developing

effective treatments against HIV-1 is further complicated by the

presence of Circulating Recombinant Forms (CRFs) which

frequently arise as a result of recombination [7] of two or more

HIV-1 subtypes. This poses the additional challenge of effectively

determining the subtype composition of a CRF.

Most of the methods developed so far to determine the subtype

of unknown HIV-1 sequences are based on obtaining pairwise-

distances between sequences or on phylogenetic analysis [8–14]. In

these methods subtype determination was based on the clustering

of the unknown sequence in the phylogenetic tree with sequences

of a known subtype. Early work on classification [8] made use of

the genetic variation of the env region of HIV-1 sequences to

construct the phylogenetic tree. Subtypes A to F could be

successfully classified using this method. The gag region of HIV-

1 was also used [9] for phylogenetic tree construction and

improved classification. Phylogenetic analysis based on both env

and gag regions [10–12] were subsequently used to reveal the

presence of subtypes G to J. However, phylogenetic studies based

on these regions alone were unable to distinguish between distinct

clusters within subtypes A and F which were later found from

phylogenetic tree construction based on whole-genome analysis
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[13]. Further investigations [14] also revealed earlier errors in

classification [11] by pointing out that subtype I was found to be

a CRF made up of subtypes A and G. It has become clear that

phylogenetic analysis based on complete genomes is much more

reliable than those based on short segments of the HIV-1 genome.

However, complete genomes are often not available and there is

need for a method which accurately determines the subtype of

strains for which only a segment of the genome has been

sequenced.

More recently several new methods [15–20] have been

developed to improve the accuracy of HIV-1 subtype classifica-

tion. Gale et al. [16] and Myers et al. [17] developed a classification

tool (STAR) that used subtype specific profiles created by Position

Specific Scoring Matrices (PSSMs) from multiple sequence

alignments of HIV-1 sequence data. These subtype profiles were

then used to score an unknown sequence to determine its subtype

with high accuracy. Hraber et al. [18] developed a method that

combines information from pairwise distances and phylogenetic

methods. They used the branching index (BI) to determine how

closely a test sequence clusters with sequences belonging to a given

subtype. Pandit et al. [19] used Chaos Game Representation to

find subtype specific patterns which allow for accurate classifica-

tion.

Hidden Markov Models (HMMs) have been successfully used

[21–23] for identifying conserved patterns in protein [24] and

nucleotide [25] sequences. Profile HMMs (pHMMs) are con-

structed from multiple sequence alignments (MSA) of a set of

homologous sequences and can capture the unique characteristics

of the set. Hence they can be used to determine whether an

unknown sequence can be considered to be homologous to the set

of sequences that were used to build the MSA. Recently, pHMMs

have also been shown [25] to be extremely useful for fast and

accurate classification of a type of regulatory RNA called

riboswitches. Variations of pHMMs have also been used to detect

breakpoints in recombinant HIV-1 strains by several research

groups [26–30].

Recently a method based on pHMM called the jumping profile

Hidden Markov Model (jpHMM) has been developed [26–27] to

accurately determine the subtype composition as well as determine

the location of breakpoints in CRFs. jpHMM is a generalization of

the jumping alignment method [31] and is based on aligning

a query sequence to the multiple sequence alignment of entire

subtypes and not just to a single reference sequence belonging to

a subtype as in the case of an the jumping alignment algorithm.

Jumps between subtypes are allowed with a low probability (which

is tuned) albeit with certain restrictions. Using this method, Schultz

et al. [26–27] have been able to predict the subtype composition of

CRFs as well determine the location of the breakpoints with higher

accuracy compared to the popular recombination detection tool

SimPlot [28]. Very recently, Truszkowski and Brown [29] have

developed a new algorithm to improve the accuracy of breakpoint

predictions by the jpHMM method. Westesson and Holmes [30]

combined phylogenetic analysis and HMMs to detect breakpoints

accurately by detecting changes in phylogenetic tree topology

across multiple sequence alignments. All these papers focus on the

accuracy of breakpoint detection in recombinant HIV-1 strains.

Our main objective in this paper is to present an efficient and

highly accurate pHMM-based method to classify HIV-1 se-

quences. Although our method cannot detect recombination

breakpoints, it nevertheless provides a simple and unified scheme

for detecting the subtype composition of CRFs with high accuracy.

Results

We have used profile Hidden Markov Models to classify

sequences belonging to the M group of HIV-1 to appropriate

subtypes. We find that the standard method of classification

(described in the ‘‘Methods’’ section) based on construction of

a positive training set containing six sequences known to belong to

a particular subtype, is adequate for classifying the strains of HIV-

1 that belong to subtypes A,C,F and G with 100% sensitivity and

specificity. However, the close similarity between sequences that

belong to subtypes B and D results in reduction of the accuracy of

classification using the standard method. We then demonstrate the

use of an improved method based on construction of a positive and

a negative training set for accurately discriminating between

sequences belonging to the B and D subtypes. We find that these

sequences can be classified with 100% accuracy using the

improved method. Finally, we demonstrate how our pHMM-

based method of classification can be used to identify the

composition of CRF’s that contain segments belonging to multiple

subtypes of HIV-1.

Classification using the Standard Method
A pHMM is constructed for each HIV-1 subtype using a positive

training set only. It is then used to determine the bit-scores of all

sequences belonging to the test set. For a given threshold, which is

arbitrarily fixed for a given subtype, based on the distribution of

scores for all the sequences in the test-set; the model can predict

whether the query sequence can be considered to be a member of

that subtype, based on its bit score. Fig. 1, 2, 3 below shows the

distribution of scores of all the sequences belonging to group M of

HIV-1 when the training sets are constructed using sequences

known to belong to subtypes C, B and D respectively.

