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Abstract

Data visualization is essential to discover patterns and anomalies in large

high-dimensional datasets. New dimensionality reduction techniques have

thus been developed for visualizing omics data, in particular from single-cell

studies. However, jointly showing several types of data, for example, single-cell

expression and gene networks, remains a challenge. Here, we present ‘U-CIE,
a visualization method that encodes arbitrary high-dimensional data as colors

using a combination of dimensionality reduction and the CIELAB color space

to retain the original structure to the extent possible. U-CIE first uses UMAP

to reduce high-dimensional data to three dimensions, partially preserving dis-

tances between entities. Next, it embeds the resulting three-dimensional repre-

sentation within the CIELAB color space. This color model was designed to be

perceptually uniform, meaning that the Euclidean distance between any two

points should correspond to their relative perceptual difference. Therefore, the

combination of UMAP and CIELAB thus results in a color encoding that cap-

tures much of the structure of the original high-dimensional data. We illustrate

its broad applicability by visualizing single-cell data on a protein network and

metagenomic data on a world map and on scatter plots.
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1 | INTRODUCTION

Today large, high-dimensional datasets are abundant in
biomedicine. Data visualization is thus crucial both for
discovering patterns in data and for subsequently com-
municating the insights. With this motivation, we present
U-CIE [/juː ‘siː/] an open-source software tool that trans-
lates high-dimensional data into colors. As color space is
inherently three-dimensional, U-CIE does this in two
steps: a three-dimensional approximation of the high-
dimensional data is produced using a dimensionality
reduction method, and this approximation is next fitted
into a suitable color space (Figure 1). Each high-

dimensional input vector, be it the expression profile of a
gene or the abundance profile of an organism, is thereby
converted into a color. These colors can subsequently be
used to visualize the, for example, genes or organisms in
the context of other data, such as gene networks, phylo-
genetic trees, or longitude and latitude.

Dimensionality reduction techniques have improved
much in recent years, becoming better at preserving more
of both the local and global structures in high-
dimensional data by making nonlinear rather than linear
transformations.1 Methods including t-SNE2 and UMAP3

as well as generative deep-learning models, such as varia-
tional autoencoders,4 have become particularly popular
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within biology, especially for visualization of single-cell
data. Both t-SNE and UMAP were designed to predomi-
nantly preserve local structure by grouping neighboring
data points together, which provides a very informative
visualization.2,3 The main difference between t-SNE and
UMAP is the interpretation of the distance between clus-
ters. UMAP preserves pairwise Euclidean distances sig-
nificantly better than t-SNE, meaning that it preserves
more of the global structure along with the local. There-
fore, the relative positioning of different clusters in t-SNE
is not informative about the distance between them,
which is why UMAP has gained popularity for visualiza-
tion of single-cells studies. An alternative is to use a

variational autoencoder (VAE), which is an artificial neu-
ral network that is trained to compress the data to a
lower dimensional representation from which the input
can be reconstructed.4 Even though VAEs can be more
accurate in the low-dimensional representation, they are
not commonly used yet, since they are more difficult to
use than t-SNE and UMAP.

Colors are everywhere and we all have an intuitive
understanding of colors; however, it is surprisingly diffi-
cult to represent them in a way that accurately reflects
how similar humans perceive any two colors to be. None
of the most commonly used color representations, such
as RGB, approximate human vision. A notable exception

FIGURE 1 Overview of the U-CIE algorithm and application to single-cell RNAseq data (scRNA-seq). U-CIE uses a two-step process to

encode high-dimensional data as colors. The first step is to use a state-of-the-art dimensionality reduction technique (UMAP) to reduce the

data to three dimensions, since human color perception is inherently three-dimensional. The second step is to fit the resulting point cloud

into the three-dimensional polygon that represents the displayable part of CIELAB color space. This is done as an optimization process,

which shifts, rotates, and uniformly scales the point cloud to make it as large as possible while penalizing for points protruding outside the

polygon
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is the CIELAB color model,5 which was designed to be
largely perceptually uniform, meaning that the Euclidean
distance between any two points should correspond to
their relative perceptual difference. This makes it particu-
larly useful for our application, since we want to visualize
positions as colors, similar to what has previously been
tried for self-organizing maps.6 Indeed, experiments have
shown that users are able to identify clusters in high-
dimensional data when encoded in the CIELAB color
space.7 CIELAB represents colors using three values: per-
ceptual lightness (L*) and two pairs of complementary
colors, namely green–red (a*) and blue–yellow (b*). To
take advantage of the properties of CIELAB, we need to
convert the three-dimensional coordinates obtained from
dimensionality reduction into L*a*b* coordinates. This is
nontrivial, because not all combinations of L*, a*, and b*
result in colors that can be displayed on a computer
monitor.

