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Prediction of protein localization plays an important role in understanding protein function and mecha-
nisms. In this paper, we propose a general deep learning-based localization prediction framework,
MULocDeep, which can predict multiple localizations of a protein at both subcellular and suborganellar
levels. We collected a dataset with 44 suborganellar localization annotations in 10 major subcellular
compartments—the most comprehensive suborganelle localization dataset to date. We also experimen-
tally generated an independent dataset of mitochondrial proteins in Arabidopsis thaliana cell cultures,
Solanum tuberosum tubers, and Vicia faba roots and made this dataset publicly available. Evaluations
using the above datasets show that overall, MULocDeep outperforms other major methods at both sub-
cellular and suborganellar levels. Furthermore, MULocDeep assesses each amino acid’s contribution to
localization, which provides insights into the mechanism of protein sorting and localization motifs. A
web server can be accessed at http://mu-loc.org.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

In eukaryotic cells, proteins perform diverse functions governed
by the compartments or organelles in which those proteins are
located. The aberrant localization of proteins is often associated
with diseases, such as Alzheimer’s disease, metabolic disorders,
and cancers [1–2]. The mechanism of protein localization is com-
plex, and it is often controlled by many factors, including signal
peptides, protein trafficking, protein–protein interaction, folding,
and alternative splicing [2–3]. Among them, protein localization
guided by targeting peptides is the most common mechanism
[4], which includes pre-sequences and internal signals [5–6]. Pre-
sequences are found at the N- or C-terminus of a protein sequence
with an enrichment of charged or hydrophobic amino acids, while
internal signals are in the middle of sequences. The process by
which the precursor proteins are directed to the target organelle
is only partially understood [5] and the number of experimentally
identified targeting peptides (especially internal signals) is not
much. According to the annotation in UniProt (release 2020_05),
out of the reviewed 20,394 human proteins, 7348 have localization
annotation with experimental verification, while only 3608 (17.7%)
proteins have known targeting peptides. Furthermore, very limited
sub-organellar compartment localization data are available.
According to our recent research, out of the 16,213 human proteins
in the 10 organelles on which we focused, 5882 have experimen-
tally verified organellar localization annotation, while only 3518
have experimentally verified sub-organellar localization annota-
tion. Targeting peptide and sub-organelle data for non-human spe-
cies are much scarcer. Despite the development of technologies
such as mass spectrometry and fluorescence tagging, experimental
identification of protein subcellular/sub-organelle localizations is
still time-consuming and labor-intensive [7–9]. Thus, computa-
tional methods can play an important role in this area.

Computational protein localization prediction is mainly
through machine learning approaches to extract features from
training samples. Before deep learning, these features are prede-
fined and will not change during the training process. For example,
WoLF PSORT [10] converts a protein’s amino acid sequence into
features like sorting signals, amino acid composition, and motifs
for training a k-nearest neighbor (KNN) classifier. TPpred3 [11]
detects the targeting signal in the N-terminal region of a protein
based on a support vector machine (SVM) classifier. Predotar [12]
applies a neural network to identify proteins targeting the endo-
plasmic reticulum (ER), mitochondria, and plastids in plants by
N-terminal targeting signals. TargetP [13–14] also uses neural
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networks to discriminate proteins destined for mitochondrion,
chloroplast, and the secretory pathway based on the N-terminal
sequence information. Some methods also take advantage of
homology information and Gene Ontology (GO) annotations [15]
if available. Representative methods include LocTree3 [16], Sher-
Loc2 [17], MultiLoc2 [18] , and YLoc [19]. These methods have bet-
ter performance when reliable annotations of homologous proteins
are available. More recently, deep learning methods have been
explored in protein localization prediction. For example, DeepLoc
[20] uses a convolutional neural network (CNN) and long short-
term memory (LSTM) to give a prediction of 10 subcellular protein
localizations. Deep neural networks were used in our previous MU-
LOC method [21], in which features including amino acid fre-
quency, sequence profile, and gene co-expression were used to
predict whether or not a plant protein is mitochondrial. The latest
version of TargetP (v2.0) [22] applies bidirectional LSTM to predict
thylakoid transit peptides.