When sequences belonging to subtype C are used to construct

the training set, a clear demarcation is observed (Fig.1) between

the minimum score of some sequences from the test set (indicated

by Tp) and the maximum score of the remaining sub-set (indicated

by Tn). The former sequences are found to belong to subtype C

and the latter sequences belong to subtypes other than C. Hence

Figure 1. Subtype C classification using the standard method.
Distribution of Z-scores for all HIV-1, group M sequences in the
database when the training set (labelled TS) is constructed using six
sequences belonging to the subtype C. Tp (dashed line) denotes the
minimum score of some sequences belonging to the test set and Tn
(solid line) denotes the maximum score of the remaining sequences.
doi:10.1371/journal.pone.0036566.g001

Classification of HIV-1 Sequences

PLoS ONE | www.plosone.org 2 May 2012 | Volume 7 | Issue 5 | e36566



specifying a threshold between Tp and Tn allows for classification

of sequences belonging to the C subtype with 100% accuracy.

Similar results are obtained for classification of sequences that

belong to subtypes of M other than B and D. However, the

standard method was unable to accurately discriminate between

sequences belonging to the B and D subtypes. This is evident from

Fig. 2 and 3 which show the Z-score distributions that is obtained

when sequences from subtypes B and D respectively are used to

construct the training set. Both the figures show significant overlap

between the scores of some of the sequences that belong to B and

D subtypes. Therefore an appropriate threshold cannot be found

for which all sequences belonging to B and D subtypes can be

accurately classified. These results indicate a close similarity

between strains B and D as a result of which the profile obtained

on the basis of the positive training set of either B or D only is

insufficient to capture the unique characteristics of strains B and

D.

Performance of Models Constructed for HIV-1 Subtypes
Belonging to the Group M
To determine the effectiveness of our pHMMs in accurately

classifying query sequences into appropriate subtypes, it is

necessary to determine the sensitivity and specificity of our profile

Hidden Markov Models. For a fixed threshold score, the pHMMs

can predict whether a specific query sequence in the test-set is

a true positive (TP) if it correctly identifies it as belonging to the

specific subtype for which the model was constructed or a false

negative (FN) if it incorrectly identifies it as a non-member.

Similarly, the model can correctly classify non-members as true

negatives (TN) or false positives (FP) when it incorrectly predicts

a non-member to be a homolog. Sensitivity and Specificity are

then defined as Sensitivity =TP/(TP+FN) and Specificity =TP/

(TP+FP). The Receiver Operator Characteristic (ROC) Curves

obtained by plotting Sensitivity v/s 1-Specificity is a measure of

the ability of each pHMM to accurately classify the test sequence

and discriminate between sequences belonging to different

subtypes. ROC curves for subtypes C, B and D are shown in

Fig.4. The plot shown in Fig. 4(a) is obtained using the standard

method while the ones in Fig. 4(b) and 4(c) have been obtained

using the improved method. Fig. 4(a) clearly indicates that the

pHMM for subtype C is able to classify sequences with 100%

sensitivity and specificity. pHMM’s for all subtypes except B and D

also show perfect sensitivity and specificity. The standard method

of classification using pHMMs is not able to discriminate between

sequences belonging to subtypes B and D with 100% accuracy as

evident from dotted and dashed lines in Fig. 4(a). However, when

the improved method of classification is used, performance of the

pHMM classifier improves significantly and it is able to accurately

classify sequences belonging to B and D subtypes as indicated by

the ROC curves in Fig. 4(b) and Fig.4(c).

Classification using the Improved Method
The standard method of classification while effective in some

cases, suffers from two main drawbacks. Firstly it is unable to

accurately discriminate between distinct strains which nevertheless

show close sequence similarity and secondly, the threshold for

distinguishing true positives from true negatives has to be

arbitrarily chosen. The threshold can change as the number of

sequences in the database changes. To avoid these problems, we

used the improved method of classification using pHMMs. In this

improved method, pHMMs built from a positive training set and

a negative training set are associated with each subtype. Using

both positive and negative training sets allow for construction of

models that are finely tuned to identify the unique features of

a specific subtype and detect small differences between strains that

belong to closely related subtypes. Moreover, the threshold for

distinguishing true positives from false positives can be un-

ambiguously fixed to a Z-score of zero in this method. Using

this method, it is even possible to distinguish between sub-subtypes

F1 and F2 of subtype F, (See Fig.S3 in ‘‘Supporting information’’)

as well as sub-subtypes A1 and A2 of subtype A (data not shown).

Fig.5–6 shows the distribution of Z-scores for sequences of the

test set as well as the training set when the profile HMM is built for

subtypes B and D respectively. The X-axis shows the subtypes to

which the strains in the test set belong, as annotated in the Los

Alamos HIV database. In Fig.5, the strains belonging to subtype B

are clearly distinguished from all other strains in the test set by

a positive Z-score. The improved method also leads to classifica-

tion of sequences belonging to subtype D (Fig. 6) with 100%

accuracy. This is also evident from the histogram plot (Fig.5b, 6b)

Figure 2. Subtype B classification using the standard method.
Distribution of Z-scores for all HIV-1 group M sequences in the database
when the training set is constructed using sequences belonging to the
subtype B.
doi:10.1371/journal.pone.0036566.g002

Figure 3. Subtype D classification using the standard method.
Distribution of Z-scores for all HIV-1 group M sequences in the database
when the training set is constructed using sequences belonging to the
subtype D.
doi:10.1371/journal.pone.0036566.g003
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showing the Z-score frequency distribution. However, in the case

of D classification, this is achieved only after increasing the

number of B subtype sequences in the negative training set from

two to six to allow for improved characterization of the D profile.

