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Introduction

Diabetes has reached epidemic status worldwide because 
the incidence of diabetes increases with age and the dia-
betic population is living longer. Diabetic retinopathy 
(DR), one of the most serious microvascular complications 
of diabetes mellitus, produces visual impairment that often 
results in blindness.1–3 After 20 years of living with diabe-
tes, more than 60% of patients exhibit some degree of 
retinopathy.4–6 DR is characterized by capillary dilatation 
and leakage, capillary occlusion, and subsequent new ves-
sel formation. Although DR has traditionally been viewed 
as a disorder of the retinal vasculature, recent evidence 
indicates that it also affects the retina’s glial and neural 
cells.7 A major problem with DR is the lack of early sub-
jective symptoms; by the time most patients become con-
scious of an abnormality in their vision, it is too late to 
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reverse the disease process. Current treatment for DR is 
laser photocoagulation for neovascularization and vitrec-
tomy for membrane proliferation and retinal detachment. 
In several cases, these surgical treatments have not restored 
vision, even though surgery appeared to be successful. 
New noninvasive therapeutic strategies that can prevent 
the development of DR or can be used from the early 
stages of diabetes are urgently needed. Therefore, a phar-
macological regimen that could prevent the development 
of DR before irreversible damage occurs would be an 
important contribution to the management of diabetes.

Although the pathogenesis of diabetic retinal complica-
tions is not fully understood, emerging evidence impli-
cates angiotensin II (Ang II) as an important contributor to 
retinal damage.8–13 Ang II levels are significantly higher in 
the vitreous of patients with proliferative DR (PDR).14 
Ang II levels are also higher in diabetic than in nondiabetic 
human donor retinas.15 However, the levels of retinal Ang-
(1-7), the endogenous counter-regulator of Ang II,16–20 
have not been elucidated. The equilibrium between Ang II 
and Ang-(1-7) may be important to sustaining normal reti-
nal function. An evaluation of both endogenous peptides is 
important when studying the role of the renin-angiotensin 
system (RAS) under normal and altered physiology and 
pathophysiology.

Ang II is a pro-inflammatory molecule that can contrib-
ute to diabetic complications.21,22 As an inflammatory 
mediator, Ang II enhances vascular permeability through 
prostaglandins and vascular endothelial growth factor 
(VEGF)23,24 and contributes to the recruitment and expres-
sion of inflammatory cells by inducing chemokines and 
adhesion molecules. On the other hand, Ang-(1-7) is anti-
inflammatory and anti-angiogenic and thus could oppose 
the actions of Ang II.19,20,25–27

Angiotensin-converting enzyme inhibitors (ACEIs), 
which block the conversion of Ang I to Ang II, are widely 
prescribed and clinically beneficial.28–30 ACE inhibition 
salvages the visual loss caused by diabetes.31 ACEI treat-
ment of diabetic rats reduced VEGF gene expression and 
improved vascular permeability.32,33 However, there is no 
information on the effect of ACEI treatment of diabetic 
rats on the profile of retinal expression of both Ang II and 
Ang-(1-7).

The aim of the present study was to characterize retinal 
Ang II and Ang-(1-7) during the development of experi-
mental diabetes and treatment of diabetes with the ACEI 
captopril.

Materials and methods

Experimental animals

Treatment of animals conformed to the Association for 
Research in Vision and Ophthalmology (ARVO) Statement 
for the Use of Animals in Ophthalmic and Vision Research 
and to specific guidelines of Cleveland Clinic’s Institutional 

Animal Care and Use Committee. Ten-week-old female 
Harlan Sprague-Dawley (SD) rats (Harlan Sprague-
Dawley Inc., Indianapolis, IN, USA) were housed in filter-
top sterile cages that had been disinfected by cage washing. 
Husbandry was standard rat chow and water ad libitum. 
The light regimen in the colony room was 50-80 lux at the 
cage level with a 12:12 hr light–dark cycle. Experimental 
and control animals were housed under identical 
conditions.