Although several methods have achieved good prediction
results on specific protein localization cases, these methods still
face limitations and many unsolved problems. Most of the meth-
ods focus on the prediction of protein localization at the subcellu-
lar level. Although there are some predictors for specific
suborganelle localizations [22–25], a systematic suborganelle
localization prediction tool at the whole-cell scale is still missing.
Furthermore, protein localization is a multi-label problem, i.e.,
one protein may be found in several different compartments in a
cell. Some efforts have been made in multi-label prediction
[24,26], but current deep learning-based methods simplify the pro-
tein localization prediction as a one-label classification problem in
which each protein can only be predicted at a unique compart-
ment—which is not the case for 15–20% of all proteins (Fig. S1).
In addition, there is room to increase the deep learning model’s
interpretability for characterizing localization signals. For example,
both TargetP 2.0 [22] and DeepLoc [20] attempted to identify
strong contributing sequence factors to localization using the
attention mechanism [27–28]. However, TargetP 2.0 considers only
the first 200 amino acids near the N-terminus of a protein but can-
not detect localization signals in other parts of a protein. DeepLoc
addresses this problem by taking as many as 500 amino acids from
each terminus of a protein, but the interpretation resolution for the
contribution to localization is not as high as TargetP 2.0 because of
the usage of CNN layers.

In this paper, we propose a multi-label protein localization
framework named MULocDeep that covers 10 main subcellular
localizations and 44 suborganellar localizations. A matrix layer is
designed to capture the intrinsic hierarchical relationships
between organelles and their subcompartments, enabling our
method to make predictions at both levels simultaneously. Similar
to the TargetP 2.0 model, the MULocDeep framework uses the Long
Short Term Memory (LSTM) [29] and multi-head self-attention
[27], to extract biological features that contribute to localizations
at the single amino acid resolution. Some of these features match
the current knowledge of protein sorting signals, while there are
novel discoveries that could provide some new insights. This paper
also includes an experimental study, in which the mitochondrial
proteomes of three species, Arabidopsis cell cultures, potato
tubers, and bean roots, were extracted and identified (Mito3 data-
set). We also systematically collected a dataset from the UniProt
database [30], containing proteins of eukaryotic species in 44 sub-
organellar compartments in 10 subcellular localizations with
experimental evidence (UniLoc dataset). Evaluations using the
above datasets show that overall, MULocDeep outperforms other
major methods at both subcellular and suborganellar levels. The
datasets themselves can be used as benchmarks for methods
developed by others. The datasets, the source code, and the web
server of our study are all publicly available.
4826
2. Material and methods

2.1. Datasets

2.1.1. The three-species mitochondrial proteome dataset (Mito3).
This dataset contains the mitochondrial proteome extracted

from three plant species (Arabidopsis thaliana, Solanum tubers,
and Vicia faba). The identification of these proteins is part of our
results and is introduced in Section 3.1. Here we present its statis-
tics and the processing of it as an evaluation dataset. A total of
8002 proteins from these three species were identified (2818 from
Vicia faba, 2470 from Solanum tubers, and 2414 from Arabidopsis
thaliana). After assigning these proteins to their Arabidopsis ortho-
logues by pairwise BLAST searches of the underlying sequence
datasets, 4778 unique mitochondrial proteins were identified. To
use this dataset for localization classifier evaluation at the subcel-
lular level (predicting if a protein is mitochondrial or not), we bal-
anced it by collecting 8002 plant proteins that were labelled as
non-mitochondrial in the UniProt database (release 2020_04).
The proteins in this dataset were not used in training the model.
To perform a more rigorous test, we applied blastp [31] to align
the Mito3 dataset against the UniLoc-train-40nr dataset. If a hit
has an alignment coverage higher than 80% of the shorter sequence
and a 40% sequence identity or 10-5 E-value, it will be removed. The
remaining sequences in Mito3 were kept and formed Mito3-40nr
(1929 positive samples and 1450 negative samples).
2.1.2. Uniprot dataset (UniLoc)
The protein sequence and localization annotations were down-

