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Abstract
The protein tribbles-1, encoded by the gene TRIB1, is increasingly recognized as a major regulator of
multiple cellular and physiological processes in humans. Recent human genetic studies, as well as molecular
biological approaches, have implicated this intriguing protein in the aetiology of multiple human diseases,
including myeloid leukaemia, Crohn’s disease, non-alcoholic fatty liver disease (NAFLD), dyslipidaemia
and coronary artery disease (CAD). Genome-wide association studies (GWAS) have repeatedly identified
variants at the genomic TRIB1 locus as being significantly associated with multiple plasma lipid traits
and cardiovascular disease (CVD) in humans. The involvement of TRIB1 in hepatic lipid metabolism has
been validated through viral-mediated hepatic overexpression of the gene in mice; increasing levels of
TRIB1 decreased plasma lipids in a dose-dependent manner. Additional studies have implicated TRIB1 in
the regulation of hepatic lipogenesis and NAFLD. The exact mechanisms of TRIB1 regulation of both plasma
lipids and hepatic lipogenesis remain undetermined, although multiple signalling pathways and transcription
factors have been implicated in tribbles-1 function. Recent reports have been aimed at developing TRIB1-
based lipid therapeutics. In summary, tribbles-1 is an important modulator of human energy metabolism
and metabolic syndromes and worthy of future studies aimed at investigating its potential as a therapeutic
target.

Introduction
The tribbles family of proteins are being recognized as
modulators of many fundamental signalling pathways,
biological processes and disease pathologies [1,2]. As the term
suggests, this family of pseudokinase proteins is characterized
by a distinct lack of kinase activity [3]. However, the
past 15 years of research have revealed a myriad of other
active functions for these as yet poorly understood proteins.
Beyond participating in the regulation of fundamental cellular
processes, such as cell cycle progression and proliferation,
tribbles proteins are increasingly recognized as potential
therapeutic targets. A great deal of prior research has centred
on the role of tribbles-1 (TRIB1) in the development
and progression of leukaemia [4–6], but more recently
unbiased human genetic studies have ignited interest in a
role for tribbles-1 in human lipoprotein metabolism and
cardiovascular disease (CVD) pathogenesis [9,12,13].
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Genetic associations of TRIB1 locus with
plasma lipids, liver transaminases and
coronary artery disease
CVD is the leading cause of death in the developed world [7].
Dyslipidaemia, in particular high plasma levels of lipoproteins
containing apolipoprotein B (apoB) as well as high circulating
triglyceride (TG) levels, are the most important risk factors
for atherosclerotic CVD [8]. This remains the case despite
the widespread success of lipid-lowering therapies such as
statins and thus there remains a need for novel therapeutics
that might further treat dyslipidaemia and CVD in humans.
Genome-wide association studies (GWAS) provide an
unbiased approach that can potentially identify such novel
biological pathways involved in regulation of plasma lipids
that might serve as potential therapeutic targets and in recent
years much effort has been spent on GWAS to identify loci
in the genome associated with plasma lipids and CVD.

Early GWAS of plasma lipid levels in smaller cohorts
of humans (N ∼= 10000) identified a handful of novel
genomic loci not previously known to play any role in
lipid metabolism. One of these loci exhibiting a significant
association with plasma TG levels was the 8q24 locus,
with the lead single nucleotide polymorphism (SNP) in
these studies falling into a linkage-disequilibrium block that
contains the gene TRIB1 [9]. Subsequent studies replicated
this finding [10,11], including a landmark GWAS performed
by Global Lipids Genetics Consortium (GLGC), which in
2010 published a GWAS analysis for plasma lipid traits and
coronary artery disease (CAD) in > 100000 subjects, yielding
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a total of 95 independent loci associated with at least one
major lipid trait, more than two-thirds of which are associated
with low-density lipoprotein (LDL)-C and/or TG [12]. This
study increased the number of novel plasma lipid loci to
59 and of these novel associations only the TRIB1 locus
was associated with all five traits examined: total cholesterol
(TC), LDL-C, high-density lipoprotein (HDL)-C, TG and
CAD [12]. The most recent GLGC GWAS has identified 157
loci as significantly associated with plasma lipids in humans
and TRIB1 remains one of only four loci associated with all
plasma lipid traits examined [13].