The accession numbers of sequences used for building the positive

and negative training sets are given in Tables S1, S2, S3, S4 in the

‘‘Supporting information’’. Results of classification of other

subtypes using the improved method are shown in Figs.S1, S2,

S3, S4, S5 in the ‘‘Supporting Information’’. Results of

classification of the HIV-1 sequences on the basis of the env

region are shown in Figs.S12, S13, S14, S15, S16, S17, S18, S19

in the ‘‘Supporting information’’. See Tables S7, S8, S9, S10, S11

for information on accession numbers of the sequences used to

build the positive and negative training sets.

Analysis of CRF’s
CRF’s present a unique challenge to classification methods

because they are composed of two or more HIV-1 strains. The

improved pHMM method described in the previous section allows

us to accurately determine the mixture of subtypes that make up

the CRF. The reliability of this method depends on the length of

the segment of a particular subtype that is present in the region

used for constructing the pHMMs. We show below how the

pHMM method can be successfully employed in determining the

presence of subtypes in the gag-pol region. If the segment length of

a specific subtype in the gag-pol region is significant enough for its

features to be captured in the pHMM, then that aspect will be

reflected in the Z-score returned by the classifier. By using the

pHMMs for the different subtypes to score a query CRF sequence,

it is possible to identify the subtype composition by the Z-scores

that are returned.

In the examples below, we use our method to detect CRF

strains made up of B and F subtypes in the gag-pol region. We first

determine the Z-scores of all the CRF strains in the database by

using a positive classifier (pHMM) constructed using 31 sequences

from subtype B and a negative classifier constructed using 2

sequences each from all subtypes except D for which case 22

sequences were used. This was done to enable better discrimina-

tion between B and D subtype segments. (The tables giving the

number of sequences used to build the positive and negative

training sets necessary for determining the subtype composition of

CRFs are Tables S5 and S6 in the ‘‘Supporting information’’.)

Figure 4. ROC curves. (a) ROC curves for subtypes C (solid line), B (dotted line) and D (dashed line) obtained using the standard method. Roc curves
for (b) B, (c) D; obtained using the improved method.
doi:10.1371/journal.pone.0036566.g004

Figure 5. Subtype B classification using the improved method. (a) Distribution of Z-scores for group M sequences; (b) Frequency distribution
of Z-scores, when six sequences of subtype B are used in the positive training set.
doi:10.1371/journal.pone.0036566.g005
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Fig. 7(a) shows the Z-scores of all the CRF strains that contain one

or more segments of B subtype as specified in the Los Alamos

HIV1 database. The X-axis shows the CRF strains (containing B

subtype) that are listed in the database and the Y-axis gives the

corresponding Z-scores. In two (CRF28_BF and CRF_39BF) out

of the twenty-three instances, the sequences have Z-scores that are

either greater than or very close to the threshold Tp. In these

cases, most of the gag-pol segment consists of B subtype which

explains the high Z-scores. In three (CRF14_BG, CRF15_01B,

CRF46_BF) out of the twenty-three instances, the CRF strains

containing B have Z-scores below Tn. In all these cases, the gag-pol

segment does not contain any portion belonging to the B subtype.

For example, in the case of CRF46_BF, the gag-pol segment

consists entirely of subtype F and subtype B is present only in the

nef segment and in the 39 LTR. [32]. For strains whose Z-scores

are very close to the threshold Tn (CRF_08BC, CRF_20BG,

CRF_23BG, CRF_24BG, CRF_31BC), only a small region of B is

present in the gag-pol segment. For example, in the case of

CRF_31BC, the B subtype region has a length of approximately

223 nucleotides [33]. Even in these cases, one of the three

sequences belonging to these strains has a Z-score above the

threshold Tn and two sequences have Z-scores below but close to

the threshold Tn. This is also consistent with the subtype

prediction of the jpHMM method. From this analysis we conclude

that sections belonging to B subtype are present in the gag-pol

segment of only twenty out of the twenty-three CRF strains

containing B. To avoid cluttering the figure, we have not shown

the Z-scores for CRF strains that do not contain the B-subtype.

Their Z-scores fall below the Tn threshold.

We then determined the Z-scores of all the CRF strains in the

database by using a positive classifier (pHMM) constructed with

using 10 sequences from subtype F (8 of F1 and 2 of F2) and

a negative classifier constructed using 2 sequences each from all

subtypes except F1 and F2. Fig. 7(b) shows the Z-scores of all the

CRF strains that contain one or more segments of F subtype as

specified in the Los Alamos HIV database. The X-axis shows the

CRF strains (containing F subtype) that are listed in the database

and the Y-axis gives the corresponding Z-scores. In four out of the

twelve instances (CRF12_BF, CRF17_BF, CRF44_BF and

CRF_46BF), the CRF strains have Z-scores that are either greater

than or very close to the threshold Tp. In these cases, most or all

(CRF46_BF) of the gag-pol segment consists of F subtype. In two

instances (CRF18_cpx, CRF39_BF) instance, the CRF strains

containing F have Z-scores slightly below Tn. According to the

listing in the HIV database, the gag-pol segment in CRF18_cpx

contains only a small fragment (411 nucleotides) belonging to the F

subtype. However, neither our method nor the jpHMM method is

able to identify this short region of subtype F. The jpHMM

method detects the subtypes A,B,C,G,J in the gag-pol region while

our method detects the subtypes A,G (see Figures 7(b), S6c and

S9c in the ‘‘supporting information’’.) These predictions are to be

contrasted with the HIV database listing based on Thomson et al.

