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Murine single-cell RN A-seq reveals cell-identity- and
tissue-specific trajectories of aging

Jacob C. Kimmel," Lolita Penland,'? Nimrod D. Rubinstein,'? David G. Hendrickson,’

David R. Kelley," and Adam Z. Rosenthal'-?

" Calico Life Sciences, South San Francisco, California 94080, USA

Aging is a pleiotropic process affecting many aspects of mammalian physiology. Mammals are composed of distinct cell type
identities and tissue environments, but the influence of these cell identities and environments on the trajectory of aging in
individual cells remains unclear. Here, we performed single-cell RN A-seq on >50,000 individual cells across three tissues in
young and old mice to allow for direct comparison of aging phenotypes across cell types. We found transcriptional features
of aging common across many cell types, as well as features of aging unique to each type. Leveraging matrix factorization
and optimal transport methods, we found that both cell identities and tissue environments exert influence on the trajectory
and magnitude of aging, with cell identity influence predominating. These results suggest that aging manifests with unique
directionality and magnitude across the diverse cell identities in mammals.

[Supplemental material is available for this article.]

Aging is a gradual process of functional and homeostatic decline
in living systems. This decline results in increased mortality risk
and disease prevalence, eventually resulting in death. Aging ap-
pears to be a conserved feature of eukaryotic biology, affecting
organisms as phylogenetically diverse as the single-celled
Saccharomyces cerevisiae, the eutelic nematode Caenorhabditis ele-
gans, mice, and humans (Kenyon 2010; Longo et al. 2012;
Tissenbaum 2014). Despite the near universal nature of the aging
process, the underlying causes of aging are poorly understood.
Aging phenotypes have been observed and hypotheses have
been proposed for more than a hundred years (Weismann et al.
1891; Kirkwood 1977; Gladyshev 2013; Lopez-Otin et al. 2013),
but we do not yet know the cellular and molecular players that
cause aging or how they differ between biological contexts. Both
the fundamental nature of aging and its negative effects provide
motivation to enumerate these players and establish causal rela-
tionships among aging phenotypes.

Mammalian aging phenotypes manifest at the organis-
mal, tissue, cellular, and molecular levels (Zhang et al. 2015).
Extensive research has produced catalogs of aging phenotypes at
the physiological level, providing functional and behavioral hall-
marks of age-related decline. Likewise, molecular profiling of nu-
cleic acids, proteins, and metabolites has provided a phenotypic
description of aging in individual tissues. Transcriptomic analyses
of aging tissues have revealed some common changes, such as
increased inflammatory pathways in several tissues (Lee et al.
2002; Rodwell et al. 2004; O’Brown et al. 2015; Su et al. 2015;
Benayoun et al. 2019). Proteomic analyses of aging tissues have
also found changes in immunological and stress response path-
ways in multiple organs (Ori et al. 2015; Angelidis et al. 2019).
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Metabolomics have likewise revealed changes in fatty acids across
multiple tissues (Houtkooper et al. 2011).

Additional lines of inquiry have aimed to address a classical
question in aging biology: Do different tissues age in the same
way? Transcriptomic analysis at the bulk tissue level revealed tis-
sue-specific features of aging in several studies (Schumacher et al.
2008; Jonker et al. 2013; Ori et al. 2015; Benayoun et al. 2019).
Proteomic analysis of brain and liver in young and old mice simi-
larly suggests that most age-related changes are tissue-specific (Ori
et al. 2015). Mass spectroscopy studies have reported heteroge-
neous proliferative histories within and between murine tissues,
suggesting one means by which aging may manifest differently
across tissues and cells (Drigo et al. 2019). Studies of DNA methyl-
ation patterns with aging also suggest that different tissues age in
unique ways (Horvath 2013). However, the cellular origins of aging
phenotypes within a tissue remain largely unknown (Rodwell et al.
2004; O’Brown et al. 2015; Benayoun et al. 2019).

Mammals contain a multitude of distinct cell types, each of
which may be composed of multiple cell states. This combination
of cell type and state together form a cell identity. Each of these cell
identities shows specialized functions. In the mouse alone, recent
cell atlas efforts have revealed more than 100 cell types (Han et al.
2018; The Tabula Muris Consortium 2018). These surveys have cat-
aloged diverse murine cell identities, but the plasticity of these
identities and their contributions to tissue- and organism-level pa-
thology remain unknown.

At both the molecular and functional level, a host of aging
phenotypes and associated mechanisms have been revealed in in-
dividual cell types (Shaw et al. 2010; Chakkalakal et al. 2012; Keyes
et al. 2013; Liu et al. 2013; Flach et al. 2014; Blau et al. 2015; Brack
and Mufloz-Canoves 2016; Keyes and Fuchs 2018). Although some
of these studies present unique features of aging within individual
cell identities, it is difficult to compare them systematically
because of differences in experimental conditions and assay meth-
odology. Using traditional molecular biology assays, it is difficult
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Murine aging is cell-identity- and tissue-specific

to measure high-dimensional molecular phenotypes across multi-
ple cell identities, making large-scale comparisons of aging pheno-
types across cell identities intractable. The recent development of
single-cell RNA-sequencing (scRNA-seq) has ameliorated this lim-
itation, allowing for measurement of transcriptional features
across all prevalent cell identities in a tissue in a single experiment.

Although the technology has only recently matured, sCRNA-
seq experiments in individual tissues have already revealed novel
aspects of the aging process. In a pioneering scRNA-seq study of
hematopoietic progenitors, the axis of aging was shown to be op-
posite the axis of differentiation (Kowalczyk et al. 2015). Multiple
investigations have reported that cell-cell heterogeneity (Enge
et al. 2017; Angelidis et al. 2019) and gene expression variance
(Martinez-Jimenez et al. 2017) increase with age. However, the spe-
cific influence of cell identity and tissue environment on the tra-
jectory and magnitude of aging has yet to be resolved.

Here, we used scRNA-seq to generate a set of molecular pro-
files in which we can compare aging phenotypes across cell iden-
tities. By profiling 50,000+ cells from three tissues in young and
old mice, we identified common features of aging that span cell
identities, as well as features unique to each identity. We found
that changes in protein localization gene sets and increased in-
flammatory gene expression occur across cell identities, whereas
other changes are more specific to individual cell identities. For ex-
ample, phospholipid metabolism gene sets were elevated in old
lung type II pneumocytes, and muscle-related gene sets were de-
creased in old lung stromal cells. Using matrix factorization and
optimal transport methods, we computed trajectories of aging
for each cell identity and assessed the influence of identity and en-
vironment on these trajectories.

Results

Single-cell RN A-sequencing identifies a diversity of cell types and
states in young and old mouse tissue

We collected transcriptional profiles of young and old cells of
many identities by isolating single cells from the kidney, lung,
and spleen of n=4 young (7 mo) and n=3 old (22-23 mo)
C57B1/6] mice. We note that our “young” animals are at the later
portion of mature adulthood, as compared to the early portion of
mature adulthood (3-5 mo) used in some studies. All three tissues
were collected from the same animals (Methods; Supplemental
Note 1, tissue selection).