loaded from the UniProt database release 2020_04 [30] with the
following constraints: 1. The existence code must be protein or
transcript level. 2. Proteins must be complete and fragment pro-
teins were removed. 3. Proteins that are encoded in mitochondrion,
chloroplast, and plastid were removed. 4. Proteins that do not start
with Methionine or have a sequence length of fewer than 40 amino
acids were removed. One protein can have more than one localiza-
tion annotation, and we chose suborganelle localizations with
more than 50 proteins and ignored others in this study. Finally,
44 suborganelle localizations under 10 subcellular localizations
remained. This is the most comprehensive multi-label dataset for
protein localization annotations down to the suborganelle level
to date. For convenience, we annotate the subcellular level as lv1,
and the suborganellar level as lv2. From the data we collected (Uni-
Loc dataset), we picked the protein samples that only have subcel-
lular localization annotations, with (lv1_exp) or without
(lv1_noexp) experimental evidence code (ECO:0000269). The
number of samples are 11,435 and 38,443, respectively. Then, from
the UniLoc dataset, we picked the protein samples that have subor-
ganellar localization annotations, with (lv2_exp, 11,204 samples)
or without ECO:0000269 (lv2_noexp, 32,303 samples). The main
reason why we included protein samples without ECO:0000269
is that some of the suborganellar classes have so few samples when
only including proteins with ECO:0000269. For each of the 10
classes in lv1_exp, 15% of the protein samples were used as testing
(choosing protein samples created after 2018 in UniProt first; if
less than 15% of the corresponding class, then selecting randomly).
A similar way was used to select the testing sample for each of the
44 suborganellar classes from lv2_exp. The testing samples at both
levels construct the final testing dataset (UniLoc-test, 4532 sam-
ples), and in this way, we make sure that the localization annota-
tions of testing samples are experimentally verified and the
testing samples cover every class. Specific samples were further
selected from UniLoc-test in certain cases. For example, UniLoc-
sub is composed of proteins in UniLoc-test that have suborganellar
localization annotations, particularly, submitochondrial proteins
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(176 samples), subGolgi proteins (46 samples) and subchloroplast
proteins (82 samples). UniLoc-multi (687 samples) is composed of
proteins in UniLoc-test that have at least two different subcellular
localization annotations. UniLoc-single (3847 samples) is composed
of proteins in UniLoc-test that only have one subcellular localiza-
tion annotation.

The remaining data samples (experimentally verified or not)
were combined as the training dataset (UniLoc-train, 88,853). Using
the testing dataset, a non-redundant training dataset (UniLoc_-
train_40nr) was created by removing redundant proteins in the
training dataset using blastp. Specifically, we align each of the pro-
teins (query) in the UniLoc_train against UniLoc_test. If a query pro-
tein finds a hit with sequence identity higher than 40% or E-value
10–5, and the alignment covers more than 80% of the shorter
sequence of the query and its hit, the query will be removed. The
resulting UniLoc-train-40nr has 33,100 proteins. The same UniLoc-
test dataset was used to evaluate the model performance after
removing the redundancy effect. We did not use a sequence iden-
tity threshold lower than 40%, since it would lose too many sam-
ples and leave not enough samples for training in many classes.
The statistics of samples in all the classes in UniLoc dataset are
shown in Table S1.