[34] which detects subtypes A,G,F, H in addition to an unknown

subtype U in the gag-pol region. In the case of CRF39_BF,

Guimares et al. [35] indicates that this strain contains two

disconnected regions of subtype F (having length 185 and 218

nucleotides respectively) in addition to subtype B in the gag-pol

region. However, neither our method nor the jpHMM or STAR

methods is able to detect these short segments of subtype F and all

these methods predict the entire gag-pol region to be made up of

subtype B only.

Using our classification method we were thus able to accurately

identify all the ten CRF strains which contain segments from both B

and F subtypes in their gag-pol region. This analysis can be

repeated using profiles of other subtypes (see Figures S6, S7, S8,

S9, S10, S11 in ‘‘supporting information’’) as well as other

segments of the HIV genome, to determine the composition of

most CRF strains with a high level of accuracy.

Table 1 gives the accuracy of subtype detection in the gag-pol

region of CRFs using our method. The second and third columns

of Table 1 give the predicted and actual number of CRFs made up

of the specified subtype in the gag-pol region respectively. Each

CRF strain can have more than one sequence and we consider

a subtype to be successfully detected in a particular strain if the

subtype is detected in at least one sequence belonging to that

strain. Except for a few cases, a specified subtype is detected in all

sequences belonging to that strain. The fourth and fifth columns

specify the predicted and actual number of sequences containing

a specific subtype in the gag-pol region. The subtype detection

sensitivity for each subtype is calculated on the basis of the

numbers in the fourth and fifth columns. The specificity is 100%

for all subtypes since we do not detect any false positives. The few

cases where our method failed to detect the presence of subtype

can be attributed to the presence of very short lengths of fragments

Figure 6. Subtype D classification using the improved method. (a) Distribution of Z-scores for the test and training sets; (b) Frequency
distribution of Z-scores, when six sequences of subtype D are used in the positive training set.
doi:10.1371/journal.pone.0036566.g006
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associated with that subtype. The strain CRF16_A2D was missed

by our method (as well as by the STAR subtype prediction method

which finds it to be a pure A subtype only) because it contains two

disconnected fragments (of length 256 and 179 nucleotides) that

were too short to be detected by our method. Similarly, our

pHMM method (as well as the jpHMM method) was unable to

identify subtype G in the gag-pol region of the strain CRF19_cpx

because of the short length (320 nucleotides) of the G fragment.

The STAR method does not even identify this sequence as a CRF,

predicting it to be a pure D sequence. A small number of

sequences of subtype H as well as the presence of subtype H in

short fragments in a very small number of the gag-pol region of

CRFs make its detection in CRFs unreliable. Nevertheless, we

were able to detect subtype H in all sequences belonging to the

strain CRF27_cpx but not in the strain CRF18_cpx. As can be

seen from Table 1, the subtype detection accuracy is very high for

subtypes A, C, D, G and J. In fact, in spite of the small number of

available sequences of subtype J, our pHMM model was successful

in detecting that subtype in CRFs with 100% accuracy. The

STAR method could not identify the J and H containing CRFs,

predicting them to be pure subtypes.

We also analysed the env region for subtype detection. In

contrast to the gag-pol region, the env region contains relatively

fewer breakpoints. Moreover, in many instances it contains only

a very short fragment (,200 nucleotides) of one of the two

subtypes making up the env region. Hence the subtype detection

accuracy in the env region is relatively lower for both our method

as well as the jpHMM method. Figures S20, S21, S22, S23, S24,

S25, S26, S27 in the ‘‘supporting information’’ shows the results of

detection of a subtype in the env region of CRFs. Table 2 shows the

accuracy of subtype detection in the env region of CRFs using our

method. A comparison of the efficacy of our method of subtype

detection in the env region with that of the jpHMM method also

reveals that in most cases, the performance of our method is

comparable to the jpHMM method.

.

For subtype A detection, both our method as well as the

jpHMM method are unable to detect a small fragment (less than

200 nucleotides) of subtype A2 in CRF21_A2D. This can be

attributed to the small number of sequences of subtype A2

available for training as well as due to the short length of the A2

fragment. Our method is also unable to detect subtype A in the env

region of CRF03_AB even though the fragment is detected by the

jpHMMmethod. CRFs containing crf01_AE were not included in

the count of CRFs containing subtype A.

Many of the CRFs have very short fragments of subtype B in the

env region. Hence we are able to detect this subtype in eleven out

of the sixteen CRFs that contain this subtype. In the case of

CRF12_BF, we were able to detect the short fragment (179

nucleotides) of subtype B in only two of the seven sequences

available in contrast to the jpHMM method which was able to

detect the subtype in four sequences. Both our method as well as

the jpHMM method was unable to detect very short fragments

Figure 7. Detection of subtypes B and F in the gag-pol region of CRFs. Z-scores of CRF strains containing segments of (a) B subtype; (b) F
subtype. The numbers on the X-axis correspond to the various CRF strains as annotated in the Los Alamos HIV database. An abbreviated annotation is
used. For example, the label 14 refers to CRF14_BG and 28 refer to CRF28_BF etc. The solid and dashed lines correspond to the thresholds Tp and Tn
respectively.
doi:10.1371/journal.pone.0036566.g007
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(less than 105 nucleotides) of subtype B in

CRF20_BG,CRF23_BG,CRF24_BG and CRF_44_BF.

Our method was also able to detect subtypes C, F, J, G and H in

the env region of CRFs with high sensitivity. However, in the first

three cases, both our method, as well as the jpHMM method, was

unable to detect the corresponding subtype in the env region of one

CRF because of the very short segment length of the subtype in

the CRF. The large drop in sensitivity for subtype D detection can

be attributed to the inability of our method (and the jpHMM

method) to detect a very short fragment (having a length of 117

nucleotides) of that subtype in all the eleven sequences of

CRF35_AD.