Isolations were performed at the same time of day to limit cir-
cadian variation, which affects the expression of nearly half of all
murine genes (Zhang et al. 2014). After single-cell isolation, cells
were immediately encapsulated and barcoded for library prepara-
tion using the 10x Genomics microfluidics system, followed by
sequencing (Fig. 1A). We recovered 55,293 individual cell tran-
scriptomes (Methods; Supplemental Table S1).

We determined cell type and state identity by leveraging an-
notations provided in the Tabula Muris (The Tabula Muris
Consortium 2018) following the “cell ontology” structure
(Bakken et al. 2017). Some age-related changes may be unique to
individual states within a cell type (i.e., CD4 vs. CD8 T cells). To
ensure that we can explicitly detect these cell state changes, we
manually annotated cell states within each cell type in the
Tabula Muris (Methods; Supplemental Fig. S1). We use the term
“cell identity” to refer to the combination of cell type and state la-
bels, such that CD4 T cells and CD8 T cells are different cell iden-
tities (Fig. 1B; for abbreviation legend, see Supplemental Table S2).

We trained deep neural networks to classify cell types based
on these annotations, then used these networks to predict cell
types in our data (Methods; Fig. 1B). We validated classifications
by inspecting marker gene expression post hoc (Supplemental
Figs. S2, S3B) and computing correlations between cell identities
in our data and the Tabula Muris (Supplemental Fig. S4). We
found that all distinct cell clusters expressed marker genes corre-
sponding to an annotated cell type in the Tabula Muris, such
that we did not recover any new or previously unseen cell types
here (Supplemental Fig. S3B). From these cell identity annotations,
we identified 19 unique cell types and 28 unique cell states across
the three tissues.

Comparing our cell types to the Tabula Muris, we recovered
all but one of the cell types identified (kidney loop of Henle epithe-
lial cells) (Supplemental Figs. S3A, S5). The cell-type proportions
that we recovered differ from the Tabula Muris (e.g., we recovered
comparatively more immune cells in the kidney and lung), but
are not outside expected ranges based on previous comparisons be-
tween scRNA-seq data sets (Park et al. 2018; The Tabula Muris
Consortium 2018). We also used an orthogonal cell type identifi-
cation method (Kiselev et al. 2018) and found predictions to be
largely consistent with our neural network-derived, manually val-
idated annotations (Supplemental Fig. S6). In both UMAP and
principal component analysis (PCA) projections, we found that
cells segregate by cell type and, to a lesser degree, age, rather
than by experimental batch (Fig. 1C; Supplemental Figs. S7, S8).

Immune cells are more prevalent in old kidneys and lungs, while nonimmune
cell-type proportions are preserved

One prospective way in which aging may influence tissue function
is by altering the proportion of each cellular identity within the tis-
sue. To investigate this possibility, we quantified the proportion of
each cell type within each tissue across ages.

Lymphocytes were significantly more abundant in the kid-
neys and lungs of old animals (t-test on additive log ratio [ALR]
transformed proportions, Q<0.05) (Fig. 1D; Supplemental Note
2). This may reflect increasing immune infiltration of the nonlym-
phoid tissues with age, as suggested in previous studies of kidney,
lung, and other nonlymphoid tissues (Rodwell et al. 2004; Aoshiba
and Nagai 2007; Toapanta and Ross 2009; Lumeng et al. 2011;
O’Brown et al. 2015). For the spleen and only the nonimmune
cells in the kidney and lung, differences in cell-type proportions
between young and old animals were not statistically significant
(llogz(old/young)| <1, Q>0.05, t-test of ALR-transformed propor-
tions) (Fig. 1D; Supplemental Fig. S9B). However, we cannot rule
out that recovery of specific cell types was confounded by an inter-
action of aging with our isolation procedures. These results there-
fore present a hypothesis of increased immune infiltration with
age but require confirmation by in situ cell type quantification
methods (Supplemental Note 2).

Shifting cell state proportions within a cell type may be an al-
ternative mechanism by which aging phenotypes manifest.
Examples of this phenomenon are present in the literature, such
as a decrease in naive CD8 T cells relative to other T cell states
(Decman et al. 2012; Goronzy et al. 2015) and the shift from high-
ly regenerative to less regenerative stem cell states in the blood and
muscle (Chakkalakal et al. 2012; Bernitz et al. 2016). To address
whether cell state proportions change with age, we quantified
the proportion of cells in each distinct state for all cell types. We
found a decreased proportion of spleen CD8 T cells relative to oth-
er spleen T cells (Quinn et al. 2016, 2018) and changes in the cell
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Figure 1. scRNA-seq reveals that nonimmune cell-type proportions are preserved with age. (A) Schematic representation of the experimental design. We
isolated kidney, lung, and spleen tissue simultaneously from each young (7-8 mo) and old (22-23 mo) mouse. After generating single-cell suspensions,
we prepared cells for scRNA-seq using the 10x Chromium system. (B) UMAP embeddings of each tissue investigated in our data set. Colors represent cell
type annotations. Cell types were derived using a deep neural network classifier trained on the Tabula Muris data set, followed by manual validation using
marker genes. (C) Matching UMAP embeddings depicting the age of each cell. (D) For each animal, we computed the proportion of cells in each cell iden-
tity. The mean proportion of each cell identity for each age across animals is presented as a bar graph. The underlying proportions observed in individual

animals are overlaid as black dots. We observed an increased frequency of immune cell types in kidney and lung.
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state proportions of kidney collecting duct epithelial cells
(Supplemental Fig. S9; Supplemental Note 2). These results suggest
that changes in cell state proportions within a cell type can occur
with age. If different cell states have distinct functional roles, these
shifts in cell state proportions may contribute to age-related
phenotypes.

Cycling cells are similarly rare in young and old animals

Previous reports highlight cell cycle activity changes with age in
multiple cell populations (Chakkalakal et al. 2012; Kowalczyk
et al. 2015; Nalapareddy et al. 2017). To investigate changes in
cell cycle frequency in our data, we evaluated cell cycle activity
by scoring the expression of S phase-associated genes and G2M-as-
sociated genes (Methods; Tirosh et al. 2016). We observed only
small changes in either of these cell cycle module scores with age
across cell identities, with only a handful of statistically significant
differences (Supplemental Fig. S10A; Supplemental Note 3). Thus,
cell cycle rates appear not to be dramatically changed with age in
our data.

Previous studies also reported accumulation of noncycling
senescent cells in aging tissues (Childs et al. 2017). We find few
cells expressing proposed senescence marker Cdkn2a, with no sig-
nificant differences in expression between young and old cells
(Supplemental Note 4; Supplemental Fig. S11A).

Changes in cell-cell variation with age depend on cell identity

Single-cell analysis measures not only the mean expression of each
gene, but also the variation within a cell population. Previous stud-
ies have reported that both gene expression variance and cell-cell
heterogeneity increase with age using RNA-seq (Enge et al. 2017;
Martinez-Jimenez et al. 2017; Angelidis et al. 2019) and quantita-
tive PCR methods (Bahar et al. 2006). Gene expression variance
quantifies the mean dispersion across genes in the transcriptome,
such that each gene contributes equally. In contrast, cell-cell het-
erogeneity measures the average distance in transcriptional space
between cells in a population (Fig. 2A; Supplemental Note 5).
Both transcriptional variation and cell-cell heterogeneity have im-
portant implications for cell physiology and function, as explored
in seminal studies of transcriptional noise in cell fate selection
(Blake et al. 2006; Siiel et al. 2007) and bet hedging (Cohen
1966; Slatkin 1974; Kussell et al. 2005; Beaumont et al. 2009;
Altschuler and Wu 2010). To determine if age-related changes in
variation and heterogeneity depend on cell identity and tissue en-
vironment, we evaluated both properties across the many combi-
nations that we observed.