Diabetes was induced by an intraperitoneal (IP) injection 
of streptozotocin (STZ; Sigma-Aldrich, St. Louis, MO, 
USA) 35 mg/kg in 10 mM citrate buffer, pH 4.5. Rats were 
weighed and their blood glucose levels determined using a 
OneTouch Ultra Lifescan meter (Life SCAN, Inc., Milpitas, 
CA). Blood glucose >250 mg/dL confirmed the diabetic 
phenotype. Control rats received citrate buffer (IP). Diabetes 
was managed with the following supportive care to prevent 
distress to the rats: Daily cage changes and twice-daily 
checks of drinking water levels; rats were examined daily 
by both a certified veterinary technician and a laboratory 
technician; blood glucose levels were determined weekly to 
assess the hyperglycemic status of the rats.

Experimental protocols

Protocol 1. Evaluation of the time course for retinal Ang II 
and Ang-(1-7) during the development of experimental 
diabetes in rats (n = 36 rats). Retinal Ang II and Ang-(1-7) 
were evaluated at 3, 9, and 15 weeks to assess the time 
course of development during diabetes in Harlan SD rats. 
Six nondiabetic controls and six diabetic rats were studied 
at each time point. Rats were weighed and blood glucose 
levels determined at each time point prior to termination. 
The rats were anesthetized with urethane (1.2 g/kg, IP) and 
perfused in situ with phosphate-buffered saline (PBS) fol-
lowed by 4% paraformaldehyde. Eyes were enucleated, 
fixed by immersion, and processed as described below for 
immunohistochemistry, confocal imaging, and quantita-
tive analysis. Rats were euthanized with an overdose of 
pentobarbital. The eyes were further fixed by immersion 
with 4% paraformaldehyde-PBS. After fixation, the eyes 
were frozen in optimal cutting temperature (OCT) com-
pound and stored at −80°C.

Protocol 2. The effect of ACE inhibition by captopril on 
Ang II and Ang-(1-7) in diabetic rats (n = 15 rats). To eval-
uate the effect of ACE inhibition on retinal Ang II and 
Ang-(1-7), comparisons were made between diabetic and 
nondiabetic rats after 12 weeks of treatment with captopril. 
Three groups of rats were included: nondiabetic rats and 
diabetic rats with and without captopril (Sigma-Aldrich; 
42 mg/L in drinking water; n = 5 rats per group). Rats were 
anesthetized with urethane (1.2 g/kg, IP), and eyes were 
enucleated as described above. The eyes were further fixed 
by immersion with 4% paraformaldehyde-PBS, frozen in 
OCT compound and stored at −80°C.
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Immunohistochemistry, confocal imaging, 
quantitative analysis

Ang II and Ang-(1-7) were localized by immunohisto-
chemistry and confocal imaging. Frozen sections (10 µm) 
were prepared from the frozen OCT eyes and stored at 
−80°C. Immunolocalization of Ang II and Ang-(1-7) was 
determined through incubation of sections with the follow-
ing antibodies: rabbit polyclonal antibodies for Ang II 
(H-002-12, 1:200; Phoenix Pharmaceuticals, Burlingame, 
CA, USA) and an in-house antibody for Ang-(1-7) (CCF-
Core 1, 1:200).34 For Ang II and Ang-(1-7) localization, 
sections were digested with 10% pronase (Sigma-Aldrich) 
in acetate buffer (calcium 5 mM and sodium 10 mM (pH 
7.5)) for 15 min at 37°C and washed with PBS. Sections 
were blocked in PBS supplemented with 2.5% bovine 
serum albumin (PBS/BSA) and incubated with the pri-
mary antibodies anti-Ang II and anti-Ang-(1-7) prepared 
in the same solution. Antibody binding was resolved by 
incubation with secondary antibody coupled to Alexa 
Fluor 488 and Alexa Fluor 594 (Molecular Probes 
(ThermoFisher), Eugene, OR, USA). Secondary antibod-
ies were prepared in PBS/BSA. Specificity of the immu-
nostaining was verified by substituting the primary 
antibodies with an equivalent dilution of no immune IgGs. 
Slides were mounted in Vectashield containing 4’6-diami-
dino-2 phenylindole (DAPI) for labeling nuclei (Vector 
Laboratories, Inc., Burlingame, CA, USA). Sections were 
imaged using a Leica laser scanning confocal microscope 
(Leica, Heidelberg, Germany). Immunoreactivity was 
quantified using Image-Pro Plus 7.

