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Epigenetic signature predicts overall survival 
clear cell renal cell carcinoma
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Abstract 

Background:  Recently, increasing study have found that DNA methylation plays an important role in tumor, includ-
ing clear cell renal cell carcinoma (ccRCC).

Methods:  We used the DNA methylation dataset of The Cancer Genome Atlas (TCGA) database to construct a 
31-CpG-based signature which could accurately predict the overall survival of ccRCC. Meanwhile, we constructed a 
nomogram to predict the prognosis of patients with ccRCC.

Result:  Through LASSO Cox regression analysis, we obtained the 31-CpG-based epigenetic signature which were 
significantly related to the prognosis of ccRCC. According to the epigenetic signature, patients were divided into two 
groups with high and low risk, and the predictive value of the epigenetic signature was verified by other two sets. 
In the training set, hazard ratio (HR) = 13.0, 95% confidence interval (CI) 8.0–21.2, P < 0.0001; testing set: HR = 4.1, CI 
2.2–7.7, P < 0.0001; entire set: HR = 7.2, CI 4.9–10.6, P < 0.0001, Moreover, combined with clinical indicators, the predic-
tion of 5-year survival of ccRCC reached an AUC of 0.871.

Conclusions:  Our study constructed a 31-CpG-based epigenetic signature that could accurately predicted overall 
survival of ccRCC and staging progression of ccRCC. At the same time, we constructed a nomogram, which may facili-
tate the prediction of prognosis for patients with ccRCC.
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Background
Renal cell carcinoma (RCC) is a cancer that originates in 
the renal epithelial cells and accounts for more than 90% 
of renal cancer, of which clear cell RCC (ccRCC) is most 
common subtype and causes the most deaths [1]. Accord-
ing to statistics, ccRCC caused 14,400 deaths in 2017 [2]. 
The TNM staging system is still the most commonly used 
clinical tool to stratify ccRCC patients, however, it is not 
enough to reflect the biological heterogeneity of tumor 
and accurately predict the prognosis of ccRCC patients 

[3], and a better marker is urgently needed to help us to 
accurately predict.

The aberrant methylation status of CpG islands located 
in the promoter region of tumor genes is becoming 
increasingly important in the search for new potential 
biomarkers for cancer [4–6], because these aberrant are 
relatively stable and potentially reversible [7]. Combining 
multiple markers, rather than using only one marker to 
construct a prognostic model, will make the results more 
stable and reliable, and improve its predictive value [8]. 
Many studies have used multiple targets to construct the 
prognostic model of ccRCC [9, 10]. Here, we used the 
methylation data of the ccRCC of TCGA database to con-
struct a 31-CpG-based signature.

In this study, we used the methylation data of the 
ccRCC of TCGA database to construct a 31-CpG-based 
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epigenetic signature, which can accurately predict the 
overall survival rate of ccRCC through the most recently 
used The Least Absolute Shrinkage And Selection Opera-
tor method (LASSO) algorithm. We then verified this 
epigenetic marker using two validation sets (testing set 
and entire set). Furthermore, we constructed a nomo-
gram to facilitate clinicians to accurately predict overall 
survival in ccRCC patients. Our results identified a new 
31-CpG-based epigenetic marker that may be a new tar-
get for predicting overall survival of ccRCC.

Methods
Study population and data collection
A total of 319 cases of ccRCC were randomly assigned 
to two groups, which had a 2:1 ratio. The former was 
defined as the training set (n = 213) and the latter as test-
ing set (n = 106). The corresponding clinical follow-up 
information of all cases included the survival time, sur-
vival outcome, tumor staging, grading and other infor-
mation of the cases. The level three of RNA-seq (Illumina 
RNASeqV2) and the Infinium HumanMethylation450 
BeadChip array (Illumina) data were downloaded from 
The Cancer Genome Atlas (TCGA) database (http://
cance​rgeno​me.nih.gov/), The details were listed in 
Table 1, and the flow chart of our entire experiment was 
shown in Fig. 1.

Differentially methylated positions screening
We first filtered out the probes that have too many zeros, 
then used the R package “ChAMP” [11] to quality con-
trol, remove the batch effects, BMIQ normalization [12] 
and Single Nucleotide Polymorphism (SNP) filtering (if it 
located in the CpG dinucleotide) [13]. After that, we used 
“champ.DMP” function to perform differentially methyl-
ated positions (DMP) analysis, we chosen the false dis-
covery rate (FDR) < 0.05 and | Δβ | ≥ 0.2 as the threshold 
for screening DMPs.