We evaluated transcriptional variation using the difference
from the median (DM) method (Kolodziejczyk et al. 2015) to esti-
mate “overdispersion” (Methods; Supplemental Note 5). Across
cell identity/environment combinations, we found that trans-
criptional variation changes subtly (median Cohen’s d=0.031)
(Fig. 2B). Individual cell identities can be identified that show ei-
ther increased (lung leukocytes) or decreased (kidney mesangial
cells) variance with age (Fig. 2D).

We quantified cell heterogeneity in each cell identity/envi-
ronment combination using the distance to the centroid method
(Enge et al. 2017; Angelidis et al. 2019). Cell—cell heterogeneity ap-
pears to increase for many cell identities (Wilcoxon rank-sum test,
Q<0.05, median Cohen’s d=0.473), including B cells across all
three tissues, and lung stromal cells. We also observed decreased
heterogeneity with age in some cell identities, such as lung type
II pneumocytes and kidney CD8 T cells (Fig. 2C). Quantifying

cell-cell heterogeneity using alternative gene sets and distance
metrics yielded similar results (Methods; Supplemental Note 5;
Supplemental Fig. $12).

Taken together, these results indicate that changes in gene ex-
pression variance and cell-cell heterogeneity with age depend on
cell identity. These results do not contradict previous observations
of increased variation with age in some cell identities and contexts
(Enge et al. 2017; Martinez-Jimenez et al. 2017), but rather suggest
a nuanced view of changes in noise as a hallmark of aging at the
single-cell level (Supplemental Note 5; Todhunter et al. 2018).

Differential expression reveals aging phenotypes common across
cell identities

Previous studies have revealed differentially expressed genes
within whole tissues or individual cell types in aging (Rodwell
et al. 2004; Jonker et al. 2013; Cosgrove et al. 2014; O’Brown
et al. 2015; Su et al. 2015; White et al. 2015; Keyes et al. 2016;
Benayoun et al. 2019). However, it remains unclear to what degree
age-related transcriptional changes are shared or unique across cell
identities. To address this outstanding question, we performed dif-
ferential expression analysis within each cell identity between
young and old mice.

Weidentified differentially expressed genes for each cell iden-
tity/tissue environment combination using the rank sums method
(Methods). For each differentially expressed gene, we counted how
many unique cell identities differentially express that gene. We
considered the same cell type in different tissues to have the
same cell identity. For example, a gene significantly up-regulated
in lung natural killer cells, kidney natural killer cells, and spleen
CD8 T cells is considered to be differentially expressed in two
cell identities rather than three. The majority of differentially ex-
pressed genes with age are specific to one or a few cell identities
(Fig. 3A).

However, 261 genes were differentially expressed across k> 5
cell identities and consistently changed across multiple cell identi-
ties (Fig. 3B). We chose five cell identities as a cutoff for common
differentially expressed genes to reduce the number of genes iden-
tified owing to common differential expression in highly similar
cell identities (i.e., monocytes and macrophages). Thus, some as-
pects of transcriptional aging are common to many cell identities.
Using Gene Ontology (GO) enrichment analysis for biological
processes (Kuleshov et al. 2016), we identified SRP-dependent pro-
tein localization and protein translocation to the ER as commonly
down-regulated across cell identities (Fig. 3C, upper). This observa-
tion is consistent with the observed interaction of protein translo-
cation systems with aging (Steffen and Dillin 2016; Hendrickson
et al. 2018). Antigen processing and inflammatory pathways
were significantly up-regulated with age, a result that has also
been observed across tissues in previous reports (Rodwell et al.
2004; O’Brown et al. 2015; Ori et al. 2015; Benayoun et al. 2019).
Our gene set enrichment results were not sensitive to the specific
number of cell identities (k) that we required to consider a gene
commonly differentially expressed (Supplemental Fig. S13).
Hierarchical clustering of this common set of differentially
expressed genes revealed gene clusters enriched for specific inflam-
matory processes (type I interferon signaling, cytokine secretion),
suggesting that more than one immunological pathway changes
with age (Supplemental Fig. S14).

Previous investigations using bulk transcriptional assays re-
ported increased inflammation-associated gene expression with
age in multiple nonlymphatic tissues but could not identify the
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Figure 2. Changes in cell-cell heterogeneity with age depend on cell identity. (A) Diagram illustrating the difference between gene expression variance
(left) and cell-cell heterogeneity metrics (right). Gene expression variance measures the variance of the average gene in a manner that controls for mean
expression levels. Cell-cell heterogeneity measures the average difference between cells across genes. Examples of data providing high and low values for
each metric are schematized. (B) Overdispersion values for each cell identity conditioned on age. We computed overdispersion as the residual dispersion of
each gene after accounting for mean expression level with a rolling median dispersion spline (difference from the median method). Each point in the un-
derlying data represents a single gene. Many cell identities do not show a substantial shift in the overdispersion distribution. Some identities show increased
mean overdispersion with age, whereas others show a decrease: (*) Wilcoxon rank-sum test, Q<0.05. (C) Cell-cell heterogeneity measurements based on
Euclidean distances to the population centroid for each cell identity and age. We computed Euclidean distances to the centroid for each cell using all mea-
sured genes. Each point in the underlying data represents a single cell. Most cell identities showed increased cell-cell heterogeneity in old cells: (*) Wilcoxon
rank-sum test, < 0.05. However, some identities show decreased heterogeneity with age (kidney::CD8 T cell; kidney::classical monocyte). (D) Difference in
overdispersion between old and young cells (AOverdispersion) as a function of mean gene expression value in VIM-positive kidney capillary endothelial cells
(upper) and lung leukocytes (lower). Each point represents the change in overdispersion and mean expression value for a single gene. Shading reflects the
density of points. We found that genes within a cell identity show heterogeneous changes in overdispersion with age.