Independently, the TRIB1 locus has been shown by
GWAS to be in association with levels of circulating alanine
transaminase (ALT) in humans [14]. High circulating ALT
levels can be suggestive of hepatocellular damage [15]
and may be a surrogate marker for fatty liver [16]. The
authors of the GWAS study specifically tested in ∼10000
individuals the association of SNPs in the TRIB1 region
with liver abnormalities identified by computed tomography
(CT) scanning that are indicative of hepatic steatosis.
Although the TRIB1 locus did show strong associations
with hepatic structural abnormalities, this association did
not reach statistical significance after correcting for multiple
testing [14]. More recently, researchers in Japan tested the
association of three SNPs in the TRIB1 genomic region with
ultrasonographic non-alcoholic fatty liver disease (NAFLD)
in ∼5000 Japanese females and saw significant associations
between the SNPs and NAFLD [17]. Contrary to this finding,
a larger GWAS study aimed at identifying genomic loci
associated with NAFLD as ascertained by CT scanning did
not find the TRIB1 locus to be one of the significantly
associated genes [18]. These disparate results, however, may
be in part due to the difficulty in ascertaining hepatic fat
content via non-invasive techniques in large numbers of
patients. More highly powered NAFLD GWAS studies are
likely to definitively determine the association of TRIB1
with NAFLD in humans, but currently the evidence strongly
suggests that this association does exist.

The association of TRIB1 with CAD was definitively
demonstrated in a separate GWAS performed by the CARDI-
oGRAMplusC4D consortium in ∼200000 individuals aimed
at identifying novel CAD loci [19]. Since the larger GWAS are
mainly carried out in humans of European descent, targeted
studies have shown that the associations of TRIB1 with
plasma lipids replicate in both African American, as well as
Indian populations [20,21].

The preponderance of associations in multiple populations
combined with the magnitude of these associations clearly
indicates that the genomic region containing TRIB1 plays
a critical role in human lipid metabolism. However, one
shortcoming of these studies is that the causal variants in
this locus have yet to be identified. Indeed, as part of the 2010
GLGC report, genome-wide significant SNPs were assayed
for expression quantitative trait locus (eQTL) association
with hepatic transcript levels of nearby genes and no eQTL
was identified between TRIB1 and nearby SNPs despite the
GWAS signal lying ∼40 kb downstream of the transcript in

the same linkage disequilibrium block as TRIB1 and with
no other gene within 100 kb (Figure 1). A recent report
from Douvris et al. [22] found an eQTL between one SNP
in the GWAS region and TRIB1 transcript levels in whole
blood from 160 patients. The authors also found that SNPs
in the GWAS region affect the transcription of a long non-
coding RNA that they dubbed TRIBAL and suggested that
this may, in part, underlie some of the genetic association in
the region. Clearly, this region requires further conditional
analyses, fine-mapping and more powerful investigations of
SNP–transcript interactions utilizing strategies such as RNA-
seq and allele-specific expression, before determining exactly
how many genetic signals are present in the region and
what the downstream functional effects of the SNPs in these
regions are.

In vivo validation of tribbles-1 as a
regulator of plasma lipid metabolism
Despite the next closest gene to the 8q24 GWAS signal
being >100 kb away, it cannot be simply assumed that
TRIB1 is the causal gene involved in modulating plasma lipid
metabolism. Burkhardt et al. [23] utilized an adeno-associated
virus (AAV) system to express tribbles-1 in vivo via hepatic
overexpression of murine Trib1 in adult C57B/6 mice. The
authors cloned the Trib1 coding sequence in front of the
thyroxin-binding globulin (TBG) liver-specific promoter and
established stable liver-specific overexpression using AAV
serotype 8, known for its high liver specificity and affinity
[24]. This overexpression system is ideal for testing the
involvement of genes identified by GWAS in hepatic lipid
metabolism [25].

The authors observed that overexpression of Trib1 in
the livers of wild–type (WT) mice resulted in reduced
levels of plasma cholesterol and TG in a dose-dependent
manner. The decreases in cholesterol and TG were present
in all lipoprotein fractions examined and FPLC revealed
a significant reduction in the very low-density lipoprotein
(VLDL)–TG peak, suggestive of a VLDL-specific mechanism
of regulation. The authors repeated the Trib1 overexpression
in various mouse models of lipid metabolism, including
the LDL receptor (LDLR)-deficient hyperlipidaemic model
and the Ldlr KO (knockout)/Apobec1 KO/human apoB
transgenic (LAhB) humanized mouse model that has a lipid
profile more closely resembling that of humans. In all mouse
models tested, Trib1 overexpression resulted in significant
reductions in plasma cholesterol and TG. In the LAhB
mice, Trib1 overexpression caused a significant reduction in
plasma apoB protein, the main apolipoprotein component
of VLDL and LDL. The investigators also measured many
of the same lipid parameters in a previously reported
Trib1 whole-body KO mouse model and saw the expected
reciprocal results as compared with the AAV overexpression
model.