Establishment and validation of epigenetic signature
LASSO cox regression analysis was conducted for the 
DMPs obtained in the previous step, based on R packet 
“glmnet”. The degree of LASSO regression complexity 
adjustment was controlled by the parameter λ, and the 
larger λ was, the greater the penalty was, so as to obtain a 
model with fewer variables [14]. We construct the model 
according to the protocol of official website (https​://
cran.r-proje​ct.org/web/packa​ges/glmne​t/glmne​t.pdf ). 
Frist, the function “glmnet” returned a sequence of mod-
els for us to choose from. Second, we used the function 
“cv.glmnet” to perform Cross-validation, we followed 
the protocol, did 100 times cross-validations, and finally 
got an λ average. Based on this λ value, we constructed 
an epigenetic signature based on 31 CpGs from training 

Table 1  Clinical characteristics of ccRCC patients

Here Chi-square and p-value were the values obtained by comparison between 
the training set and the testing set

Variable Training set Testing set Entire set Chi-square 
Test

n = 213 n = 106 n = 319 χ2 P

No. (%) No. (%) No. (%)

Censor 65 (30.5) 40 (37.7) 105 (32.9)

Age (years)

 ≥ 65 75 (35.2) 36 (34.0) 111 (34.8) 0.049 0.825

 < 65 138 (64.8) 70 (66.0) 208 (65.2)

Gender

 Female 80 (37.6) 34 (32.1) 114 (35.7) 0.927 0.336

 Male 133 (62.4) 72 (67.9) 205 (64.3)

Pathological stage

 Stage I 106 (49.8) 49 (46.2) 155 (48.6) 1.766 0.779

 Stage II 22 (10.3) 9 (8.5) 31 (9.7)

 Stage III 49 (23.0) 24 (22.6) 73 (22.9)

 Stage IV 35 (16.4) 23 (21.7) 58 (18.2)

 NA 1 (0.5) 1 (0.9) 2 (0.6)

Histologic grade

 Grade I 6 (2.8) 3 (2.8) 9 (2.8) 4.684 0.321

 Grade II 93 (43.7) 40 (30.7) 133 (41.7)

 Grade III 75 (35.2) 48 (45.3) 123 (38.6)

 Grade IV 35 (16.4) 15 (14.2) 50 (15.7)

 NA 4 (1.9) 0 (0.0) 4 (1.3)

Lymph node metastasis

 Positive 38 (17.8) 23 (21.7) 61 (19.1) 0.681 0.409

 Negative 175 (82.2) 83 (78.3) 258 (80.9)

Fig. 1  Flow diagram of the study

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
https://cran.r-project.org/web/packages/glmnet/glmnet.pdf
https://cran.r-project.org/web/packages/glmnet/glmnet.pdf


Page 3 of 13Wang et al. Cancer Cell Int          (2020) 20:564 	

set. The accuracy of the epigenetic signature was then 
verified in the testing set and the entire set by using the 
time-dependent ROC curve and Kaplan–Meier survival 
curve analysis. Time-dependent ROC curve analysis was 
performed by R package “survivalROC” [15] while the 
Kaplan–Meier survival curve analysis was performed by 
R package “survival”.

Cox regression analysis of the epigenetic signature
To investigate whether the epigenetic signature we con-
structed could be independent of other factors affecting 
the prognosis of ccRCC, we conducted univariate and 
multivariate analyses by R package “survival”. First of all, 
the epigenetic signature score, age, gender, neoadjuvant 
treatment, lymph node count, histologic stage and patho-
logic grade were performed the univariate analysis. Then, 
we put the univariate analysis has significant difference 
factor to carry on the multivariate analysis. Finally, we 
used the forest map to visualize our results by R package 
“forestplot”.

The construction of the nomogram
Based on the results of the previous step, we used the 
factors with significant differences (epigenetic signature 
score and histologic stage) in multivariate regression 
analysis to construct a nomogram by using the R package 
“rms”. In order to verify the accuracy of the nomogram, 
we used the calibration curve to evaluate the nomogram. 
In the calibration curve, if the observed value and the 
actual value are more coincident, it indicates that the 
prediction accuracy of the nomogram is higher.