source cell type(s). Both an increase in the number of immune cells
in these tissues, or an increase in the expression of inflammation-
associated genes in nonlymphoid cells may explain this observa-
tion. Bulk transcriptional assays cannot independently assess
these possibilities, but our single-cell data allowed us to assess
both changes in cell-type proportions and cell-type-specific gene

expression. In addition to the increased number of immune cells
in kidney and lung, we found that inflammatory gene expression
increased with age in both immune and nonimmune cell types
(Supplemental Note 6; Supplemental Fig. S15A,B). This result sug-
gests an interrelated transition of the tissue’s cell populations to-
ward an inflamed state with age.
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Figure 3. Differential expression analysis identifies common age-related changes across cell identities and tissue environments. (A) Distribution of the
number of genes differentially expressed in at least k cell identities. We counted identical cell identities in different tissues (e.g., lung B cells, spleen B cells)
as only one unique cell identity. We selected genes differentially expressed in k>5 unique cell identities as common differentially expressed genes.
(B) Heatmap of top 15 genes significantly changed in each direction across more than five cell identities. Fold changes between old and young cells are pre-
sented for each cell type in each tissue. Although no gene is universally changed across cell identities, each gene is changed across multiple tissues and devel-
opmental lineages. (C) Top five enriched Gene Ontology terms for genes that are down-regulated (negative values) and up-regulated (positive values) with
aging across more than five cell identities. Dotted gray lines near 0 represent the a = 0.05 significance threshold. Antigen processing and metabolic pathways
appear to be up-regulated, whereas protein translation and translocation pathways appear to be down-regulated with aging. (D) Violin plot of genes that are
uniquely changed between two cell states in the lung (Wilcoxon rank-sum test, Q < 0.05): Npnt stromal cells and type Il pneumocytes. Each gene presented is
significantly up-regulated or down-regulated in one cell identity and does not change in the same direction (log; [old/young] <0.1) in the other cell identity.
Confidence intervals were computed by bootstrapping. For each cell state, we show the top two specific down-regulated genes and up-regulated genes.
(E) Violin plot of genes that are uniquely changed between CD4 T cells isolated from the spleen and the lung. Genes were selected as in D.

Many genes changed expression uniquely in individual cell
identities, even within the same tissue. For instance, Npnt lung stro-
mal cells showed up-regulated and down-regulated genes and gene
sets that are unchanged in lung type II pneumocytes and vice versa

(Fig. 3D; Supplemental Fig. S15C). We also observed genes that are
differentially expressed in a tissue-specific manner. For example,
CD4 T cells in the lung down-regulated and up-regulated genes
and gene sets that are unchanged in CD4 T cells of the spleen and
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vice versa (Fig. 3E; Supplemental Fig. S15D). Collectively, these
results indicate that cell identity and tissue environment both in-
fluence differential gene expression. Although most differentially
expressed genes are specific to individual cell identities, a subset
of changes appears to be common across many identities.

Aging manifests novel B cell states in the spleen

Beyond shifting cell state proportions, aging could promote the
formation of novel cell states unseen in young animals. Previous
studies have reported the emergence of novel cell states with age
in the hematopoietic system (Kirschner et al. 2017), and senes-
cence phenotypes may be considered novel cell states from this
perspective (Sousa-Victor et al. 2014; Sharpless and Sherr 2015;

Baker et al. 2016). Here, we observed another example of a cell state
that arises with age in spleen B cells.

Spleen B cells in our experiments showed three distinct clus-
ters that do not map well to a canonical subtyping scheme (Fig.
4A). We identified these clusters using Louvain community detec-
tion and maximized the variance ratio criterion (VRC) (Calinski
and Harabasz 1974) to find an optimal partition (Supplemental
Fig. S16). One of these clusters was dominated by cells from old an-
imals (P<0.05, x> contingency table) (Fig. 4A,C). We performed
differential expression analysis on each of these clusters to identify
marker genes and noted greater Apoe in the larger cluster and great-
er B2m in the other.

Previous reports point out that the C57B1/6 mice used in this
study die with an unusually high incidence of lymphoma
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Figure 4. Aging manifests novel neoplastic B cell states in the spleen. (A) UMAP embeddings of the spleen B cell compartment, colored by age (left).
Louvain clustering identified three subpopulations within the B cell compartment of the spleen, named by their marker genes (right). (B) Marker genes
for each cluster and a set of lymphoma-specific genes presented as violin plots. All markers were significantly enriched in the Apoe-high and B2m-high clus-
ter. (C) Proportions of cells in each cluster as a function of age. The Apoe-high and B2m-high states are occupied predominantly by aged cells (t-test on ALR-
transformed proportions, Q<0.05). (D) Enrichment of MSigDB Hallmark gene sets based on differentially expressed genes in the Apoe-high cluster relative
to the normal B cell cluster. Myc targets, mTOR signaling, and DNA repair pathways were up-regulated, whereas TRP53 signaling was down-regulated,
suggesting neoplasia. Gray dotted lines represent the a=0.05 significance threshold. (£) UMAP embedding of the Apoe cell cluster alone. A second
Louvain clustering iteration reveals two clusters within this Apoe-high group (right). Visualizing the animal of origin for each cell, it is apparent that
Cluster 1 is dominated by a single old animal (left). (F) Marker genes for each of the subclusters within the Apoe-high state presented as violin plots.
Cluster 0 is enriched for lymphoma-associated gene Zeb2, and Cluster 1 is enriched for Plac8. These results similarly suggest neoplasia.
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(Blackwell et al. 1995; Pettan-Brewer and Treuting 2011; Brayton
etal. 2012). To ask if these clusters dominated by old cells potential-
ly represent lymphomas, we examined the expression of several
genes associated with B cell lymphomas in a previous study
(Lenburg et al. 2007). We identified several lymphoma-associated
genes significantly up-regulated in each of these clusters (Q<0.05,
Wilcoxon rank-sum test) (Fig. 4B, rows 4-9). Performing gene set en-
richment analysis using the MSigDB Hallmark gene sets (Liberzon
etal. 2015), we observed that Myc target genes and DNA repair path-
ways were up-regulated, whereas TRP53 pathway genes were down-
regulated (Fig. 4D). This pattern of differential gene expression sug-
gests that the Apoe-high population is preneoplastic.

At a finer level of detail, the Apoe-high cluster appears to have
two distinct lobes. One of these two lobes seems to contain cells
almost entirely derived from a single old animal (1 of 3) (Fig. 4E),
whereas the other lobe contains cells found in all of the old ani-
mals observed. To determine what differentiates these lobes, we ex-
amined marker genes and identified differences in the expression
of Zeb2, the B cell marker Cd72, Plac8, and Cd24a as discriminating
features (Q<0.05, Wilcoxon rank-sum test) (Fig. 4F). Each of these
genes has previously been associated with neoplasia (Kinsey et al.
2014; Li et al. 2017; Zhao et al. 2019). We believe these cell states
may therefore represent a lymphoma or prelymphoma, although
exact diagnosis is difficult because of the histopathological defini-
tion of neoplastic malignancies.

These emergent cell states support the notion that some aging
phenotypes manifest not by shifting the distribution or location of
youthful states, but by creating new states altogether. Neoplastic
cells are an extreme case of such a phenomenon. The observation
of a cell state that is generally ubiquitous in old mice and a related
state that is present in only one animal also highlights the com-
monalities and stochastic animal-animal heterogeneity present
in aging studies.

Cell identity determines the trajectory of aging

Our differential expression and heterogeneity analyses suggest
that cell identities age differently and the same cell identity ages
differently across tissues. How much do cell identity and tissue en-
vironment influence the trajectory of aging? To answer this ques-
tion quantitatively, we computed an aging trajectory for each cell
identity in each tissue based on their transcriptional profiles.

We performed this analysis using an embedding space de-
rived by non-negative matrix factorization (NMF). NMF embed-
dings of transcriptional data have been shown to recover
relationships between genes, such that each component of the em-
bedding may be interpreted as a gene expression program (Brunet
et al. 2004; Shao and Hofer 2017; Kotliar et al. 2019). Likewise, cell
values for each component quantify activity of those programs.
NMF embedding allowed us to assess aging trajectories at a level
of abstraction above individual genes.