When the investigators assessed VLDL–TG secretion into
the plasma of these mice after treatment with Pluronic-
407 (a detergent blocking lipolysis and thus clearance of
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Figure 1 Association of TRIB1 region with plasma TG levels

The 8q24 interval is depicted showing the location of the TRIB1 gene and the downstream SNPs identified as having

significant associations with plasma TGs in humans. The left y-axis measures the P-value of the SNPs and the colour of each

SNPs indicate its r2-value relative to the lead SNP (rs2954029). Association data to TGs is from the 2013 GLGC study [13]

and the figure was generated using LocusZoom [44].

plasma TG), they found that mice treated with hepatic
overexpression of Trib1 had decreased TG secretion. Primary
hepatocytes from these mice exhibited not only decreased
TG secretion into the media, but also decreased cellular
TG content. Indeed when the investigators examined the
hepatic transcription of lipogenic genes, they found reduced
expression of key genes in the fatty acid synthetic pathway
such as acetyl-CoA carboxylase1 (Acc1), fatty acid synthase
(Fasn) and stearoyl-coenzyme A desaturase1 (Scd1), among
others. Primary hepatocytes expressing tribbles-1 were thus
proven to have reduced de novo lipogenesis. Thus a model was
formed that increased Trib1 expression can reduce lipogenesis
and inhibit VLDL secretion, perhaps through insufficient
lipidation of nascent apoB protein.

Mechanisms of TRIB1 regulation of lipid
metabolism
Although the work of Burkhardt et al. [23] helped shed
light on the physiological roles of Trib1 in lipid metabolism,
the exact molecular mechanism governing this regulation
remains to be elucidated. Tribbles-1 has two well-defined
functions in the literature: (1) facilitating the ubiquitination
of the transcription factor CCAAT/enhancer-binding protein

α (C/EBPα) and thus promoting its degradation [26] and (2)
regulating mitogen-activated protein (MAP) kinase signalling
by facilitating the phosphorylation of extracellular signal-
regulated kinase (ERK)1/2 by the tyrosine/threonine kinase
MAP kinase kinase 1 (MEK1) [27]. Both of these pathways
have been shown to participate to some degree in the
regulation of lipid metabolism (Figure 2).

The tribbles protein was originally identified in a Droso-
phila mutagenesis screen; the trb mutation results in defects
in cell migration and mitosis during oogenesis [28–30]. These
early studies determined that the role of Trb in Drosophila
oogenesis is to promote the proteasomal degradation of
String, Twine and Slbo, the latter of which is the Drosophila
homologue of the human C/EBPα gene [31]. Subsequent
work in the myeloblast 32D cell line has shown that tribbles-
1 and tribbles-2 induce the proteasomal degradation of
C/EBPα and C/EBPβ by promoting their ubiquitination by
the E3 ligase constitutively photomorphogenic 1 (COP1)
through direct binding to both the targets and the ligase
[26,32]. C/EBPα has long been recognized as important
for energy homoeostasis since Wang et al. [33] reported in
1995 that neonates with whole body deletion of C/EBPα

died perinatally due to lack of glycogen and hypoglycaemia.
These neonates also exhibited a distinct lack of lipids in their
hepatocytes and adipocytes. Prior studies have implicated
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Figure 2 Proposed mechanisms for tribbles-1 regulation of plasma lipids in humans

Previous work has identified roles for tribbles-1 in regulating both the ubiquitination and the turnover of the transcription

factor C/EBPα, as well as the phosphorylation and activation of ERK1/2 by MEK kinase [26,27]. Both of these pathways have

the potential to modulate plasma lipids in humans (relevant citations are shown); however, neither has been directly tested

in a hepatic setting with modulation of TRIB1 protein or transcript.

C/EBPα in the regulation of hepatic lipogenesis in mouse
models of obesity. Matsusue et al. [34] showed that hepatic
deficiency of C/EBPα in the leptin-deficient ob/ob mouse
model of obesity abbrogated fatty liver caused by a high-
carbohydrate diet. Additionally, the authors found that mice
with hepatic C/EBPα deficiency had decreased lipogenic gene
expression and decreased transcription of SREBP1, a master
regulator of fatty acid synthesis. Qiao et al. [35] repeated
most of these findings in the diabetic db/db mouse model
by treating those mice with adenovirus containing siRNA
directed to C/EBPα. Interestingly C/EBPα deficiency in
ob/ob mice decreased plasma TGs but not TC, whereas in
the db/db mice there was decreased plasma cholesterol but
not plasma TGs. These reports support a role for C/EBPα in
the regulation of lipid metabolism by TRIB1, and indeed this
model was recently confirmed by a report from our group
elucidating the roles of Trib1 and C/EBPα in hepatic lipid
metabolism [36].