Statistical analysis

Data are presented as mean ± standard error of the mean 
(SEM) for continuous variables. Assuming normality of 
the data, analysis of variance (ANOVA) models were used 
to test the difference among groups over time points, with 
p value <0.05 as the level of statistical significance. For 
body weight, baseline weight was used as a covariate in an 

analysis of covariance model. If the interaction between 
time and group was not significant, overall differences 
between groups were provided. Otherwise, comparisons of 
groups at each time point were performed. Pairwise ad hoc 
comparisons and a Bonferroni correction were used to 
specify the differences among the three groups. SAS ver-
sion 9.2 (SAS Institute, Cary, NC, USA) was used to per-
form all analyses.

Results

Table 1 shows the weight gain and blood glucose levels of 
the rats at 3, 9, and 15 weeks after STZ treatment. At three 
weeks, there was no difference in the final weight between 
control and diabetic groups, even though blood glucose 
levels were significantly elevated. At later stages of diabe-
tes (9 and 15 weeks), diabetic animals showed signifi-
cantly less weight gain compared with controls. Glucose 
levels remained elevated during this period.

Some differences were observed in the distribution of 
Ang II and Ang-(1-7) in the different regions of the eyes 
analyzed. Representative images for Figures 1, 2 and 4 are 
shown in the manuscript. Figure 1(a) to (c) shows the time 
course of distribution of Ang II in the nondiabetic rat retina 
from 3 to 15 weeks under control conditions. Ang II immu-
noreactivity was localized to the endfeet of Müller cells 
and extended into the cellular processes in the inner plexi-
form layer (IPL) and inner nuclear layer (INL). In the dia-
betic retinas (Figure 1(d) to (f)), Ang II immunoreactivity 
was similarly localized to the Müller cell footplates, but 
extended though the entire retina, reaching the cell pro-
cesses all the way into the outer plexiform layer (OPL) and 
into the outer nuclear layer (ONL). Diabetic rats displayed 
higher intensity and increased extent of Ang II labeling in 
the Müller cell processes compared with nondiabetic rats 
after three weeks of diabetes. At three weeks, Ang II stain-
ing was increased in the diabetic (Figure 1(d)) compared 
with nondiabetic rats (Figure 1(a)); this increased Ang II 
staining in diabetic rats was maintained throughout the 
15-week period (Figure 1(f)).

Table 1. Body weight and blood glucose levels of diabetic and age-matched control rats.

Experimental time point Group Initial weight (g) Final weight (g) Blood glucose (mg/dl)

3 weeks Control 231 ± 20.5 249 ± 8.5 113 ± 25.0
 Diabetic 232 ± 9.4 252 ± 13.4 574 ± 34.6**
9 weeks Control 242 ± 9.9 271 ± 22.8a,b 106 ± 20.6
 Diabetic 231 ± 8.5 253 ± 18.1* 564 ± 67.4**
15 weeks Control 239 ± 8.6 282 ± 15.9a,b 120 ± 20.9
 Diabetic 228 ± 6.1 266 ± 22.3* 574 ± 40.9**

Values are expressed as mean ± standard error of the mean, n = 6/group. *p < 0.05,
**p < 0.001 vs control at the same time point.
Within group: No statistical difference was found in glucose over three time points in either nondiabetic or diabetic rats.
aWeight change over the three time points was significant only in the nondiabetic control rats (p = 0.008).
bIn a pairwise comparison, changes in the final weight between 9 and 15 weeks in the nondiabetic controls were both greater than weight at 3 weeks 
(p <0. 001).
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Figure 2 shows the effects of diabetes progression on the 
distribution of Ang-(1-7) in the rat retina at 3, 9, and 15 
weeks after the induction of diabetes (Figures 2(a)/(d), 2(b)/
(e), and 2(c)/(f), respectively). In the nondiabetic retina 
(Figure 2(a) to (c)), Ang-(1-7) immunoreactivity extended 
from the footplates of the Müller cells through cell pro-
cesses extending up to the photoreceptor layer. The Ang-(1-
7) immunoreactivity is much more extensive than that of 
Ang II. In the diabetic retina (Figure 2(d) to (f)), Ang-(1-7) 
staining was mostly localized to the Müller cell footplates.