To compute aging trajectories, we first embedded all cells ob-
served across tissues in a 20-dimensional NMF space (Methods;
Fig. 5B; Supplemental Fig. S17). To assign semantic meaning to
the embedding dimensions, we identified genes associated with
each dimension by thresholding on the dimension loadings and
analyzed gene set enrichment (Supplemental Fig. S18). We com-
puted the aging trajectory for each cell identity/tissue combina-
tion as the distance between the centroid of the young cells and
the centroid of the old cells in this embedding (Methods). For clar-
ity, we computed separate aging trajectories for each cell identity/
tissue combination, such that lung B cells and spleen B cells were

treated independently. This procedure yields a 20-dimensional
vector representing the trajectory of age-related change observed
in each cell identity.

We compared these trajectories using the cosine similarity.
The cosine similarity is 1 if trajectories are in the same direction,
0 if they are orthogonal, and -1 if they are in opposite directions.
Clustering by these cosine similarities, we found that qualitatively
similar cell identities have similar aging trajectories, whereas dis-
similar cell identities have orthogonal or dissimilar trajectories
(Fig. 5A).

Examining the clustering partition, cells segregated into
roughly four clusters: endothelial and epithelial cells (blue), mye-
loid cells (purple), lymphocytes (green), and a remaining cluster
with both myeloid and epithelial cell types (red). Cell identities
from the kidney and lung intermixed within the endothelial/epi-
thelial cell cluster. Likewise, within the lymphocyte cluster B cells
and T cells cluster more tightly by cell identity across tissues than
by tissue of origin. This suggests that cell identity has a larger influ-
ence on aging trajectories than tissue environment.

To quantify the influence of both cell identity and tissue en-
vironment, we focused on the aging trajectories of immune cell
types observed in multiple tissues (B cells, T cells, natural killer
cells, macrophages, monocytes). For these cell types, we construct-
ed linear models and performed an analysis of variance (ANOVA)
to determine the proportion of variation explained by cell identity,
tissue environment, and their interaction (Robinson et al. 2015).
Consistent with qualitative observations, cell identity explained a
markedly larger fraction of variance than tissue environment (Fig.
5C). These results were robust to bootstrap resampling across cells
(Supplemental Fig. S19) or across animals (Methods; Supplemental
Fig. $20) and were statistically significant when evaluated with per-
mutation tests (Methods; Supplemental Fig. S19). Results were also
robust using a PCA embedding rather than NMF (Supplemental
Fig. S21; Supplemental Note 7).

Endothelial cells and lymphocytes show distinct aging trajectories

We next asked how endothelial/epithelial and lymphocyte aging
trajectories differed. Using the clustering assignments from Figure
5A, we compared aging trajectories for each cell identity in the en-
dothelial and lymphocyte clusters. The two clusters showed consis-
tent differences in the magnitude of change within multiple NMF
dimensions (Fig. 5D). Based on Gene Ontology enrichment within
these dimensions, endothelial/epithelial cell types showed an
increase in thyroid hormone and type I interferon signaling
(Dimension 2) (Fig. SE) and a decrease in transcriptional machinery
and cell cycle regulation relative to immune cell types (Dimension
9). In contrast, lymphocytes showed a larger increase in NF-kB sig-
naling and related immune response pathways (Dimension 13).
B cell activation associated pathways were increased with age in a
B cell-specific manner (Dimension 19). Both clusters increased
NAD metabolism and B cell signaling pathways (Dimension 18),
as well as T cell signaling and activation (Dimension 6). These
results are consistent with literature observing changes in type I
interferon activity (Li et al. 2015) and thyroid hormone signaling
with aging (Biondi and Cooper 2008; Gesing et al. 2012; Visser
et al. 2016), as well as our differential expression analysis.

Optimal transport analysis indicates that cell identity determines
the magnitude of aging

Do some cell identities or tissue environments change more with
age? To answer this question, we estimated the magnitude of aging
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Figure 5. Cell identity and tissue environment influence aging trajectories.

We computed aging trajectories as the distance between young and old cell

centroids in a non-negative matrix factorization (NMF) low-rank embedding of each cell. We embedded all cells in a common non-negative latent space,
where each latent dimension is associated with the activity of particular genes. (A) Cosine similarities between the aging trajectories of each cell state in each
tissue are compared in a heatmap. Hierarchical clustering of aging trajectories revealed that similar cell types have similar trajectories. In contrast, different
cell types from the same tissue did not cluster together. We labeled clusters based on their constituent cell types above. (B) A UMAP visualization derived
from the 20-dimensional NMF embedding with cell types overlaid as colors. The NMF embedding retains biological variation between cell types.
(C) Variance in the aging vectors of immune cell types found in all three tissues explained by cell type, tissue environment, and their interaction
(ANOVA). (D) Heatmap visualization of the aging vectors for lymphocyte and endothelial/epithelial cell types. Endothelial/epithelial cell types and lym-
phoid cell types were identified by clustering aging vectors, presented in A. Semantic descriptions of each embedding dimension derived from gene en-
richment analysis are presented as column labels. Some expression programs show common changes with age across both groups of cell types, whereas
others appear to be different between groups. We highlight three expression programs that show cell-identity-specific changes (bold). (£) Gene Ontology

enrichment analysis results for selected dimensions of the NMF embedding.

using optimal transport distances in an NMF embedding, as
described above. Here, we used an embedding with 500 latent di-
mensions to capture more variation within the data (Supplemental
Fig. S17B). Optimal transport is a technique for measuring distanc-
es between equally sized samples that has been applied to a wide

variety of data analysis tasks, including scRNA-seq (Schiebinger
et al. 2019).