Functional annotation of the epigenetic signature
We calculated the top 500 genes with the highest corre-
lation with epigenetic signature score, and then enriched 
the functions of these 500 genes, thus indirectly predict-
ing the functional annotation of epigenetic marker score. 
The 500 genes were uploaded to the DAVID website 
(https​://david​.ncifc​rf.gov/) for GO analysis and KEGG 
pathway analysis. The following, the STRING database 
(https​://strin​g-db.org/) was used to performed pro-
tein–protein interaction (PPI) network [16] analysis. 
We’ve picked the top 50 genes from the “cytoHubba” 
app at Cytoscape and used the Cytoscape to visualize 
the results. According to the scores of the epigenetic sig-
nature, patients were divided into two groups with high 
and low risk, and then the corresponding RNA-seq data 
of these two groups were analyzed by single-samples 
gene-set enrichment analysis. The R package “GSVA” [17] 
were used to perform ssGSEA for the 31-CpGs-based 
epigenetic signature. The C2 (c2.cp.kegg.v6.1.symbols.
gmt) set was downloaded from the Molecular Signatures 

Database (http://softw​are.broad​insti​tute.org/gsea/msigd​
b/index​.jsp). And it was chosen as the signature to per-
form ssGSEA. The R package “limma” was used to iden-
tify the differentially expressed gene sets. The threshold 
for screening differentially expressed gene sets were the 
p-value < 0.05.

Results
Screening of DMPs
The R package “ChAMP” was used to screen DMPs 
between ccRCC and normal ccRCC samples in ccRCC 
dataset of the TCGA database, a total of 3858 DMPs were 
identified (1641 up-regulated and 576 down-regulated), 
under the threshold of FDR < 0.05 and | Δβ | ≥ 0.2. All 
DMPs were listed in Additional file 1: Table S1.

Establishment and validation of the epigenetic signature
We used the R package of “glmnet” to construct LASSO 
cox regression model. After 100 cross - validation, we got 
an optimal λ value (λ = 0.054), and finally we constructed 
an epigenetic signature based on 31 CpGs. The formula 
of epigenetic signature score were obtained by calculat-
ing the LASSO regression coefficient: epigenetic signa-
ture score = 

∑
n

k=1
βkiXki , here, n is the number of the 

CpG site; β is the LASSO regression coefficient of the 
CpG site; X is the methylation value of CpG k and patient 
i; k is the CpG site. Details of the 31 CpGs were listed 
in Table  2, the heatmap of the 31 CpGs were shown in 
Fig. 2a, and the results of ten-time cross-validation were 
shown in Fig. 2b.

We divided the patients in the training set into high 
and low risk groups based on the median epigenetic 
signature scores (here, the median epigenetic signature 
score was 2.96, Fig. 3a, left panel). Then, time-dependent 
ROC curve analysis revealed the epigenetic signature 
we constructed were able to predict the overall survival 
rate of patients with ccRCC with great accuracy. The 
AUC of time-dependent ROC for 1-year overall survival 
was 0.875, 3-year 0.876, 5-year 0.851 and 7-year 0.855 
(Fig.  3b middle panel). Finally, Kaplan–Meier survival 
curve analysis showed that the high-risk group had a 
significantly worse prognosis than the low-risk group 
(HR = 13.0, 95% CI 8.0–21.2, P < 0.0001, Fig.  3a right 
panel). In order to avoid over-fitting effect, testing set 
(HR = 4.1, CI 2.2–7.7, P < 0.0001, Fig. 3b) and entire set 
(HR = 7.2, CI 4.9–10.6, P < 0.0001, Fig. 3c) were used for 
verification our results.

Univariate and multivariate regression analysis 
of the epigenetic signature
We first performed a univariate analysis of the epigenetic 
signature scores, age, gender, neoadjuvant treatment, 

https://david.ncifcrf.gov/
https://string-db.org/
http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
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lymph node examination, histologic grade and patho-
logic stage in the entire set, and the results revealed that 
only the epigenetic signature score (HR = 3.87, 95% CI 
3.02–4.97, P < 0.0001), age (HR = 1.5, 95% CI 1.02–2.21, 
P = 0.0378), histologic grade (HR = 3.35, 95% CI 2.07–
5.41, P < 0.0001) and pathologic stage (HR = 4.49, 95% CI 
2.92–6.89, P < 0.0001) have significant prognostic value 
(Fig. 4a). Next, we conducted multivariate analysis of the 
factors with significant differences above, and found that 
the epigenetic signature score (HR = 3.09, 95% CI 2.35–
4.08, P < 0.0001) and pathologic stage (HR = 2.42, 95% CI 
1.52–3.86, P = 0.0002) could accurately predict the over-
all survival rate of ccRCC independently of other factors 
(Fig. 4b, Table 3).