2.1.3. External datasets
We used the datasets provided by other methods to train and

test a variant model for a rigorous evaluation of methodology.
Two datasets (SM424-18 and SubMitoPred) are from the DeepMito
method which focuses on the prediction of sub-mitochondrial pro-
tein localization. One dataset (DeepLoc dataset) is from the DeepLoc
method which predicts 10 main localizations at the subcellular
level. The SM424-18 dataset was derived from the UniProt database
(release 2018_02). They filtered the proteins by selecting all non-
fragment protein sequences with evidence at the protein level for
experimentally determined subcellular localization in one of the
four sub-mitochondrial compartments: outer membrane, inter-
membrane space, inner membrane and matrix. They further
reduced the redundancy using the CD-HIT program so that 424
mitochondrial proteins remained sharing at most 40% sequence
identity. The SubMitoPred dataset was derived from the UniProt
database release 2014_10. The protein selection criteria were:
full-length proteins greater than 50 residues, single experimental
sub-mitochondrial localization, and internal redundancy reduced
at 40% sequence identity using CD-HIT. The dataset comprises
570 mitochondrial proteins distributed in the same four compart-
ments as in the SM424-18 dataset. Both datasets were split into
folds, 10 for the SM424-18 dataset and 5 for the SubMitoPred data-
set. The category details can be found in Table S2. The DeepLoc
dataset was extracted from the UniProt database, release
2016_04. It contains proteins from experimentally annotated 10
main compartments in eukaryotic cells. A total of 13,858 proteins
were obtained and the training and testing samples are marked.
The number of proteins in each compartment of the DeepLoc data-
set is shown in Table S3.

2.2. MULocDeep framework and the workflow

The workflow of our framework is presented in Fig. 1. Protein
sequences with known localization information were collected,
processed, and fed into our deep learning model for training. Dur-
ing the training process, the output of the ‘‘attention” layer was
extracted separately for sorting signal interpretation and visualiza-
tion. Finally, the trained model was used to predict localization for
new proteins. A description of the MULocDeep model is shown in
the right panel in Fig. 1. The input layer was composed of encoded
protein sequences with a fixed length of 1000 amino acids. Each
amino acid was encoded as a 25-dimension vector (see the Meth-
4827
ods section for encoding details). The input layer was followed by
two layers of bidirectional LSTM (29), which ensured that every
amino acid received a signal from both sides. Two such layers were
stacked to give the model the ability to fit complex high-order
functions. The sequence length remained unchanged after the bidi-
rectional LSTMs, while only the encoding dimension was changed
to 180. Then a multi-head self-attention layer [27] was applied
(‘‘A” in Fig. 1). The embedding matrix (‘‘M” in Fig. 1) was derived
as the weighted sum by multiplying the attention layer with the
output from the bidirectional LSTM. The attention itself was also
an output to assess the contribution of each amino acid to localiza-
tion. The embedding matrix was flattened into a 7380 (180X41)
long vector, and then fully connected with an 80-dimensional
dense layer, which was further reshaped into an 8-by-10 matrix.
Each column of the matrix represents a major subcellular localiza-
tion (10 organelles) and each element under the column represents
a suborganelle category. In our UniLoc dataset, some organelles
contained up to eight suborganellar localizations. For other orga-
nelles that had fewer suborganelle localizations, the empty slots
in the matrix were padded with zeros. When processing a new
sample, the predicted value in the matrix was used for the subor-
ganelle prediction. Then a 1 � 8 max-pooling layer was applied to
the matrix so that the highest predicted value of a suborganelle
localization was used as the prediction score of the corresponding
organelle localization. Only the suborganellar prediction scores
were compared with the thresholds, i.e., a suborganelle with a pre-
diction score above the threshold would trigger the prediction of
corresponding organelle localization (see the Methods section for
threshold determination details). In this way, we could perform
multi-label predictions at both subcellular and suborganelle levels
and keep the results consistent. This matrix design also enables
MULocDeep to utilize protein samples that only have subcellular
localization annotations. The MULocDeep model was trained using
the UniLoc-train dataset, which was divided into 8 folds. We per-
formed cross-validation by using 7 folds as training and 1 fold as
evaluation each time. Table S4 shows the cross-validation results
at the suborganelle level with different prediction thresholds.
When training the MULocDeep model, we tried different strategies
to tune the hyperparameters and tested their impact on the perfor-
mance. The details of the training process and hyperparameter
configuration are described in the Methods below.