Here, we present the U-CIE visualization method for
encoding high-dimensional data as colors. We first use
UMAP to turn the data into a three-dimensional point
cloud, as UMAP partially preserves global Euclidean dis-
tances. Next, we use an optimization algorithm to fit the
point cloud within the displayable part of CIELAB. The
result is an encoding of the input data, where each data
point has been assigned a color, and similarity between
colors reflects the distance between the original points.
We illustrate the broad applicability of U-CIE by using it
to visualize single-cell expression data on a protein net-
work and microbiome composition of ocean water sam-
ples on a world map. U-CIE is freely available both as a
web resource (https://u-cie.jensenlab.org) and as an R
package.

2 | MATERIAL AND METHODS

2.1 | Algorithm overview

U-CIE color encodes high-dimensional data using CIE-
LAB color space in two stages: (i) dimensionality reduc-
tion (can be skipped if data are already three-
dimensional) and (ii) fitting the resulting point cloud
inside the displayable part of CIELAB (Figure 1). The lat-
ter is a precomputed polygon, constructed by converting
the RGB cube to CIELAB coordinates.

2.2 | Dimensionality reduction

Unless the input data are already three-dimensional, U-
CIE will start by reducing the data to three dimensions.
There are three different tracks for doing so: “Single

cells”, “High dimensional data”, and “Distance matrix”.
The ‘Single cells’ track follows the Seurat8 pipeline to
reduce dimensionality and produce 3D UMAP coordi-
nates for the genes of the dataset. To do so, we first trans-
pose the input dataset to have genes as columns and cells
as rows and create a Seurat Object from the counts. With-
out first scaling or centering the data, we use Seurat to
log2 transform our data using the (option “LogNorma-
lize”), run PCA with 50 dimensions, calculate 50 neigh-
bors for each gene, and find clusters with the Louvain
algorithm. Finally, we apply UMAP to end up with three
dimensions. The “High dimensional” track uses the uwot
library to again run PCA with 50 dimensions and apply
UMAP. Finally, the “Distance matrix” track takes a
square matrix and uses Python umap-learn package.

2.3 | Fitting the point cloud inside the
CIELAB RGB polygon

To be able to handle large datasets with many points, we
first use the R “chull” function to construct the convex
hull of the point cloud. This dramatically expidites the
subsequent optimization step, typically by several orders
of magnitude, as it only has to consider the few points on
the convex hull rather than all points in the input dataset.
Next, we use the Nelder–Mead simplex optimization algo-
rithm9 to fit the convex hull of the point cloud inside the
CIELAB RGB polygon. The algorithm is allowed to shift
along and rotate around three axes (L*, a*, and b*) and
uniformly scale the point cloud convex hull. The objective
function to be optimized is the size of the point cloud
minus a penalty term for points falling outside the poly-
gon. In other words, it aims to make the point cloud as
large as possible while still fitting within the color space.
To avoid local optima, we run the algorithm with 25 differ-
ent sets of initial rotations. The user can optionally pro-
vide different weights for the axes in the objective, thus
prioritizing spreading out the points along certain axes.

2.4 | User interface

The web interface was constructed using R/Shiny and
JavaScript. An interactive guided tutorial is available
through the web interface as well as a YouTube video
explaining the idea of U-CIE.

After uploading and processing data via one of the
tracks described above, the data can be visualized in two
ways. The “3D view” shows the main result of following
the U-CIE pipeline, namely the 3D cloud of points col-
ored according to the best solution found by the optimi-
zation algorithm. The view also has a table of alternative
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color solutions from the optimizations, which can be
selected and displayed instead. The “2D projections” tab
provides two interactive 2D plots, showing the same 3D
point cloud projected onto the L*a* and L*b* axes,
respectively. There users can see how the points are
spread within the polygon. The view also has a table,
which allows the user to select regions within the plots to
identify the data points or search the data points by name
to locate them within the cloud. Finally, the “Download”
tab shows a table with both RGB hex codes and CIELAB
coordinates, which can be downloaded to use the colors
for further data visualization, for example, in Cytoscape
[8]. The plots and tables are made using the Plotly10 and
DataTables CRAN.R-project.org/package=data.table
libraries, respectively.