Nomogram creating and calibrating
In order to more conveniently predict the overall survival 
rate of ccRCC patients for clinicians, we constructed a 
nomogram based on the R package “rms”. This nomo-
gram could accurately predict 3- or 5-year overall sur-
vival in patients with ccRCC (Fig. 5a). Moreover, we used 
the calibration curve to calibrate the nomogram and 
found that the prediction value of nomogram was signifi-
cantly correlated with the actual value (Fig. 5b, c).

Subgroup analysis of the epigenetic signature
To explore the predictive value of epigenetic signature in 
different subgroups, we performed subgroup analyzed 

Table 2  31-CpG-sites details in the epigenetic signature

CpG ID Gene symbol CHR Strand Type Feature Delta β Lasso coef

cg00936626 PIGZ 3 F II 5′UTR​ − 0.20 0.96

cg01569664 IRS2 13 R I Body − 0.20 0.2

cg03429569 2 R II IGR − 0.22 − 0.31

cg03615683 12 R II IGR − 0.21 0.62

cg04025970 MFHAS1 8 R II Body − 0.23 0.12

cg04074945 PHF21A 11 F II Body − 0.26 − 0.06

cg07522913 HOXA3 7 F I 5′UTR​ − 0.27 − 0.25

cg07915516 AXIN1 16 R II Body 0.22 0.67

cg08699206 4 R I IGR − 0.34 0.93

cg08949329 COL4A2 13 R II Body − 0.22 0.6

cg09507567 10 R II IGR 0.24 0.06

cg09744051 A4GALT 22 F II 5′UTR​ 0.25 0.59

cg10057940 10 F II IGR − 0.24 0.57

cg10621809 12 R II IGR − 0.24 0.47

cg12304520 PCDHGA4 5 R II Body − 0.22 0.7

cg12864389 PLEC1 8 F II Body 0.37 − 1.15

cg14476745 LHX6 9 R I Body − 0.31 0.1

cg15022051 6 R I IGR − 0.25 0.48

cg15518113 CD247 1 R II 3′UTR​ − 0.22 1.09

cg16059943 PRKCZ 1 F II Body − 0.23 − 1.38

cg16342949 MACROD1 11 F I Body − 0.24 0.38

cg16723800 TAF7L X F I Body − 0.31 0.04

cg17482089 PCDHA6 5 R I Body − 0.24 0.73

cg18954144 2 R I IGR − 0.30 0.43

cg19476788 NFATC1 18 R I Body − 0.26 0.08

cg19528338 BMP2 20 R II 5′UTR​ 0.21 0.6

cg21033440 SIPA1 11 F I Body − 0.26 0.65

cg21157873 CGN 1 R II 5′UTR​ − 0.26 0.03

cg24997744 BAHCC1 17 R I 3′UTR​ − 0.22 − 1.27

cg25541653 MPPED2 11 R II Body − 0.25 − 1.29

cg25755851 1 F II IGR 0.41 − 0.13
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patients from the entire set according to different char-
acteristics: pathologic stage (III/IV vs I/II, Fig.  6a, b), 
histologic grade (III/IV vs I/II, Fig.  6c, d), lymph node 
examination (Positive vs negative, Fig.  6e, f ) and age 
(>=65 vs < 65, Fig.  6g, h). The detailed information of 
subgroup analysis for the epigenetic signature were listed 
in Table 4.

Functional annotation of the epigenetic signature
Pearson correlation coefficients of all genes and the 
epigenetic signature scores were calculated. The 500 
genes with the highest correlation were selected for 
subsequent analysis, and the threshold value was set 
as p-value less than 0.05. Functional enrichment of the 
500 genes showed that this epigenetic signature was 
mainly enriched in the cell adhesion, notch signaling 
pathway, axon guidance, thyroid hormone signaling 

pathway and so on (Additional file  2: Figure S1). The 
PPI network diagram we built was shown in Additional 
file 3: Figure S2.