2.3. Protein sequence representation

An encoded amino acid contains two parts. The first 5 dimen-
sions come from the first five eigenvectors of a comprehensive list
of 237 physical–chemical properties for each amino acid [32]. As
we did in the domain boundary prediction study [33], these 5-
number descriptors can represent each amino acid for computa-
tional efficiency while maintaining almost all the information.
The last 20 dimensions come from the position-specific scoring
matrix (PSSM) profile of a protein. A protein’s PSSM profile is usu-
ally generated through a multiple sequence alignment against a
large database. Some methods try to accelerate the process by
searching a relatively small database first, and if no hit is found
then use a large database instead [20,34]. We further shortened
this process by two steps, first by scanning the Swissprot [35] using
PSI-blast [36]. The Swissprot database is a much smaller database
than UniProt, yet most of the proteins that we studied find hits. If
no hits were retrieved, in the next step, the BLOSUM62 encoding
[37] was applied directly, which did not take any search time. In
this way, we saved much computational time without a significant
performance decrease (see Results). Since the length of proteins
varies, we fixed the protein-encoding length at 1000 AA. If a
protein exceeded this length, the first 500 amino acids from
N-terminus and the last 500 amino acids from C-terminus were



Fig. 1. MULocDeep workflow and neural network architecture. The workflow is composed of four steps: (1) Protein sequence representation, (2) the MuLocDeep model
training, (3) localization signal visualization, and finally (4) localization prediction. The details of the neural network architecture are displayed in the right panel.
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preserved and combined. If a protein had a shorter sequence, we
padded it to 1000 AA at the end and masked the padding part for
the following calculation.
2.4. Parameter tuning and neural network training

The hyperparameters in the models are determined through a
Bayesian optimization process. These hyperparameters include
the hidden dimensions, the number of heads in attention, regular-
izers, dropout rates, etc. The MULocDeep model is an ensemble of
eight ‘‘sub-models” derived from an 8-fold cross validation. Each
of these eight sub-models was optimized individually and the
hyperparameters of the sub-model that achieved the highest accu-
racy were set as the final optimum. Table S5 lists the hyperparam-
eter optimization results for all eight sub-models in the cross
validation. The hyperparameter configuration in sub-model 1
was selected as the final optimum. Therefore, in the MULocDeep
model, all the eight sub-models used the same final optimized
hyperparameters. We also tested the performance of an ensemble
of sub-models where each sub-model 1) using its own optimized
hyperparameters, 2) using the same, but not the final optimized,
hyperparameters (select two from seven non-final optima), or 3)
using the same random hyperparameters. The results are shown
in Table S6. It turns out that the difference in performance among
various ensemble models was insignificant, except for a notably
poor performance by using the randomly selected hyperparame-
ters. We also conducted an experiment to test the performance
of individual models using the final optimum hyperparameters.
The results are listed in Table S7. Comparing the results in
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Table S6, the ensemble models generally have a better perfor-
mance than individual models.

The UniLoc-train dataset was divided into 8 folds. Eight models
were trained where each of them used 7 folds as training and 1 fold
was left for evaluation. The final MULocDeep model is the ensem-
ble of eight models, and the prediction of a protein is the average of
predictions from these eight models. All these models used the
same final optimized hyperparameters. To train each of these mod-
els, the lv1_train and lv2_train in the UniLoc-train dataset were uti-
lized iteratively. Specifically, we trained them using the samples
with only subcellular localization labels (lv1_train) for 1 epoch,
and then trained another epoch using the samples with subor-
ganelle localization labels (lv2_train). This process was repeated
80 times for each of the eight models. When a training sample
had both suborganelle and subcellular (inferred from suborganelle)
annotation, each element in the matrix (Fig. 1) yielded a loss using
a binary cross-entropy loss function after a sigmoid activation
function (Lost 1). The maximum prediction score under each orga-
nelle (each column in the matrix in Fig. 1) was extracted and went
through another binary cross-entropy (Lost 2). If a training sample
only had the subcellular localization information, the Lost 1 was
not used, only the Lost 2 was calculated after the Max-Pooling
operation. The pseudo code for the training process is provided
in Supplementary Note 1.