As previously mentioned, tribbles-1 has been shown to
modulate MAP kinase signalling in HeLa and NIH3T3
cells by promoting the phosphorylation of ERK1/2 by
MEK1, a finding not yet replicated in vivo [27]. To date,

there has been no evidence for the direct phosphorylation
of a target by tribbles proteins [37]. Phosphorylation of
ERK1/2 has previously been shown in HepG2 cells to
down-regulate the expression of Scd1, one of the lipogenic
genes consistently differentially expressed in experimental
models of Trib1 overexpression [38]. Additionally, Tsai
et al. [39] showed that inhibition of MEK/ERK signalling
using the ERK1/2 inhibitor U0126 corrected a defect in
VLDL assembly in HepG2 cells, greatly increasing the
secretion of apoB. The directionality of these observations
is in agreement with the observed lipid phenotypes of mice
with hepatic overexpression of Trib1, thus implicating altered
MAP kinase signalling as a potential mechanism of metabolic
regulation by tribbles-1.

More recently, Ishizuka et al. [17] published a Trib1
overexpression/knockdown study using adenovirus and
these mice had physiological phenotypes consistent with
the report from Burkhardt et al. [23]. They also showed
that tribbles-1 could regulate both the mRNA and the
protein levels of the transcription factor MLX-interacting
protein-like (MLXIPL) (also known as carbohydrate-
responsive element-binding protein (ChREBP), another
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known regulator of lipogenic gene expression [40]. Epitope-
tagged tribbles-1 and MLXIPL interacted in both mammalian
two-hybrid assays and overexpression pulldown studies
in COS7 cells. The authors showed that protein levels
of MLXIPL could be restored to WT levels in Trib1-
overexpressing COS7 cells via treatment with proteasome
inhibitors. The authors concluded that tribbles-1 affects
lipogenesis through its interaction with MLXIPL. The extent
to which all of these proposed mechanisms affect the
regulation of lipid metabolism still needs to be dissected,
ideally through genetic epistasis experiments in relevant
animal models.

Tribbles-1 as a target for novel
therapeutics
One of the main hopes for the unbiased genetic studies
outlined earlier in this article has been to uncover novel
biology pertaining to lipid metabolism that might be
exploited for the production of novel therapeutics. Based
on the above described research, therapeutics aimed at
increasing levels of TRIB1 message or protein or small
molecules that can increase the function of tribbles-1 could
positively affect the plasma lipid profile and cardiovascular
health of a patient. Indeed, a recent study from the Broad
Institute identified a series of benzofuran-based compounds
that could up-regulate transcription of TRIB1 in HepG2
cells [41]. Ultimately, these compounds had wide ranging
effects on the lipid metabolism of these cells, many of
which were independent of TRIB1 expression. The push for
TRIB1-based therapeutics would benefit from a thorough
elucidation of the upstream genetic regulators of this gene.
Additionally, continued investigation into the important
molecular functions of tribbles-1 and the portions of the
protein required for such functions may help inform the
development of small molecules that increase tribbles-1
function. Nevertheless, this study suggests that both the
interest and potential exist for the development of TRIB1-
based therapeutics.

Conclusions
The tribbles proteins are increasingly being shown to
participate in a wide variety of fundamental cellular processes
and tribbles-1 is no exception. Tribbles1 has the added
appeal of being identified as significantly and reproducibly
associated with multiple human pathologies by human
genetics. Not only is the TRIB1 gene associated with lipid
traits and CVD but also with Crohn’s disease, plasma
adiponectin levels (an adipokine linked to obesity) and plasma
liver enzyme levels (a surrogate readout for fatty liver) in
humans [14,42,43]. It remains unclear why the other tribbles
proteins, known to affect metabolic signalling pathways, have
not been identified in many of these GWAS. Nonetheless,
tribbles-1 is increasingly recognized as a major regulator of
human pathologies. Recent work has focused on identifying

novel interactions between tribbles-1 and other proteins and
it is likely that more of these interactions will be identified
as the tool set for studying tribbles-1 expands [17,45].
However, it is important that researchers in the field attempt
to dissect which physiological readouts are governed by
which specific interactions. Clearly the tribbles-1 protein can
significantly affect the normal biology of cells or tissues and
thus one of the challenges moving forward will be discerning
which of these molecular phenotypes are directly due to the
actions of tribbles-1 itself, or are instead downstream of the
primary mechanism of tribbles-1 action. These studies will
help inform the development of novel therapeutics that take
advantage of the fascinating biology governed by tribbles-1.
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