Quantification of the Ang II and Ang-(1-7) staining is 
seen in Figure 3. The intensity and extent of Ang II immu-
noreactivity was markedly increased throughout all time 
periods as indicated by the quantification of the percent 
area of Ang II staining at 3, 9, and 15 weeks post induction 
of diabetes (Figure 3(a)). The intensity and extent of Ang-
(1-7) immunoreactivity was markedly reduced throughout 
all time periods as indicated by the quantification of the 
percent area of Ang-(1-7) staining at 3, 9, and 15 weeks 
post induction of diabetes (Figure 3(b))

Figure 4 shows the impact of inhibiting ACE on the dis-
tribution of retinal Ang II and Ang-(1-7) in nondiabetic 
and diabetic rats and in diabetic rats treated with ACEI 
captopril for 12 weeks (Figures 4(a)/(d), 4(b)/(e), and 4(c)/

(f), respectively). The distribution of Ang II and Ang-(1-7) 
in the nondiabetic and diabetic animals was similar to the 
previously described profiles in Figures 1 and 2. In the dia-
betic retinas, Ang II was localized to the Müller cell foot-
plates and processes (Figure 4(b)) and showed an increased 
intensity of staining compared with nondiabetic retinas 
(Figure 4(a)). ACE inhibition with captopril reduced the 
staining of Ang II in Müller cells of the diabetic retinas 
(Figure 4(c)). In diabetic retinas, the Ang-(1-7) staining 
was significantly decreased in Müller cells (Figure 4(e)) 
compared with nondiabetic retinas (Figure 4(d)). On the 
other hand, the pattern of reduced staining for Ang-(1-7) in 
the diabetic animals was reversed, showing increased 
intensity and extent of staining with ACEI treatment 
(Figure 4(f)). Quantitative analysis of the percent area of 
staining for Ang II vs. Ang-(1-7) is shown in Figure 5.

Discussion

The present study evaluated changes in Ang II and its 
endogenous counter-regulator Ang-(1-7) in the retina. In 
nondiabetic animals, Ang II and Ang-(1-7) were both 
localized in Müller cell endfeet and processes, but their 
distribution patterns were somewhat different. Ang II was 

Figure 1. Confocal images of localization of Ang II and nuclei merge in retina sections at 3, 9, and 15 weeks after diabetes was 
induced: (a–c) nondiabetic and (d–f) diabetic rats. In the nondiabetic rats, Ang II antiserum labeled Müller cells. Ang II extended from 
the footplates of the Müller cell (arrowhead) through cell processes in the IPL into the INL. Immunoreactivity was marked in the 
Müller cell endfeet and extended into the cellular processes. In the diabetic retina, Ang II extended through the entire retina from 
the Müller cell footplates (arrowhead), cell processes in the IPL through the INL and OPL into the ONL (short and long arrow). 
The higher intensity and increase in extent of labeling in Müller cell processes was clear at three weeks after diabetes was induced. 
This pattern of labeling was maintained throughout the 15 weeks of diabetes.
GCL: ganglion cell layer; IPL and OPL: inner and outer plexiform layers; INL and ONL: inner and outer nuclear layers.
Scale bar = 50 µm.
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localized more toward the inner retina, whereas Ang-(1-7) 
spanned the entire retina from the ganglion cell layer 
through IPL, INL, OPL, and ONL and into the photorecep-
tor layer. The relatively wider distribution of Ang-(1-7) 
compared with Ang II was consistent with results from the 
immunofluorescence studies that show high levels of Ang-
(1-7) receptor MAS compared with the Ang II receptor.15,35 
Thus Ang-(1-7) may have a more important role than pre-
viously considered. In the diabetic retina, Ang II levels 
were increased three weeks after induction of diabetes, and 
the levels remained increased during the 15 weeks of dia-
betes. In contrast, Ang-(1-7) levels were significantly 
reduced three weeks after diabetes was induced and main-
tained at these low levels for up to 15 weeks.