The training process was written using the Keras package (ver-
sion 2.3.0) and run using an NVIDIA GeForce RTX 2080 Ti GPU. The
training time for the MULocDeep model was roughly 2 min for one
epoch.

The thresholds for predicting suborganelle localizations were
determined from cross-validation results by UniLoc-train at the



Y. Jiang, D. Wang, Y. Yao et al. Computational and Structural Biotechnology Journal 19 (2021) 4825–4839
suborganelle level with different prediction thresholds (if the pre-
diction output is above the threshold, a positive label is predicted),
which is shown in Table S4. The default threshold is 0.5, and we
tuned it in a way that favors positive predictions (high recall)
based on the results in Table S4. In particular, we only tuned the
thresholds in the range below 0.5 to achieve the highest MCC.
The same threshold determination process of MULocDeep was also
applied to the training of the non-redundant model.

2.5. Bayesian optimization

We formulate the accuracy ‘‘ACC” as the objective function and
it is a function of all the hyperparameters. A Gaussian process was
used as the surrogate model to approximate the objective function.
We used the expected improvement (EI) as the acquisition func-
tion, which directs sampling to areas where an improvement over
the current best observation is likely. The acquisition jitter, which
trades off exploitation (high objective) and exploration (high
uncertainty) was set as 0.05.

Since the optimization process would take a long time, we used
training samples provided by the DeepLoc method instead of our
own UniLoc-train dataset. Since DeepLoc also focuses on the same
10 subcellular localizations of eukaryotic proteins, we assume
the distribution of data should be similar between the two data-
sets. We divided these samples into 8 folds using CD-hit [36] and
the sequence identity between proteins in different folds was
below 40%. Then, an 8-fold cross validation was performed. Each
hyperparameter has a searching space (shown in Table S5). During
the cross validation, 7 folds were used for training a sub-model
under one specific hyperparameter configuration for 40 epochs.
The remaining fold evaluated the accuracy in each epoch. The high-
est accuracy on the validation fold during the 40 epochs was
recorded as the accuracy for this hyperparameter configuration.
In total, 150 hyperparameter combinations were tested. Fig. S2
shows the accuracy of the testing process. The hyperparameter
configuration which achieved the highest accuracy among the
150 combinations was used as the optimized configuration for this
sub-model (shown in Table S5). Thus, the optimization process
would run 40 (test one specific configuration) * 150 (150 configu-
rations to test in total) * 8 (8-fold cross-validation), which is 48,000
epochs in total. Finally, each of the eight sub-models had its own
optimized hyperparameter configuration and the corresponding
accuracy was achieved. The configuration with the highest accu-
racy was selected as the final optimized configuration that was
used for the MULocDeep model and its variant models.

2.6. Multi-head self-attention

The multi-head self-attention [27] uses the overall semantics of
the whole sentence formed by multiple components in a sentence.
So, multiple hops of attention are needed to focus on different
parts of the sentence. Our method borrows this idea and sets the
number of heads equals 41 (derived from the hyperparameter tun-
ing). The final weight of each amino acid is the average of the 41
weights. Then we could analyse if any ‘‘important parts” of a pro-
tein sequence are responsible for the protein localization. The
attention matrix A is calculated as Eq. (1)