The discrete optimal transport distance that we applied here
measures the minimum amount of change needed to make one
group of cells match another. This metric captures differences in
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the covariance structure and modality of a cell population, in pect to see between random samples of cells in the absence of
addition to differences in the population means (Supplemental age-related change. We normalized the heterochronic (young-
Fig. S22A,B). We compared the distance between two cell popula- old) comparison values for each cell identity by dividing by the
tions by sampling n=300 cells from each of them a number of mean of the larger isochronic distance. We expect this isochronic
times (300) and averaging the distance across the samples distance to scale with the heterogeneity of the cell population
(Methods). This bootstrap sampling scheme allowed us to meet (Supplemental Fig. S$22C), such that this normalization accounts
the equal sample size requirement for optimal transport dis- for differences heterogeneity across cell types.
tances, even when we observed different numbers of young and We interpreted these normalized optimal transport distances
old cells. as an estimate of the magnitude of age-related change. Aging mag-
We compared the distance between young and old cells from nitudes varied greatly across the cell identities that we observed
each cell identity and tissue environment in the NMF embedding. (Fig. 6D). Some cell identities showed little more distance between
For each cell identity, we made three distinct comparisons. We young and old cells than between two isochronic groups of cells
made a heterochronic comparison between young and old cells (normalized distance of ~ 1), whereas others showed three- to four-
to estimate the magnitude of aging. This process is schematized fold larger differences in heterochronic comparisons. Lung and
in spleen B cells to provide intuition (Fig. 6A). We also made two spleen natural killer (NK) cells and spleen CD8 macrophages
isochronic comparisons, comparing young cells to young cells showed some of the greatest optimal transport distances, whereas
and old cells to old cells (Fig. 6B). These isochronic comparisons lung and spleen B cells and lung endothelial cells showed some of
serve as a null distribution, estimating the distance we would ex- the smallest.
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Figure 6. Optimal transport (OT) estimates the magnitude of aging across cell identities. To estimate a magnitude of age-related change in each cell
population, we computed an OT distance between random samples of young and old cells from each cell identity in a rank 500 NMF embedding.
(A) Young and old spleen B cells are presented in a PCA projection of the NMF embedding. Dashed lines overlaid indicate the globally optimal partners
for each young and old cell, collectively representing the OT solution. The sum of distances along each dashed line is the OT distance. OT distances
were computed independently for each cell identity across 300 random samples. (B) OT distances for each cell type in each tissue are presented. For
each cell identity, we computed distances for heterochronic samples of cells (old-young) and isochronic samples of cells (young-young, old-old). The latter
isochronic comparisons serve as negative controls. Distributions across n=300 random samples each are presented for each of these comparisons.
(C) Variance in normalized OT distances explained by cell identity and tissue environment (ANOVA). We fit a linear model with normalized OT distance
as the response and cell identity, tissue environment, and their interaction as the inputs. We found that cell identity explains the majority of variation in
aging magnitudes, whereas tissue explains little. The residual represents variation across the random samples in which we measured the OT distance.
(D) Heterochronic OT distances for each cell identity. Each dot represents the normalized OT distance for a single sample. Values are normalized to the
largest mean value of the isochronic negative controls. The gray dotted line marks a normalized distance of 1, which indicates that a heterochronic com-
parison shows similar distances to an isochronic comparison in that cell identity.
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To quantify the relative contributions of cell identity and tis-
sue environment to aging magnitude, we used the same linear
modeling and ANOVA approach as above. These models revealed
that cell identity explains the majority of variation in aging mag-
nitudes, but tissue environment explains little (Fig. 6C). The resid-
ual in this model represents the small amount of variation caused
by the random sampling procedure that we used to compute OT
distances. These results were robust across separate NMF optimiza-
tion runs (Supplemental Fig. S23A) and optimal transport param-
eters (Supplemental Fig. S23B,C).

We found that different cell states within the same cell type
can have notable differences in aging magnitude. For instance,
spleen CD8 macrophages showed a larger aging magnitude than
spleen CD4 macrophages. Similarly, lung Dcn stromal cells showed
a larger aging magnitude than other stromal cell counterparts.
Across all three tissues, CD8 T cells showed a larger aging magni-
tude than CD4 T cells. These observations collectively indicate
that cellular identity can have a notable impact on the magnitude
of age-related change, such that even different cell states within
the same cell type show differences in aging magnitude. In con-
trast, tissue environments appear to influence aging magnitude
less, suggesting that cell identity composition drives most of the
difference in aging magnitude between tissues.

Discussion

Aging occurs across varied mammalian species, each composed of
diverse cell types and states. Although aging phenotypes have
been cataloged at the organismal and tissue level, their constituent
cell identities have been less explored. To understand the causes of
aging, we aim to construct a causal network of molecular players
and their relationships. If these players and relationships are
dependent on cell identity, as evidence suggests for tissues (Schu-
macher et al. 2008; Jonker et al. 2013; Ori et al. 2015; Benayoun
et al. 2019), an accurate representation of the causal network re-
quires resolution of the organismal building blocks—individual
cells. Here, we used single-cell RNA-seq to investigate aging across
a diverse set of murine cell identities in three tissues.

We found that cell identities differentially express unique
genes with aging, consistent with previous reports of cell-identi-
ty-specific aging phenotypes (Angelidis et al. 2019). Similar cell
types (e.g., kidney capillary endothelial cells and lung endothelial
cells) showed broadly similar aging trajectories across tissues, and
distinct cell types from the same tissue (e.g., B cells and type II
pneumocytes in the lung) had dissimilar trajectories. This suggests
that cell identities and aging trajectories are coupled, and distinct
cell types may be undergoing independent aging processes.
Consistent with this notion, cell identity explained the majority
of variation in these aging trajectories. Tissue environment ex-
plained a lesser amount of variation, but its influence is also pre-
sent in our data in small sets of unique differentially expressed
genes in the same cell identity across tissues. Collectively, our re-
sults indicate that the molecular manifestations of aging differ be-
tween cell identities and tissue environments. A causal network for
aging phenotypes must therefore be conditioned on both cell
identity and environment to accurately reflect biology.

Although most changes are unique to tissues or cell types, we
identified a shared core of differentially expressed genes with age.
This core is characterized by decreased expression of genes in-
volved in SRP-dependent protein translation and protein targeting
to the ER and increased expression of genes involved in inflamma-
tion, consistent with previous observations in S. cerevisiae

(Hendrickson et al. 2018) and multiple studies of aging tissues
(Amador-Noguez et al. 2004; Rodwell et al. 2004; O’Brown et al.
2015; Benayoun et al. 2019). Observation of these changes across
many cell identities and tissue environments suggests that they are
consistent molecular players in the causal network of aging.
However, functional studies modulating these pathways in multi-
ple cell identities are necessary to establish causal links to other ag-
ing phenotypes.

We present an optimal transport metric to estimate the mag-
nitude of age-related change between two cell populations.
Although differential expression and aging trajectories reveal spe-
cific gene and pathway changes, the optimal transport distance
provides an integrated read-out, allowing us to estimate the magni-
tude of age-related transcriptional change across cell identities.
Using this approach, cell identities showed multifold differences
in aging magnitude, and cell identity again explained the majority
of variation. Our results are conceptually consistent with previous
reports of large transcriptional changes with age in some cell iden-
tities and more subtle changes in others (Kowalczyk et al. 2015;
Keyes et al. 2016; Davie et al. 2018; Keyes and Fuchs 2018). The
magnitude of gene expression changes has been reported to corre-
late with functional impact (Wawer et al. 2014; Subramanian et al.
2017), suggesting that cell identity aging magnitudes may high-
light identities with larger age-related functional changes.

Our results indicate that cell identity influences multiple as-
pects of aging, highlighting the importance of aging studies at
the single-cell level. However, it remains difficult to identify which
age-related changes are causal and link molecular changes at the
level of individual cell types to physiological aging phenotypes,
like reduced glomerular filtration rate or decreased pulmonary re-
generation. Future single-cell studies may focus on collecting addi-
tional time points and phenotypes throughout the aging process,
allowing for time series-based causal inference methods (Granger
1969; Bar-Joseph et al. 2012; Finkle et al. 2018; Qiu et al. 2018; Lu
et al. 2019) to reveal the relationships between the molecular play-
ers of aging. Functional challenges, such as the differentiation of
stem cells during regeneration or the stimulation of immune cells
during infection, would also help dissect how transcriptional ag-
ing magnitudes and differential gene expression influence tissue
function. Single-cell measurements collected during functional
challenges may also reveal the dynamics of perturbation and sub-
sequent return to homeostasis necessary to evaluate “resilience” in
a given cell type (Kirkland et al. 2016; Hadley et al. 2017).