The profile of the two peptides during the time course 
of diabetes is a novel observation of this study. The locali-
zation of Ang II and Ang-(1-7) in Müller cells is of particu-
lar interest because these cells are critically positioned 
between the vasculature and the neurons, and because it is 
suggested that they play a role in regulating the retinal 
molecular environment, which may be compromised early 
in the course of DR. Under continued hyperglycemic stress 
and continued declining levels of Ang-(1-7), the activity of 
increased Ang II will proceed unabated.

The localization of increased Ang II in Müller cells is 
an important finding in view of the potential role of Ang II 

in the initial phase of the pathogenesis of DR. In reactive 
Müller cells, angiotensinogen, an acute-phase protein, is 
upregulated in experimental diabetes.36 This upregulation 
could contribute to elevated Ang II levels and is important 
in view of the potential role of Ang II in the pathogenesis 
of DR.37,38 Ang II levels are significantly higher in the vit-
reous of patients with PDR.14 Ang II levels are also higher 
in diabetic than nondiabetic human donor retinas.15 In 
high-glucose microenvironments, Ang II increased in reti-
nal Müller cells by 10-fold.39 As an inflammatory media-
tor, Ang II enhances vascular permeability through 
prostaglandins and VEGF23 and contributes to the recruit-
ment of inflammatory cells by inducing chemokines and 
adhesion molecules. Our data suggest that Ang II may be 
an important factor in the activation of VEGF; this possi-
bility has important implications since VEGF is the current 
anti-DR therapeutic target.

Ang-(1-7) has properties antagonistic to Ang II and is 
considered to be the endogenous counter-regulator of Ang 
II.16–20 Ang-(1-7) and its receptor MAS are both localized 
in retinal Müller cells.15,35 Intraocular administration of 
adeno-associated virus- mediated gene delivery of Ang- 
(1-7) to diabetic rats and mice attenuated diabetes- 
induced retinal vascular leakage, presence of infiltrating 
inflammatory cells, and oxidative damage to the retina.25 In 
rabbits, intravitreal treatment with Ang-(1-7) decreases 

Figure 2. Confocal images of localization of Ang-(1-7) in retinal sections. Confocal images of Ang-(I-7) and nuclei merge in retina 
at 3, 9, and 15 weeks after diabetes was induced: (a–c) nondiabetic and (d–f) diabetic rats. Ang (1-7) antiserum-labeled Müller 
cells (arrowhead). In the nondiabetic retina, Ang-(I-7) extended from the footplates of the Müller cell (short arrow) through cell 
processes extending up to the photoreceptor layer (long arrow). In diabetic rats, the intensity and extent of labeling decreased 
steadily with the duration of hyperglycemia.
Scale bar = 50 µm.
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intraocular pressure without affecting aqueous humor out-
flow.40 Although there are few data on the function of Ang-
(1-7) in the retina, studies have shown a role for Ang-(1-7) 
in diabetes that involves other organs. An emerging protec-
tive role of Ang-(1-7) in experimental diabetic nephropathy 
has been reported. In diabetic hypertensive rats, Ang-(1-7) 
treatment exerted a renoprotective effect that correlated 
with the reduction in NADPH oxidase activity.41 In type 2 
diabetic KK-Ay/Ta mice, Ang-(1-7) attenuates Ang 
II-stimulated NADPH oxidase-mediated glomerular 
injury.42 Chronic administration of Ang-(1-7) improves 
proteinuria and ameliorates structural alterations (fibrosis 
and nephrin loss) in the kidney of spontaneously hyperten-
sive stroke-prone rats, independently of local Ang II modi-
fications.43 In addition, chronic treatment of Zucker diabetic 
fatty rats with Ang-(1-7) is associated with a reduction of 

systolic blood pressure, oxidative stress, and inflammatory 
markers.44 In addition, the anti-angiogenic properties of 
Ang-(1-7) have been shown to effectively regulate the 
actions of VEGF, the prime pathological entity and target 
for drugs to treatment DR and cancer.45–47 For example, 
mice with prostate metastases that were infused with Ang-
(1-7) showed levels of VEGF below the detection limit 
compared with controls, which showed significantly 
increased circulating levels of VEGF. In vitro studies by 
Krishnan et al.47 have also shown that the Ang-(1-7) recep-
tor antagonist D-Ala7-Ang-(1-7) could block the secretion 
of VEGF by transfected PC3 cells. The above studies sup-
port the concept of Ang-(1-7) as a novel target for the treat-
ment of diabetes-induced changes.