A ¼ softmaxðWs2tanhðWs1H
TÞÞ ð1Þ

where H is the 1000-by-180 embedding sequence output from bidi-
rectional LSTM. Ws1 is a weight matrix with a shape of 369-by-180.
Ws2 is a matrix of parameters with a shape 41-by-369. The atten-
tion matrix A is returned separately for interpretation. The sequence
embedding M, calculated as the weighted sum by multiplying A and
H (Eq. 2), is also returned for further prediction.
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M ¼ AH ð2Þ
When training the models, we applied the penalization term P

below [27]

P ¼ kðAAT � IÞk2F ð3Þ
where A is the attention matrix, I is an identity matrix, k � kF stands
for the Frobenius norm of a matrix. We multiple the penalization
term with an attention regularizer and added the product to the
model’s loss. The loss reaches the maximum if two attention vectors
are identical, and it is the minimum when the attention vectors are
orthogonal to each other. Thus, by using this penalization term, we
encourage the attention vectors to concentrate on different parts of
a protein sequence.
2.7. Attention visualization

To visualize the attention for one protein, the average of the
protein’s attention matrix was calculated along the dimension of
‘‘heads”, which is 41 in our model. A 1000-long vector is left and
ready for visualization.

To visualize the attention of a group of proteins that belong to
the same category, different methods are applied based on the fol-
lowing two scenarios:

(1) For analyzing attention at termini, we simply align the first
50 or the last 50 amino acids one by one from left to right
or right to left depending on if it is N-terminus or C-
terminus. For each position, the frequency of amino acids
and the weight of attention (average along with the number
of ‘‘heads” and proteins) are obtained. Then we used the R
package ‘‘ggseqlogo” [38] to visualize the attention.

(2) For analyzing attention in the middle of proteins, we kept
the entire protein sequence and ranked the amino acid in
it based on their attention weights. We selected the top 5
amino acids, each of them combining the surrounding 20
amino acids (10 window size at each side) to form a seg-
ment. A final segment was obtained by concatenating all
segments by a string of ‘‘X” with the same length of window
size. All segments belonging to the same class were analysed
by the GLAM2 [39], a tool in the MEME Suite 5.1.0 that can
discover variable-length, gapped motifs.

2.8. Evaluation criteria

We used accuracy (ACC), Matthew’s correlation coefficient
(MCC) [40], recall, precision, area under the receiver operating
characteristic curve (ROC_auc), and area under precision & recall
curve (P&R_auc) to evaluate our method and compare it with
others. For unbalanced datasets, measurements such as ACC, recall
and precision would introduce bias and overestimate a method’s
performance. MCC considers true and false positives and negatives,
and is generally regarded as a balanced measure even if the classes
are of very different sizes [41]. The definitions of ACC, MCC, recall
and precision are listed in Eqs. 4–7:

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

ð4Þ

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp ð5Þ

recall ¼ TP
TP þ FN

ð6Þ
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precision ¼ TP
TP þ FP

ð7Þ

where TP, FP, TN, FN are true positive, false positive, true negative
and false negative predictions, respectively. Measurements such
as MCC, recall, precision and ACC can be used in binary prediction
cases.

When training a MULocDeep model, the loss function used for
both suborganellar and subcellar levels is the binary cross-
entropy as defied in Eq. (8):

L ¼ � 1
C

XC

i¼1

½yi � log p yið Þð Þ þ ð1� yiÞ � logð1� p yið ÞÞ� ð8Þ

where C is the number of localization categories and yi is the label of
category i. This loss function enables MULocDeep to predict multi-
label localizations. When training a MULocDeep variant model to
compare with single-label prediction methods, we used the cate-
gorical cross-entropy as the loss function as defined in Eq. (9):

L ¼ �
XC

i

ti log Softmax Pð Þð Þ ð9Þ

where C is the number of localization categories and P is the predic-
tion vector for all the categories.

3. Results

In this part, we first present the mitochondrial proteome we
experimentally extracted from three species. Then we evaluate
the MULocDeep model by comparing it with other methods. We
demonstrate the effectiveness of MULocDeep in interpreting the
contribution of each amino acid to localization prediction. Some
of these important amino acids can match well-known protein
sorting peptides or signals. Finally, we briefly introduce the key
features of the MULocDeep web server.