2.5 | CRAN package “ucie”

Our algorithm is also available as a CRAN package in
R. Users can download it from R with the command
install.packages(“ucie”) or from the packages and the
command devtools::install_github(“mikelkou/ucie”). The
package returns a data frame with the names of the input
data points and RGB hex colors or CIELAB coordinates.
The package contains three functions, one which does the
optimization, one that does the color production, and one
that does both steps. For the optimization, users must pro-
vide a three-column dataset that will be encoded as colors
and can optionally alter the axis weights. The output is an
array with the parameters for the optimal transformation
into CIELAB coordinates. For the color production, the
user must provide the three-column dataset, the transfor-
mation parameters, optionally a final scaling factor, and
whether they want RGB hex codes or CIELAB coordi-
nates. The output is a data frame with the names of the
input data points and the corresponding colors.

3 | RESULTS AND DISCUSSION

3.1 | U-CIE [/juː ‘siː/] an open-source
software tool

To allow anyone to easily use U-CIE, we have made it
available as an interactive web resource (https://u-cie.
jensenlab.org) along with a guided tutorial. The web
interface offers four different tracks: “Single cells”, “High
dimensional”, “Distance matrix”, and “3D data”. All use
UMAP to first reduce dimensionality, except from the last
track, which allows the user to upload data that is already
three-dimensional, possibly produced using another
dimensionality reduction method. In Figure S1 we show

how an analysis can be performed using the web inter-
face. First, we upload the matrix with expression counts
to the “Single cells” track, which assigns colors to genes.
A preview of the uploaded data is first shown, allowing
us to verify that it was parsed correctly before starting the
analysis. As soon as the analysis is finished, we gain
access to interactive visualization panels that show the
color encoding in 3D and as 2D projections, controls to
alter the color encoding, and the option to download a
tab-delimited file with the gene names and their colors.

U-CIE is also available as an R package. Since users of
this package will be working in the R environment, we
give them full flexibility to use any dimensionality reduc-
tion method for creating the three-dimensional represen-
tation of the input data. The R package thus takes this as
input and performs the optimization to fit the data into
CIELAB coordinates. The output is a data frame with the
names of the input data and the hex codes of the colors or
the CIELAB coordinates. This data frame can be directly
used with R or saved as a file locally for use in other visu-
alization tools. Both the R package and the web resource
are available under the open source MIT License.

3.2 | scRNA-seq data on physical protein
complexes

Having a color encoding of high-dimensional data is use-
ful whenever a user wants to visualize the data in the
context of some other information, since it frees up the
spatial coordinates. For example, transcriptomics and
proteomics data are commonly visualized onto gene/
protein networks. We exemplify this use of the U-CIE
method by applying it to network visualization of a
scRNA-seq data of 19,097 genes across 1,018 cells. We
used U-CIE to convert these data to a color for each gene
and mapped them on a physical protein interaction net-
work from STRING v11.511,12 (confidence cutoff 0.95)
using Cytoscape.13 This allows us to graphically summa-
rize the transcriptional regulation of the individual sub-
units within protein complexes. Figure 2 shows the six
largest connected components of the network. Several
clusters corresponding to large protein complexes with
many green subunits stand out in the network, including
the cytosolic and mitochondrial ribosomes, the protea-
some, and the electron transfer chain complexes. As
these carry out housekeeping functions it makes sense
that they have very similar expression patterns across
cells and thus have the same color. The electron transfer
chain complexes also have a few blue subunits, which are
the ones encoded by the mitochondrial chromosome. The
network also contains a cluster of tan proteins, which are
involved in core cell-cycle processes, such as the cyclin-
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dependent protein kinases and DNA replication com-
plexes. This example illustrates that U-CIE is able to
assign colors to genes based on scRNA-seq data in a bio-
logically meaningful way.

3.3 | Microbiome compositions on a
world map

U-CIE is not limited to single-cell data. Figure 3 shows a
completely different use case, namely visualization of
microbiome compositions. Specifically, we used U-CIE to

color the sampling stations of the Tara Oceans project15

based on their 16S taxonomic profiles from surface water
samples. Combining these colors with the longitudes and
latitudes of the sampling stations enables us to show the
microbiome compositions on a world map (Figure 3a). This
makes it immediately clear that the samples from some
oceans have quite similar microbiome composition. For
example, samples from the Mediterranean Sea tend to be
blue while samples from the Indian Ocean tend to be yel-
low (Figure 3a). The color coding of the samples on the
map thus allows users to easily see which samples cluster
in terms of having similar microbiome compositions.