Captopril is a sulfhydryl ACE inhibitor initially used in 
the treatment of hypertension and heart failure. However, 

Figure 3. Quantitative evaluation of Ang II (a) and Ang-(1-7) (b) in nondiabetic and diabetic retinas at 3, 9, and 15 weeks after 
induction of diabetes. Values are mean ± SEM. Within group: Ang II and Ang (1-7) showed differences among the three time points 
only in the nondiabetic retinas (p = 0.028 and p = 0.003, respectively). Mean levels of Ang II in the diabetic group were statistically 
significantly higher than those in the nondiabetic group (**p < 0.001). Mean levels of Ang-(1-7) in the diabetic group were 
statistically significantly lower than those in the nondiabetic group (**p < 0.001). Nondiabetic retina (black square); diabetic retina 
(gray square).
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later studies showed that it was protective against retinopa-
thy and nephropathy.48 Specifically, captopril has been 
reported to stimulate retinal Na,K-ATPase activity in a dia-
betes model,49 to inhibit the diabetes-induced accumula-
tion of glucose,50 to block retinal capillary degeneration 
and inflammation in the early stages of DR,51 to inhibit 
retinal neovascularization in oxygen-induced retinopathy 
mice,52,53 to block the stimulation of the angiotensin II type 
1 receptor (AT1-R), and to attenuate the subsequent 
ischemic retinal damage in a rat model of retinal ischemia.54 
In the present study, we investigated the effects of capto-
pril on its endogenous peptide Ang II. We determined the 
distribution of retinal Ang II and its endogenous counter-
regulator Ang-(1-7).

Captopril treatment was able to reduce the expression 
and levels of Ang II, while at the same time increasing the 
expression and levels of Ang-(1-7). ACEIs, which block 
the conversion of Ang I to Ang II, are widely prescribed 
and clinically beneficial. ACE inhibition salvages the vis-
ual loss caused by diabetes.31 ACE inhibitor treatment of 
diabetic rats reduced VEGF gene expression and improved 
vascular permeability.32,55 Under ACE inhibition, it is 
anticipated that Ang I will accumulate and Ang II will be 

reduced. Thus, in our study, the reduction in Ang II with 
ACEI was expected. However, it should be pointed out 
that levels of Ang II persisted after ACEI, a finding that is 
consistent with the possibility that other pathways could 
be contributing to the synthesis of Ang II. Similar findings 
have previously been described 56 and could be due to 
alternate synthetic pathways for the synthesis of Ang II, 
such as the enzymatic activity of chymase, cathepsin, or 
tonin.57–59 ACE, chymase, and cathepsins are present in the 
eye.60–63 ACE and chymase contribute to the formation of 
Ang II in the vitreous of patients with vitreoretinal dis-
ease.64 These data suggest that the beneficial actions of 
ACE inhibitors may not be a simple direct effect of Ang II 
inhibition, but may also consist of an increase in Ang-(1-
7). ACE inhibition upregulates ACE2, a homolog of ACE65 
that facilitates the synthesis of Ang-(1-7). ACE2 is present 
in both the rodent66 and human retina.12 In addition, ACE 
contributes to the breakdown of Ang-(1-7).67 Thus, ACE 
inhibition would result in an increase of Ang-(1-7) as well.

The prime anti-DR pharmacological target is VEGF, a 
major pathological factor in the promotion of DR. VEGF 
exerts potent effects on endothelial cell growth and vasop-
ermeability.32,68 Ang II is a potent stimulant of VEGF.69–71 