In some cases where our subtype detection method in the env

region failed, the subtype fragment was found to span the end (or

beginning) of the env region and the beginning of the nef (or end of

the vpu) region. The short length of the subtype in the env region

was insufficient to contain adequate signatures associated with the

subtype that could be detected by our method. However, it is quite

likely that an inclusion of the env as well as the nef (or vpu) region

would have provided a subtype segment of sufficient length for its

associated signature to be detected by our method. In a few cases

of subtype detection in CRFs, some CRF01_AE sequences are

seen to have Z-scores above the threshold Tn. A large fraction of

the env region of this CRF consists of an unclassified segment (E)

which does not have any full length sequences associated with it.

Hence, it is plausible that the training sets for those specific

subtypes were unable to appropriately distinguish signatures from

this segment from signatures associated with the corresponding

subtype. This problem may be resolved by including CRF01_AE

sequences in the negative training sets for all subtypes.

Discussion

We have shown that profile Hidden Markov Models can be

successfully employed to classify HIV-1 strains belonging to the

group M into different subtypes. Our method does not rely on the

choice of an arbitrary threshold. We have also demonstrated that

the method is particularly effective in determining the subtype

composition of different CRF strains. We used the gag-pol and env

regions for our analysis because those are the regions which

contain many of the breakpoints denoting recombination in the

CRFs. Accurate classification of a HIV-1 sequence is more

challenging when only a fraction of the genome is available. Quite

often, only a part of the viral genome from a new strain is

sequenced and it therefore becomes necessary to classify it

accurately on the basis of the sequenced region. The large size

of the whole genome makes it impossible to use tools like

HMMER3 to classify the sequence. Moreover, since a fraction

of the complete genome (either the gag-pol or the env regions) can

be used to classify the sequence much faster and without

compromising on the classification accuracy, it is far more

advantageous to use a region of the genome instead of the whole

genome for classification purposes.

Table 1 Accuracy of subtype detection in the gag-pol region of CRFs.

Subtype present in the gag-
pol region of CRFs

Predicted #CRFs
containing the subtype

Actual #CRFs containing
the subtype

Predicted
#sequences
containing subtype X

Actual #sequences
containing subtype XSensitivity

A 23 23 409 410 99.76%

B 19 19 91 95 95.79%

C 4 4 24 24 100%

D 5 6 23 25 92%

F 11 13 54 61 88.53%

G 15 16 133 136 97.79%

H 1 2 3 7 42.86%

J 3 3 19 19 100%

doi:10.1371/journal.pone.0036566.t001

Table 2 Accuracy of subtype detection in the env region of CRFs.

Subtype in the
env region of
CRFs

Predicted #CRFs
having subtype X

Predicted #CRFs
using jpHMM

Actual #CRFs containing
the subtype

Predicted
#sequences
containing subtype X

Actual #sequences
containing subtype XSensitivity

A 16 17 18 376 383 98.17%

B 11 12 16 59 86 68.61%

C 4 4 4 24 24 100.0%

D 3 3 5 9 23 39.13%

F 9 9 10 52 54 96.30%

G 10 13 14 59 69 85.51%

H 2 2 2 8 8 100%

J 2 2 3 20 23 86.96%

doi:10.1371/journal.pone.0036566.t002
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Another advantage of this method is that it can be used for

subtype classification even if a small number of sequences are

available for a particular subtype. The positive profile HMM can

be effectively constructed from as few as six sequences as long as

the sequences contain sufficient diversity for the positive (and

negative) profiles to capture the unique features associated with the

subtype. Even in the case of subtypes H and J which contain very

few sequences, we find that a pHMM built (using the gag-pol

region) with 3 out of the 4 sequences of H (or 2 out of the 4

sequences of J) can accurately classify the remaining sequences as

is evident from Figure S5 in ‘‘supporting information’’. Similarly,

for the env region, a profile made with 3 out of 4 sequences of H (or

J) can classify the remaining sequence accurately as is seen in

Figures S18, S19 in the ‘‘supporting information’’.

The sequences labelled as ‘‘unclassified’’ in the database were

not found to be associated with any subtype in the sense that their

Z-scores were always negative. However, some unclassified

sequences show strong similarity with certain subtypes as manifest

through their Z-scores which were very close to zero. For instance,

the unclassified strain AY046058 has a Z-score which is very close

to the zero threshold when the positive profile is constructed for

subtype A. This suggests that this strain share similarities with the

A-subtype and may explain why it clusters with the A-subtype in

phylogenetic studies (Pandit et al., 2010). Another unclassified

sequence (accession number FJ388921) share similarities with

sequences belonging to the F subtype, as evident from their Z-

scores (see Fig.S3 in ‘‘supporting information’’). This is also

consistent with results from previous analysis where these

sequences have been found to cluster with subtype K and form

the sister group of subtype F.

The performance of our pHMM based classification method is

also better than the subtype analyser method based on construc-

tion of PSSMs [16,17]. Their method, which is used to assign

sequence subtypes to the PR and RT sequences belonging to the

Pol region, depends on the choice of a scoring threshold as well as

a choice of positive and negative discriminant thresholds. Even for

optimal choice of such thresholds, the accuracy of classification of

pure subtypes was 98.6%. However, this method was far less

accurate (60%) in identifying CRFs. The STAR-rec method which

allowed for improved accuracy in identification of CRFs had an

accuracy of about 93–95% for sub-typing of both pure subtypes

and CRFs, but the accuracy of their CRF subtype detection

method was obtained on the basis of only 20 CRF sequences. The

STAR program is also restricted to detect subtypes in only the Pol

region of CRFs. Moreover, the program cannot correctly de-

termine the subtype composition for many of the CRF strains

currently available in the HIV database, and predicts them to

belong to pure subtypes. In comparison, our improved pHMM

based method can classify pure sequences with 100% accuracy

based on the sign of the Z-score of the query sequence, since the Z-

score threshold is always fixed at zero. Moreover, our method can

be adopted without modification to accurately identify the subtype

composition of most CRFs with the accuracy of subtype detection

in CRFs being above 95% for most subtypes. Determination of the

subtype composition of CRFs may fail only in those rare

circumstances when the subtype present has a very short segment

in the region being analysed or if that region is constituted entirely

of one subtype only and the other subtype(s) are present in

a different region of the CRF. The problem can be easily resolved

by constructing pHMMs from other regions of the genome and

repeating the analysis. By combining the results of such analysis, it

is straightforward to infer the subtype composition of the CRF

accurately.