After the enrichment scores of each sample were cal-
culated, the differences of the high and low groups were 
analyzed according to the epigenetic signature scores. A 
total of 26 differentially expressed gene sets (10 up-reg-
ulated and 16 down-regulated) were screened under the 
threshold FDR < 0.05 and |LogFC| > 0.015. The result of 
ssGSEA revealed that patients in high risk group mainly 
enriched in p53, nod like receptor, cytosolic DNA 
sensing and other signaling pathways. The patients in 
low risk group were mainly enriched in the fatty acid 
metabolism pathway, PPAR signaling pathway, renin 
angiotensin system and so on (Fig. 7c, Additional file 1: 
Table S2).

Verification of CpG island methylation levels in ccRCC 
tissues and renal carcinoma cell lines
We collected 4 samples diagnosed as ccRCC and 2 para-
cancer tissue from the Zhongnan Hospital of Wuhan 
University, plus human renal tubular epithelial cell line 
(HK2) and 2 kidney cancer cell lines (ACHN and 769-P), 
and sequenced them with targeted methylation (Methyl-
Target, Illumina Hiseq, Illumina, CA, USA). The results 
showed that CpG island involved in the construction 
of prognostic model had different expression patterns 
between carcinoma and paracancer (Fig. 7d).

Discussion
Patients with ccRCC exhibit a highly invasive clinical 
process, poor prognosis, and high recurrence rate [1]. 
The TNM staging system is still widely used to predict 
the prognosis of ccRCC, however, it relies mainly on ana-
tomical information and has no biological characteristics 
[9]. Therefore, we need a new target to accurately predict 
the prognosis of ccRCC.

Overfitting often occurs in selecting prognostic mod-
els using higher-dimensional data [18], here, we chosen 
the LASSO algorithm, which could eliminate this disad-
vantage [19], as the method to select CpG for construct-
ing epigenetic signature. The algorithm of LASSO has 
been widely used to construct predictive survival mod-
els, for instance, colon cancer [20], gastric cancer [21], 
T-cell lymphoblastic lymphoma [22] and ccRCC [9, 10, 
23].

In recent years, epigenetics has been studied more 
and more in ccRCC, DNA methylation is one of the 
most studied patterns in epigenetic regulation [24–26]. 
And there have also been a number of studies using 

Fig. 2  Establishment of epigenetic signature based on 31-CpG-sites. 
a Heatmap of the 31-CpG-sites that were used to construct the 
epigenetic signature. b Ten-time cross-validation for parameter 
chosen. Here, λ = 0.054 was chosen by ten-time cross-validation
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methylation data to construct prognostic signatures [5, 
6, 27]. Here, we constructed and validated a 31-CpG-
based epigenetic signature that could accurately pre-
dicted overall survival of ccRCC. Using the epigenetic 

signature we constructed, we divided patients into high 
and low risk groups, and high-risk patients had signifi-
cantly lower overall survival rates in each set. Although 
previous studies have constructed several molecular 

Fig. 3  Risk scores by the epigenetic signature, the time-dependent ROC curves and Kaplan–Meier survival curves in the training set, testing set and 
entire set. a Training set. b Testing set. c Entire set. The AUCs at 1, 3, 5, and 7 years were used to assess the prognostic accuracy, and the log-rank test 
was used to calculated the p-values
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Fig. 4  Forest plot of univariable and multivariable analysis. Univariable analysis (a) and multivariable analysis (b) of the methylation signature 
scores, age, gender, histologic grade, and so on
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Table 3  Univariate analysis and multivariate analysis of the epigenetic signature

Variable Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

MS scores 3.87 (3.02–4.97) < 0.001 3.09 (2.35–4.08) < 0.001

Age 1.5 (1.02–2.21) 0.038 1.22 (0.83–1.8) 0.316

Gender 1.06 (0.71–1.59) 0.772

Neoadjuvant treatment 2.49 (0.91–6.78) 0.075

Lymph node count 1 (0.95–1.06) 0.858

Histologic grade 3.35 (2.07–5.41) < 0.001 1.26 (0.75–2.13) 0.378

Pathologic stage 4.49 (2.92–6.89) < 0.001 2.42 (1.52–3.86) < 0.001

Fig. 5  The nomogram to predict the overall survival of ccRCC. a The nomograms for predicting proportion of ccRCC patients with 1-, 3- or 5-year 
overall survival. Plots depict the calibration of the nomogram between predicted and observed 3- (b) or 5- (c) year outcomes

Fig. 6  Kaplan–Meier survival analysis for entire set according to the 31-CpG-sites based epigenetic signature stratified by clinicopathological risk 
factors. a, b Pathologic stage. c, d Histologic grade. e, f Results of lymph nodes examined. g, h Age

(See figure on next page.)
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biomarkers to predict the survival of ccRCC, few of 
the signature they have constructed are as accurate as 
our epigenetic signature. The AUC of time-dependent 
ROC was all greater than 0.75 in each set. After the epi-
genetic signature combined with staging and grading, 
the AUC predicted 5-year overall survival was reached 
0.871. At the same time, we validated our epigenetic 
signature in different subgroups (pathologic stage, his-
tologic grade, lymph node examination, and age) and 
found that the epigenetic signature showed excellent 
prognostic value.