Methods

Animals

Young (29-34-wk-old) and old (88-93-wk-old) male C57Bl/6] mice
were used for all experiments. Young mice were acquired from the
Jackson Laboratory at 26 wk of age and allowed to acclimate for at
least 3 wk before sacrifice. Old mice were likewise acquired for the
Jackson Laboratory at 51 wk of age and aged at Calico Life Sciences
to 88-93 wk. Our young mice were at the older extent of the “ma-
ture adult” life stage, as compared to some other studies using
animals at the early side of the “mature adult” life stage (roughly
12-16 wk of age). By using animals at the end of the mature adult
phase, we hoped to minimize contrasts between our young and old
animals owing to the late phases of ontogeny, rather than aging.
Mice were housed communally with a standard 12 h dark cycle
and fed ad libitum. Mice were killed by administration of carbon
dioxide at a controlled flow rate and at the same time each day
to minimize circadian variation, shortly after the beginning of
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the light cycle. Kidneys, lungs, and spleen were collected from
each experimental animal and weighed. Downstream cell isolation
for each tissue proceeded immediately.

Cell isolation

We removed each tissue and washed each in HBSS, then dissected
the tissue into small pieces using a razor blade. Briefly, kidney and
lung were digested using Liberase DL and TM (Roche), respectively.
Spleen was mechanically dissociated. Cells were filtered using 40-
um cell strainers and diluted to 10 cells/mL before single-cell li-
brary preparation (for details, see Supplemental Methods).

Single-cell RNA-sequencing experiments

We prepared libraries (individual lanes on the 10x Chromium)
with the 10x Single Cell 3’ v2 kit using 6000 cells per lane on
the 10x Chromium microfluidics device (10x Genomics). We se-
quenced libraries at a target depth of 50 million reads/sample on
an [llumina HiSeq 4000 (Illumina). For each sample, we performed
two technical replicates by preparing two separate libraries from
the same cell suspension across two channels of the Chromium
microfluidic device.

Read alignment and gene expression quantification

We aligned reads to the mm10 reference genome obtained from
Ensembl. We used gene annotations from the GENCODE vM20 re-
lease with slight modification (Supplemental Methods). We used
10x Genomics Cell Ranger 3.0.2 to perform alignment, UMI
demultiplexing, and cell barcode identification, generating a
cells x genes count matrix (Supplemental Methods).

Quality control

We removed libraries that contained a low sequencing depth (less
than 10 million reads) or very few cells detected (less than 500
cells) from subsequent analyses as likely experimental errors.
Based on this metric, only one technical replicate failed QC, so
all tissues from all animals in the experimental design proceeded
to our subsequent QC steps. We leveraged the SCANPY toolkit
(Wolf et al. 2018) in subsequent analyses. We quantified the total
number of UMIs, total number of genes detected, fraction of UMIs
mapping to the mitochondrial genome, and fraction of reads
mapping to the Rn45s repeat annotation for each cell. We filtered
cells with fewer than 1000 UMIs or fewer than 500 unique genes
detected, as described for the Tabula Muris (The Tabula Muris
Consortium 2018). Additionally, we filtered out cells with a high
fraction of reads mapping to the mitochondrial genome (>10%)
or the Rn4S5s repeat (>5%) as likely dead cells (Ilicic et al. 2016).

We identified one sample with large batch effects (young an-
imal 1, lung) and removed it from downstream analysis, leaving
three young and three old animals for lung aging comparisons.
We identified batch effects based on segregation of the sample
into unique Louvain clusters and visible segregation of the sample
in the latent space. Lung-specific cell types (alveolar macrophage,
endothelial, stromal, type II pneumocyte) either showed large
batch effects or were unidentified in this sample.

Dimensionality reduction and embedding

We normalized the cells x genes matrix by the total number of
UMIs in each cell and scaled by 10° to yield counts per million
(CPM). We natural log transformed this matrix after the addition
of a pseudocount of 1 to avoid undefined values. We removed
genes that were not detected across replicates in a tissue and genes

that were expressed in less than 10 cells in a tissue before dimen-
sionality reduction.

To enable unsupervised clustering and cell type identifica-
tion, we performed dimensionality reduction with principal com-
ponent analysis (PCA) on the combined set of samples for each
tissue after selection of highly variable genes (Supplemental
Methods). Once embedded in this PCA space, we constructed a
nearest neighbor graph identifying the k=15 nearest neighbors
for each cell. We derived UMAP embeddings presented for visual-
ization from this nearest neighbor graph using a minimum dis-
tance of 0.5 and a spread of 1.0 (Becht et al. 2019).

Clustering and cell type identification

We applied Louvain community detection (Blondel et al. 2008;
Satija et al. 2015) to the nearest neighbor graph constructed in
PCA space to define a cluster partition. To infer cell types, we
trained a neural network classifier to predict cell ontology classes
given single-cell RNA-seq mRNA abundance profiles
(Supplemental Methods). As a training set, we used the Tabula
Muris compendium, which provides expert cell type annotations
in the mouse (The Tabula Muris Consortium 2018). In addition
to these annotations, we manually added cell state annotations
to the Tabula Muris data to provide a level of granularity below
cell ontology classes (Supplemental Fig. S1). Example cell states in-
clude categorizing T cells into CD4 T cell and CD8 T cell subgroups,
as well as the addition of subgroup labels to heterogeneous cell
types such as lung stromal cells in the Tabula Muris. After classifi-
cation, we performed a manual validation of cell type annotation
consistent with previous studies (Supplemental Methods; Park
et al. 2018; The Tabula Muris Consortium 2018; Angelidis et al.
2019). We also classified cell types using the scmap-cell approach
as an orthogonal cell type identification method (Kiselev et al.
2018) and found results largely agreed, but failed to recover correct
annotations for several cell types (Supplemental Fig. S6;
Supplemental Methods).

Differential cell-type proportion analysis

To determine whether cell-type proportions differed between
old and young animals, we performed an additive log ratio (ALR)
transform on the observed cell type frequencies and assessed sig-
nificant changes for each cell type using a t-test. We replaced 0
counts with 1 before the closure operation to avoid undefined val-
ues (Aitchison 1982; Martin-Ferndndez et al. 2003). Within a given
cell type, we performed a y” test of the age x cell state contingency
table to determine if the proportions of cell states change with age.

Differential variability analysis

We measured differences in transcriptional variation between
young and old animals in two distinct ways. The first method eval-
uates changes in the variability of each gene between young and
old animals and attempts to identify a shift in the distribution of
genewise variation. We assessed gene-specific variability by mea-
suring the “overdispersion” of each gene, as computed using
the difference from the median (DM) method (Supplemental
Methods; Kowalczyk et al. 2015). We performed DM analysis for
each cell state in each tissue in our data set separately.

The second method we used evaluates cell-cell heterogeneity
based on the Euclidean distance between cells in expression space,
as introduced previously (Enge et al. 2017). For each cell state in
each tissue, we computed the centroid of the cell state in gene ex-
pression space. We computed the Euclidean distance from each
cell to this centroid as a metric of cell-cell heterogeneity within
each cell state. We also considered alternative measures of cell-cell
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heterogeneity using heuristically selected subsets of genes as in
previous reports (Enge et al. 2017; Angelidis et al. 2019) and found
that results were highly correlated with our primary method
(Supplemental Fig. S12; Supplemental Methods).