Although the jpHMM method [26,27] is primarily geared for

identifying breakpoints in CRFs, it can also be used for detecting

subtypes. An extensive comparison of the accuracy of that

classification method with ours is not possible since those papers

do not provide sufficient data on subtype classification for all real

HIV-1 strains. While being based on pHMM, our method of

classification differs from the jpHMM method of Schultz et al. In

our case, 100% classification accuracy is achieved by introducing

a negative training set in addition to the positive training set used

in the standard pHMM method. As far as subtype detection in

CRFs is concerned, our pHMM method performs as well as the

jpHMM method. Moreover, in our method, once the positive and

negative profiles are created, it is easy to generate the Z-score (on

the basis of which the query sequence is classified) for an entire

database of test sequences simultaneously. This makes it possible

to classify batches of query sequences rather than do so one query

sequenceat a time.

The pHMM based-method described in this paper provides

a unified and efficient method of determining the subtypes of

unknown HIV-1 sequences as well as CRFs. We believe it will

prove useful to HIV researchers for understanding the distribution

pattern of different types of HIV and for developing more effective

and targeted therapies against the disease.

Materials and Methods

All available HIV-1 genome sequences including CRF

sequences were downloaded from the Los Alamos HIV database.

For each subtype, six sequences were selected at random to build

the training set. Multiple sequence alignments (MSA) of the gag-pol

segment of these nucleotide sequences were created using the

MUSCLE 3.7 package [36]. A pHMM was then generated for

each of the MSA using the hmmbuild program from the HMMER3

package [37]. The log-odd or bit score for each of the 1511

genome sequences in the database (six of which were used for the

training set and the rest made up the test set, for each subtype) was

generated by the hmmsearch program in HMMER3. For pure (i.e.

non-CRF) sequences, we developed a classification method based

on the bit score. In this method, all sequences have a positive bit

score and the membership of a sequence in the corresponding

subtype was dependent on its bit score and a threshold score which

distinguished the true positives from the true negatives. If the bit-

score was found to be greater than the threshold score, the

corresponding query sequence was predicted to belong to the

subtype for which the pHMM was constructed. This threshold was

chosen arbitrarily to lie between the scores of the high-scoring and

low-scoring clusters of query sequences. Overlap between these

two clusters signifies imperfect classification. Even though this

threshold varied for classification of different subtypes, we were

able to unambiguously assign a threshold score for all subtypes

(except B and D) which allowed for accurate discrimination

between true positives and true negatives.

The standard method of classification described above was

unable to discriminate between sequences belonging to subtypes B

and D with 100% accuracy. We therefore used an improved

method for subtype classification that made use of a positive as

well as a negative profile HMM. Creation of these two different

profiles allowed us to capture the unique signatures associated with

a specific subtype and therefore more effectively distinguish

subtypes such as B and D which show a higher level of sequence

similarity than is observed between any other subtypes. For

subtypes other than B and D, a positive training set was

constructed for a specific subtype using six randomly chosen

sequences (avoiding redundancy) known to belong to that subtype.
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A positive profile HMM was created for that subtype (say subtype

X) from the MSA of the positive training set, using the hmmbuild

program in HMMER3. A negative training set was also

constructed using two sequences of the gag-pol segment from each

of the other subtypes. A negative profile HMM was then

constructed for subtype X from the MSA of the negative training

set. For classification of a query sequence using this method, a Z-

score is obtained by subtracting the bit score of the query sequence

generated by the negative profile HMM from the bit score of the

query sequence generated by the corresponding positive profile

HMM. This Z score is a measure of subtype specific signal and is

an effective measure for accurately classifying the query sequence.

This method also has the advantage of fixing the threshold score

(for all subtype classification) to zero. A query sequence is then

predicted to belong to subtype X if its Z-score is positive when the

positive pHMM is constructed using sequences belonging to

subtype X. Fig.8 gives the flowchart (see also File S1 in the

‘‘Supporting information’’) of the improved classification method.

Even with this method, some sequences belonging to subtype D

were misclassified as belonging to subtype B. However, this

problem was avoided when the number of sequences belonging to

subtype B in the negative training set (weight of B in the negative

training set) was increased from two to six. Subtypes such as A and

F are further divided into sub-subtypes. In the case of A, the

positive training set was created using two randomly chosen

sequences from A (i.e. those not belonging to either A1 or A2) and

two randomly chosen sequences from each of the sub-subtypes A1

and A2. In case of F, the positive training set was created using six

randomly chosen sequences from F1 sub-subtype only. Table

S1,S2, S3, S4 in ‘‘Supporting information’’ gives the numbers of

sequences used to create the positive and negative training sets for

each subtype. The pHMM profiles for the positive and negative

training sets for each subtype, constructed using the gag-pol region,

can be obtained from http://ccbb.jnu.ac.in/hiv1/pure-phmms.

The pHMM profiles for the positive and negative training sets for

each subtype, constructed using the env region, can be obtained

from http://ccbb.jnu.ac.in/hiv1/pure-phmms-env.