We use ssGSEA and other methods to infer the 
functional annotation of epigenetic signature, and we 
found that the high risk group patients were mainly 
enriched in p53 and nod like receptor signaling path-
way, which have been reported in previous stud-
ies to be associated with the pathogenesis of ccRCC 
[28–30]. The group of low risk were enriched in fatty 
acid metabolism and which has also been reported to 
be associated with ccRCC [31–33]. We speculate that 
these pathways may be responsible for the very dif-
ferent overall survival rates between the two groups 
based on the epigenetic signature. So what we’re going 
to do is to look at how do these pathways affect the 
prognosis of ccRCC.

We performed methylation sequencing on ccRCC tis-
sue samples and kidney cancer cell lines, and the results 
showed that CpG islands involved in the construction of 
the prognosis model had significantly different expres-
sion patterns. However, our study has some limitations, 
we lack more data to verify it, but we have built a new 
biological sample database called Biological Repositories 
Zhongnan Hospital of Wuhan University (http://bioba​
nk.znhos​pital​.cn), which will provide a lot of data to ver-
ify our epigenetic markers in the future.

In conclusion, we provide an effective epigenetic sig-
nature that accurately predicts overall survival of ccRCC 
independent of other risk factors (age, gender, neoad-
juvant treatment, lymph node examination, histologic 
grade and pathologic stage). At the same time, we also 
constructed a nomogram for the convenience of clini-
cians to predict the prognosis of ccRCC.

Conclusion
We developed a 31-CpG-based signature using bioin-
formatics methods (LASSO cox regression analysis). We 
found that this epigenetic signature could accurately pre-
dict the overall survival rate of ccRCC, contributing to 

Table 4  Kaplan–Meier survival analysis for the epigenetic signature in these three sets

Variable Training set (n = 213) Testing set (n = 106) Entire set (n = 319)

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

All 13.0 (8.0–21.2) < 0.0001 4.1 (2.2–7.7) < 0.0001 7.2 (4.9–10.6) < 0.0001

Age (years)

 ≥ 65 7.6 (3.7–15.8) < 0.0001 2.9 (1.2–7.4) 0.0178 4.5 (2.5–8.0) < 0.0001

 < 65 16.8 (8.6–32.8) < 0.0001 5.4 (2.3–12.7) 0.0002 9.6 (5.7–16.3) < 0.0001

Gender

 Female 15.7 (6.8–36.4) < 0.0001 4.5 (1.2–16.6) 0.0071 9.3 (4.6–18.8) < 0.0001

 Male 12.1 (6.5–22.5) < 0.0001 4.0 (1.9–8.2) 0.0005 6.4 (4.0–11.2) < 0.0001

Pathological stage

 Stage I/II 10.4 (4.3–25.3) < 0.0001 – 0.4414 5.2 (2.4–11.4) < 0.0001

 Stage III/IV 10.7 (5.9–19.3) < 0.0001 2.5 (1.2–5.2) 0.0258 5.3 (3.3–8.3) < 0.0001

Histologic grade

 Grade I/II 10.6 (3.0–38.1) < 0.0001 – 0.5311 5.1 (1.9–13.8) < 0.0001

 Grade III/IV 10.1 (5.8–17.8) < 0.0001 3.9 (2.0–7.9) 0.0007 6.1 (3.9–6.4) < 0.0001

Lymph node metastasis

 Positive – 0.0048 – 0.5651 3.3 (1.4–7.4) 0.0222

 Negative 12.2 (7.1–21.0) < 0.0001 5.5 (2.5–12.3) < 0.0001 8.6 (5.5–13.5) < 0.0001

http://biobank.znhospital.cn
http://biobank.znhospital.cn
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the prediction of the prognosis of ccRCC. And we con-
structed a nomogram based on this epigenetic signature, 
which could accurately and conveniently predict the 
prognosis of ccRCC patients for clinicians.
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