Differential expression analysis

We computed differentially expressed genes between two groups
of cells A and B using the Wilcoxon rank-sum test with the
Benjamini-Hochberg procedure for FDR control (Benjamini and
Hochberg 1995). We performed differential expression between
young and old cells within each cell state in each tissue indepen-
dently. In addition to comparing mean expression values with
the rank sums test, we also computed the proportion of cells ex-
pressing each gene in each group. Cells with >1 UMIs for a given
gene are considered to be expressing the gene, whereas cells with
0 UMIs are considered to not be expressing the gene.

Identification of common and unique differentially expressed genes

To identify common differentially expressed genes with age across
cell identities, we computed for each gene the number of cell iden-
tities in which that gene is significantly differentially expressed.
Note that we counted each cell identity as a single entry in this
score, regardless of how many tissues it appears in. For example,
if a gene is differentially expressed in lung CD4 T cells and kidney
CD4 T cells, we counted this as only a single identity for the pur-
poses of identifying common differentially expressed genes. We
then selected genes that are differentially expressed in the same di-
rection in k> 5 cell identities and consider this gene set to be “com-
monly differentially expressed” with age.

To identify genes that are uniquely differentially expressed
between two cell identities A and B, we computed genes which
are significantly differentially expressed in A and are (1) not-signif-
icantly differentially expressed in B, and (2) have a log, fold change
<0.1in B.

Gene Ontology enrichment analysis

We used Enrichr (Kuleshov et al. 2016) to perform gene set enrich-
ment analysis against the Gene Ontology Biological Process 2018
version gene set collection. We also used the MSigDB Hallmark
gene sets (Liberzon et al. 2015), for which we computed enrich-
ment scores using Fisher’s exact test. In both cases, we corrected
for multiple hypothesis testing using the Benjamini-Hochberg
procedure.

Cell cycle scoring

We estimated cell cycle activity by scoring the expression of a set of
S phase-associated and G2/M phase-associated genes, as shown
previously (Tirosh et al. 2016) and as implemented in Seurat
(Supplemental Methods; Satija et al. 2015) . For our analysis of
cell cycle variation with scLVM (Buettner et al. 2015), we fit
scLVM models with k=1 latent variable to explain variation in
genes contained in the cell cycle GO term (GO:0007049), as de-
scribed in the scLVM documentation (Supplemental Methods).

Analysis of variance in transcriptional space

To determine the proportion of variance in transcriptional space
(genewise UMI counts, NMF embedding dimensions) explained
by experimental factors in our data, we used the linear modeling
approach of Robinson et al. (2015) (Supplemental Methods). For
each of our linear models (Figs. 5, 6), we treated cell identity
(e.g., CD4 T cell) and tissue environment (e.g., lung) as separate
factors. We also considered the interaction term of cell identity

and tissue environment in these models. We can therefore assess
the variance explained by cell identity, tissue environment, and
their interaction. The residual variation in linear models fit with
aging magnitude as a response reflects variation introduced by
our random sampling procedure used to compute the OT distance.
Likewise, the residual variation in models fit to aging trajectories
derived from bootstrapped samples reflects variation introduced
by the random sampling of the bootstrap procedure.

Non-negative matrix factorization embedding

We performed NMF using a standard multiplicative update optimi-
zation and random initialization (Lee and Seung 2001), as imple-
mented in the NIMFA package (Zitnik and Zupan 2012). We
performed NMF optimization using all cells observed across all
three tissues after In(CPM + 1) normalization. The NMF embed-
ding was fit to a set of highly variable genes, identified as described
above. We chose a rank k = 20 for the embedding used for aging tra-
jectories by selecting the “knee” in a plot of rank versus explained
variance. We used an NMF embedding of rank k=500 for optimal
transport distance calculation to capture more variation in the
data, also chosen based on a later “knee” in the rank versus ex-
plained variance curve. We assigned semantic meaning to NMF
dimensions using Gene Ontology enrichment analysis on a set
of genes with high loadings for a given latent variable (Supplemen-
tal Methods).

Aging trajectory calculation

We computed aging trajectories for each cell type/tissue environ-
ment combination individually. For example, we computed sepa-
rate aging trajectories for lung B cells and spleen B cells. For each
cell identity, we computed the centroid c of the young cells and
old cells in the NMF embedding and computed the vector from
the young cells to the old cells (¥ = co1q — Cyoung)- We compared
aging trajectories across tissue::cell type groups using the cosine
similarity. To assess the statistical significance of these results, we
performed permutation testing and bootstrap resampling (Supple-
mental Methods).

Optimal transport estimation of aging magnitude

We used a discrete optimal transport (OT) distance to estimate the
magnitude of difference between two cell populations A and
B. Because of the conservation of mass assumption in the optimal
transport formulation, we took random samples of the same size n
from each population for comparison. We computed the OT dis-
tance as minimum cost solution to the linear sum assignment
problem, solved using the Munkres algorithm (Munkres 1957).
For each comparison of populations A and B, we performed 300
random samples of size n=300 cells and computed the average
to reduce the variability inherent in this stochastic sampling ap-
proach. In the data set examined here, multiple populations
have <300 cells for sampling. In this circumstance, we set n=0.8
min(||A]], ||B||) and used the same repeated sampling approach as
above.

To estimate the “magnitude of aging,” we computed OT dis-
tances for three distinct comparisons. We made a heterochronic
comparison of young cells to old cells as a measure of the differ-
ence between these populations (old-young comparison). As neg-
ative controls, we computed both isochronic comparisons,
measuring distances between random samples from pool of young
cells (young-young comparison), and measuring distances be-
tween samples from the pool of old cells (old-old comparison).
The isochronic comparisons serve as an estimate of the distance

2100 Genome Research
www.genome.org


http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.253880.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.253880.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.253880.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.253880.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.253880.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.253880.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.253880.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.253880.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.253880.119/-/DC1

Murine aging is cell-identity- and tissue-specific

we would expect between random samples simply attributable to
heterogeneity within the population (Supplemental Fig. S22C).

We normalized the heterochronic old-young comparison by
dividing these measurements by the mean of the largest isochronic
distance (i.e., if young-young distance is larger than old-old, we di-
vide by the young-young mean, and vice versa). This normaliza-
tion scheme is conservative, using the upper bound estimate of
differences caused by cell-cell heterogeneity as our baseline for
noting an effect caused by aging. Following normalization, we
therefore interpreted old-young OT distances > 1 as indicative of
differences caused by aging and interpret a larger value of this nor-
malized distance as reflecting a larger magnitude of age-related
change. To ensure these distance estimates are robust to different
optimizations of the NMF embedding, we performed NMF optimi-
zation using 10 distinct random initializations and compute OT
distances in each of these embedding spaces.

Software tools

We used GNU parallel (Tange 2011), the SciPy computing environ-
ment (Oliphant 2007), and the Seaborn plotting package for sever-
al analyses (https://seaborn.pydata.org/).

Data access

All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE132901. Additionally, we provide access to relevant data
and analysis code on our website (https://mca.research.calicolabs
.com/) and as Supplemental Code.
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