FIGURE 2 Color encoding the scRNA-seq on physical protein complexes. To illustrate how U-CIE can be used to visualize expression

data on protein networks, we downloaded a published scRNA-seq dataset with a read-count matrix of 1,018 cells.14 We applied U-CIE to the

transposed matrix (genes as columns, cells as rows), exported the colors, and visualized them on a physical protein–protein interaction

network from the STRING database7 (confidence cutoff 0.95) using Cytoscape.8 In the figure, we show the six largest connected components.

The network contains several large dark green clusters; these correspond to large complexes of housekeeping proteins, such as the cytosolic

and mitochondrial ribosomes, the proteasome, and the electron transport chain complexes. The latter also contain some blue subunits,

which are the proteins encoded by the mitochondrial genome. The less obvious cluster of tan nodes corresponds to core cell-cycle proteins,

including cyclin-dependent protein kinases and the DNA replication complexes
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In addition to allowing clusters to be visually identi-
fied, the colors produced by U-CIE can also be inter-
preted in terms of environmental factors that drive

microbiome composition. We did this by correlating each
factor measured in the Tara Oceans project with the indi-
vidual CIELAB color axes. The strongest correlation

FIGURE 3 Color encoding the microbiome compositions of ocean surface water samples. 16S rRNA microbiome composition of surface

water samples from the Tara Oceans15 sampling stations were encoded as colors using U-CIE. The resulting colors were mapped onto the

geographic locations of the sampling stations (panel a). The blue–yellow (b*) axis correlates with water temperature (panel b), the lightness

(L*) correlates positively with temperature dissolved (panel c) and negatively with oxygen concentration (panel d), and the green–red axis

(a*) correlates with dissolved nitrite/nitrate concentration (panel e)

6 of 8 KOUTROULI ET AL.



found is that the blue–yellow axis (b*) correlates with
water temperature (PCC = 0.52; Figure 3b). This agrees
with the observation in the original publication that tem-
perature correlates strongly with microbiome composi-
tion.15 The lightness (L*) also correlates with water
temperature (PCC = 0.41; Figure 3c) but shows a stron-
ger negative correlation with the dissolved oxygen con-
centration (PCC = -0.51; Figure 3d). Together, these axes
thus correctly capture, from 16S abundance profiles, that
the Indian ocean is warm with low oxygen, the North
Atlantic Ocean is cold with high oxygen, and the Pacific
Ocean has low oxygen and highly varying temperatures.
Finally, the green–red axis (a*) correlates with dissolved
nitrite/nitrate concentration (panel E); for example, the
middle of the Pacific Ocean is a high-nitrogen environ-
ment, whereas the waters around Panama have low
nitrogen.

3.4 | User-provided dimensionality
reduction

The two examples illustrate two of the three tracks in the
U-CIE web resource, which use UMAP to compress high-
dimensional data into three dimensions and subse-
quently convert it to colors. However, dimensionality
reduction is a hard task that inherently involves distort-
ing distances, and this can result in different data points
in the original high-dimensional space mapping to the
same color. Moreover, UMAP will not be the best choice
of algorithm for all datasets.

For this reason, U-CIE has a fourth track that allows
users to directly upload 3D data. While this obviously
allows data that are inherently 3D to be converted to
colors, the main purpose is to allow users to apply any
dimensionality reduction algorithm to their data before
providing it to U-CIE for conversion into colors. This
more closely mimics how the R package works and fur-
thermore ensures a one-to-one mapping between the
user-provided data and colors. The optimal parameters
for the CIELAB color conversion can be applied to new
data points through the R package.

4 | SUMMARY

We have developed a new visualization tool, U-CIE,
which allows arbitrary high-dimensional data to be
encoded as colors. The method first uses existing dimen-
sionality reduction techniques, for example, UMAP, to
reduce the input data to three dimensions, and next
embeds this representation of the data within the CIE-
LAB color space. We illustrate the usefulness of U-CIE by

applying it to (i) visualization of scRNA-seq data on a
physical protein interaction network and
(ii) visualization of microbiome composition from sam-
pling stations on a world map. U-CIE is available both as
a web resource at https://u-cie.jensenlab.org/ and as an R
package.
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