We used the improved method described above to determine

the subtype composition of CRFs. In some cases, the number of

sequences used to build the positive and negative profiles had to be

increased to enhance the sensitivity required for capturing unique

signatures associated with a subtype from a small subtype fragment

(see Tables S5, S6 and Tables S13, S14 in ‘‘Supporting

information’’). For the purpose of determining whether a given

subtype (X say) was represented in the gag-pol (or env) region of

a CRF, we defined two thresholds: (i) Tp which is the minimum Z

score of all the pure sequences belonging to X and (ii) Tn which is

maximum Z score of all the pure sequences (excluding unclassified

sequences) that do not belong to the X subtype. For determination

of Tn, we ignored the unclassified (U) sequences. If the query CRF

strain returns a Z score greater than Tn and less than Tp, we

predict that some portion of the gag-pol (or env) segment of the X

subtype is present in the CRF strain. If the CRF strains returns a Z

score greater than Tp then the gag-pol (or env) region of this strain

can be predicted to consist, either entirely of the X subtype, or of

a mixture in which the major fraction of the gag-pol (or env) region

is of X subtype. Table S12 and Table S15 give the thresholds for

detection of subtypes in the gag-pol and env region of CRFs

respectively. The method was tested on all 2033 CRF sequences

available in the database to determine the subtype composition of

a CRF in the gag-pol and env regions. The method can be repeated

using positive training sets made up of different subtypes to

determine the subtype composition of the gag-pol and env regions of

the CRF. The subtype composition of other segments of the CRF

can also be determined in a similar manner. This method can fail

to detect a particular subtype in a CRF only if the length of the

segment of that subtype is too small to contain subtype specific

signatures that have been captured by the pHMM. In determining

the subtype composition of CRFs, we did not distinguish between

sub-subtypes A1 and A2 of subtype A or F1 and F2 of subtype F.

In the former case, the positive training set was constructed using 2

sequences of subtype A and 2 sequences each of sub-subtypes A1

and A2. In the latter case, the positive training set was constructed

using 8 sequences from sub-subtype F1 and 2 from sub-subtype

Figure 8. Flowchart showing the improved method of classification using pHMMs.
doi:10.1371/journal.pone.0036566.g008
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F2. The pHMM profiles for the positive and negative training sets,

constructed using the gag-pol and env regions, and used for

identifying the subtype composition of CRFs, can be obtained

from http://ccbb.jnu.ac.in/hiv1/crf-phmms and http://ccbb.jnu.

ac.in/hiv1/env-crf-phmms respectively.

Supporting Information

Figure S1 Subtype A classification using the improved
method. (a) Distribution of Z-scores of group M sequences. (b)

Frequency distribution of Z-scores when six sequences from

subtype A are used to build the positive training set.

(PDF)

Figure S2 Subtype C classification using the improved
method. (a) Distribution of Z-scores of group M sequences. (b)

Frequency distribution of Z-scores when six sequences from

subtype C are used to build the positive training set.

(PDF)

Figure S3 Sub-subtype F1 classification using the im-
proved method. (a) Distribution of Z-scores of group M

sequences. (b) Frequency distribution of Z-scores when six

sequences from subtype F1 are used to build the positive training

set. The four sequences of subtype F2 have a Z-score close to zero

indicating their close similarity to sequences of subtype F1.

(PDF)

Figure S4 Subtype G classification using the improved
method. (a) Distribution of Z-scores of group M sequences. (b)

Frequency distribution of Z-scores when six sequences from

subtype G are used to build the positive training set.

(PDF)

Figure S5 Classification of subtypes (a) H (b) J using the
improved method. Three out of four sequences are used to

construct the positive profile HMM for H and two out of four

sequences are used to construct the positive profile HMM for J. In

both cases, the remaining sequences are correctly classified.

(PDF)

Figure S6 Detection of subtype A in the gag-pol region of
CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e): all CRF strains when the positive training set

is constructed using two sequences each belonging to A,A1 and

A2. Abbreviations are used to label CRF strains in the X-axis. For

example, the label 02 refers to CRF02_AG and 18 refer to

CRF18_cpx etc. The solid and dashed lines correspond to the

thresholds Tp and Tn respectively.

(PDF)

Figure S7 Detection of subtype C in the gag-pol region
of CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e) all CRF strains when the positive training set

is constructed using sixteen sequences belonging to C. The solid

and dashed lines correspond to the thresholds Tp and Tn

respectively.

(PDF)

Figure S8 Detection of subtype D in the gag-pol region
of CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e) all CRF strains when the positive training set

is constructed using fourteen sequences belonging to D. The solid

and dashed lines correspond to the thresholds Tp and Tn

respectively. Subtype D is not detected only in CRF16_A2D since

very small fragments of D are present in the gag-pol region. There

are no data points corresponding to CRF41_CD since sequences

belonging to that strain are not yet publicly available.

(PDF)

Figure S9 Detection of subtype G in the gag-pol region
of CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e) all CRF strains when the positive training set

is constructed using six sequences belonging to G. The solid and

dashed lines correspond to the thresholds Tp and Tn respectively.

(PDF)

Figure S10 Detection of subtype H in the gag-pol region
of CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e) all CRF strains when the positive training set

is constructed using four sequences belonging to H. The solid and

dashed lines correspond to the thresholds Tp and Tn respectively.

(PDF)

Figure S11 Detection of subtype J in the gag-pol region
of CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e) all CRF strains when the positive training set

is constructed using three sequences belonging to J. The solid and

dashed lines correspond to the thresholds Tp and Tn respectively.

(PDF)

Figure S12 Subtype A classification using the improved
method when the env region is used to construct the
positive and negative pHMMs. Distribution of Z-scores for

group M sequences.