Figure 4. Confocal images of localization of Ang II and Ang-(I-7) and nuclei merge in retina from (a and d) control nondiabetic 
rats, (b and e) diabetic rats, and (c and f) diabetic rats treated with captopril. Ang II and Ang-(1-7) were localized in Müller cells 
(arrowhead) of nondiabetic, diabetic, and captopril-treated rats as well. Ang II was localized to the Müller cell footplates and the 
Müller cell processes (short and long arrows). In diabetic rats (b), the intensity of labeling was higher than in the nondiabetic 
controls (a); while ACEI captopril decreased the level of Ang II staining compared with diabetic, it was no different than the level 
of staining of Ang II (c) compared with controls. In the nondiabetic retina, Ang-(I-7) extended from the footplates of the Müller cell 
(arrowhead) through cell processes extending up to the photoreceptor layer (d, long arrow). The extent and intensity of Ang-(1-7) 
labeling was significantly reduced in the diabetic retina (e). Treatment of diabetic rats with ACEI restored the intensity and extent of 
Ang-(1-7) labeling toward levels found in control nondiabetic animals (f).
Scale bar = 50 µm.
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Maintaining the optimal physiological threshold for Ang II 
may be a more efficient and direct way to prevent VEGF-
related pathologies in the retina. New noninvasive thera-
peutic strategies that can prevent the development of DR 
or be used from the early stages of diabetes are urgently 
needed. Therefore, our strategy of focusing on enhancing 
the endogenous Ang-(1-7) activity toward normal levels 
before irreversible damage occurs could prevent the devel-
opment of DR triggered by overreactive Ang II. Our data 
suggest that enhancing the endogenous Ang-(1-7) concen-
tration for the management of diabetic retinal pathology 
using the Ang-(1-7) agonist may be an improved therapeu-
tic strategy to increase selectivity and specificity of target-
ing the RAS to prevent progression of retinal diabetic 
pathology such as early neural cell apoptosis and upregula-
tion of VEGF leading to visual loss. This would be an 
important contribution to the therapeutic management of 
retinal diabetic diseases.

Although DR has traditionally been viewed as a disorder 
of the retinal vasculature, recent evidence indicates that  
DR also affects the glial and neural cells of the retina.7 The 

principal glial cell of the retina is the Müller cell, a special-
ized radial glial cell spanning the entire depth of the retina. 
Through its spatial arrangement, the Müller cell intercalates 
between the vasculature and the neurons. Müller cells play 
an important role in the uptake of glucose from the circula-
tion, its metabolism, and transfer of energy to neurons. 
These crucial functions are interdependent.72,73 In view of 
their intricate metabolic interdependence, dysregulation of a 
number of cell functions in Müller cells can be anticipated 
under hyperglycemic conditions. Local vascular leakage 
and hyperplasia of the Müller cells are some of the earliest 
structural changes observed, long before overexpression of 
glial fibrillary acidic protein occurs in diabetic retina.74 The 
importance of understanding the tissue- and cell-specific 
biosynthesis of Ang II is highlighted by the differential sen-
sitivity of bovine retinal endothelial cells (58% inhibition of 
intracellular accumulation of glucose) and retinal Müller 
cells (0% inhibition of intracellular accumulation of glu-
cose) to the ACEI captopril under hyperglycemic stress.50 
Most reports of anti-Ang II intervention in diabetes have 
focused only on the actions of pharmacological agents, 

Figure 5. Quantitative evaluation of Ang II and Ang-(1-7) in nondiabetic, diabetic, and captopril-treated diabetic rat retinas at 12 
weeks after induction of diabetes. Values are mean ± SEM. *p < 0.05, **p < 0.01 as indicated. Both outcomes showed statistical 
differences among the three groups.
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while the basic underlying mechanisms of the RAS, the 
therapeutic target that is involved in the pathogenesis of reti-
nal disease, has not been addressed.

Conclusions

The current study reveals that retinal Ang II is significantly 
increased and Ang-(1-7) is significantly reduced in experi-
mental diabetes. ACEI treatment restores Ang-(1-7) levels 
toward normality and reduces Ang II. Pharmacological 
inhibition, coupled with the studies in experimental diabe-
tes, suggests that (1) there is a shift in the profile of angio-
tensin peptides in diabetes, with Ang II the primary 
peptide, and (2) with treatment, there is a reversal, with 
Ang-(1-7) becoming the predominant peptide. Thus, 
enhancing endogenous Ang-(1-7) may be a more specific 
intervention for the management of the diabetes-induced 
decline in retinal function.
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