(TIF)

Figure S13 Subtype B classification using the improved
method when the env region is used to construct the
positive and negative pHMMs. Distribution of Z-scores for

group M sequences.

(TIF)

Figure S14 Subtype C classification using the improved
method when the env region is used to construct the
positive and negative pHMMs. Distribution of Z-scores for

group M sequences.

(TIF)

Figure S15 Subtype D classification using the improved
method when the env region is used to construct the
positive and negative pHMMs. Distribution of Z-scores for

group M sequences.

(TIF)

Figure S16 Subtype F1 classification using the improved
method when the env region is used to construct the
positive and negative pHMMs. Distribution of Z-scores for

group M sequences.

(TIF)

Figure S17 Subtype G classification using the improved
method when the env region is used to construct the
positive and negative pHMMs. Distribution of Z-scores for

group M sequences.

(TIF)

Figure S18 Subtype H classification using the improved
method when the env region is used to construct the
positive and negative pHMMs. Distribution of Z-scores for

group M sequences.

(TIF)

Figure S19 Subtype J classification using the improved
method when the env region is used to construct the
positive and negative pHMMs. Distribution of Z-scores for

group M sequences.

(TIF)
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Figure S20 Detection of subtype A in the env region of
CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e): all CRF strains when the positive training set

is constructed using a total of twelve sequences belonging to A,A1

and A2. The solid and dashed lines correspond to the thresholds

Tp and Tn respectively.

(PDF)

Figure S21 Detection of subtype B in the env region of
CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e): all CRF strains when the positive training set

is constructed using thirty sequences each belonging to B. The

solid and dashed lines correspond to the thresholds Tp and Tn

respectively.

(PDF)

Figure S22 Detection of subtype C in the env region of
CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e) all CRF strains when the positive training set

is constructed using ten sequences belonging to C. The solid and

dashed lines correspond to the thresholds Tp and Tn respectively.

(PDF)

Figure S23 Detection of subtype D in the env region of
CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e) all CRF strains when the positive training set

is constructed using twenty sequences belonging to D. The solid

and dashed lines correspond to the thresholds Tp and Tn

respectively.

(PDF)

Figure S24 Detection of subtype F in the env region of
CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e) all CRF strains when the positive training set

is constructed using twelve sequences belonging to F. The solid

and dashed lines correspond to the thresholds Tp and Tn

respectively.

(PDF)

Figure S25 Detection of subtype G in the env region of
CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e) all CRF strains when the positive training set

is constructed using twelve sequences belonging to G. The solid

and dashed lines correspond to the thresholds Tp and Tn

respectively.

(PDF)

Figure S26 Detection of subtype H in the env region of
CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e) all CRF strains when the positive training set

is constructed using four sequences belonging to H. The solid and

dashed lines correspond to the thresholds Tp and Tn respectively.

(PDF)

Figure S27 Detection of subtype J in the env region of
CRF’s. The figures show the distribution of Z-scores of (a) pure

sequences and (b)-(e) all CRF strains when the positive training set

is constructed using four sequences belonging to J. The solid and

dashed lines correspond to the thresholds Tp and Tn respectively.

(PDF)

Table S1 Accession numbers of sequences making up
the positive training set for all sub-types except H & J
when the gag-pol region is used for classification.

(PDF)

Table S2 Accession numbers of sequences making up
the positive training set for sub-type H and J when the
gag-pol region is used for classification. Since there are

only 4 sequences of the gag-pol region for H and 3 for J, 3 of the 4

sequences of H and 2 of the 3 sequences of J were used to build the

respective pHMMs which were then successful in classifying the

remaining sequences.

(PDF)

Table S3 Accession numbers of sequences making up
the negative training set for all sub-types except D when
the gag-pol region is used for classification.
(PDF)

Table S4 Accession numbers of sequences making up
the negative training set for sub-type D when the gag-pol
region is used for classification.
(PDF)

Table S5 Number of sequences making up the positive
training set used for determining whether a given sub-
type (X) is present in the gag-pol region of a CRF.
(PDF)

Table S6 Number of sequences of each sub-type making
up the negative training set used for determining
whether a given sub-type (X) is present in the gag-pol
region of a CRF.
(PDF)

Table S7 Accession numbers of sequences making up
the positive training set for all sub-types, except H and J,
when the env region is used for classification.
(PDF)

Table S8 Accession numbers of sequences making up
the negative training set for all sub-types, except H and
J, when the env region is used for classification.
(PDF)

Table S9 Accession numbers of sequences making up
the positive training set for sub-type H and J when the
env region is used for classification. Since there are only 4

sequences of the env region for both H and J, three were used to

build the pHMM which was then successful in classifying the

remaining sequence. Note that a choice of any 3 of the 4 env

sequences can be used to build a pHMM which can successfully

classify the remaining one.

(PDF)

Table S10 Accession numbers of sequences making up
the negative training set for sub-type H when the env
region is used for classification.
(PDF)

Table S11 Accession numbers of sequences making up
the negative training set for sub-type J when the env
region is used for classification.
(PDF)

Table S12 Thresholds for detection of sub-types in the
gag-pol region of CRF strains.
(PDF)

Table S13 Number of sequences making up the positive
training set used for determining whether a given sub-
type (X) is present in the env region of a CRF.
(PDF)

Table S14 Number of sequences of each sub-type
making up the negative training set used for determin-
ing whether a given sub-type (X) is present in the env
region of a CRF.
(PDF)
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Table S15 Thresholds for detection of sub-types in the
env region of CRF strains.

(PDF)

File S1 Instructions for classifying a query sequence (Q)
using our pHMM method.

(PDF)
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