3.1. Mitochondrial proteome from three species

We experimentally extracted the mitochondrial proteome from
Arabidoposis thaliana, Solanum tubers, and Vicia faba. The whole
process can be roughly divided into three steps. First is the mito-
chondria isolation from each species. Then, the mitochondrial pro-
teins of the three species were identified and quantified using
shotgun mass spectrometry according to Thal et al. [42]. Finally,
the generated raw files were analysed with the Proteome Discov-
erer software (Thermo Fisher Scientific, Dreieich, Germany) using
the Mascot (Matrix Science, London, UK) search engine against
in-house protein sequence databases. The technical details of the
process are introduced in Supplementary Note 3. The Vicia proteins
(identified as Medicago proteins) and Solanum proteins were
assigned to their Arabidopsis orthologues through pairwise BLAST
searches of the underlying proteome datasets. The e-value and
word size for a protein assignment were set to 10-172 and 3 for
Solanum tuberosum, and 10-178 and 3 for Medicago truncatula pro-
teins, respectively. The Arabidopsis hit with the highest score was
the chosen orthologue. From this, a non-redundant list containing
the original Arabidopsis hits as well as potato and Vicia ortho-
logues was produced, whose entries represent candidates for mito-
chondria located proteins. The identified proteins from the three
species with the respective Arabidopsis orthologues are shown in
Supplementary Data 1–3. We are aware of the existence of co-
purifying proteins from other organelles within each of the three
species, which were not removed. However, removing these ‘con-
taminants’ is just as wrong as including them. As a hypothetical
case, if a dually localized protein (e.g., plastids and mitochondria)
was first reported to be present in the plastid, then the database
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registers it as belonging there, although it belongs just as much
in the mitochondria. It would be wrong to remove it from the mito-
chondrial proteome. Another example is the groups of proteins
(e.g., cytoplasmic ribosomes, cytoskeleton components, ER pro-
teins, glycolytic proteins) that interact with proteins in the outer
mitochondrial membrane. These proteins will therefore co-purify
with mitochondria at least under some conditions. However, it is
questionable to treat them as contaminants.
3.2. Comparison of performance in localization prediction

Firstly, we compared the protein localization prediction of
MULocDeep with other available methods on four benchmark
datasets provided by us, the Mito3, the UniLoc-sub, the
UniLoc-single and the UniLoc-multi datasets. We summarized a list
of localization classifiers regarding their scope (target localiza-
tions), availabilities (web server or local tool) and the performance
on these datasets. We have investigated many other methods, but
they were excluded from the comparison because they were either
unavailable, not working properly at the time of test, or only accept
a single sequence for web submission. The Mito3 dataset was used
to evaluate the performance of different classifiers for mitochon-
drial proteins (Table 1, upper part). The UniLoc-sub dataset was
used to test the suborganellar localization prediction for Golgi,
mitochondrion, and chloroplast (Table 1, middle part). The
UniLoc-single dataset was used to compare with DeepLoc for the
10 main subcellular localization predictions (Table 1 lower part).
Since the UniLoc-test dataset mostly consisted of proteins created
after 2018 in the UniProt database, we assume that for most of
the comparing methods, the same protein sequence did not appear
in their training sets. Some new methods, e.g., DeepMito, may not
guarantee that, but this would be to the advantage of these
methods instead of ours since no sequence in the UniLoc-test data-
set was used in training our model. Hence, the comparison in
Table 1 can be regarded as an evaluation from the tool perspective,
which mimics the actual usage that cares about the prediction
performance instead of the homology issue. To evaluate the gener-
alization of our method, the performance of MULocDeep model
trained using the non-redundant training set (UniLoc-train-40nr)
is also shown in Table 1 separated by a slash.

Among the six measurements of the performance, the ROC_auc
(area under the receiver operating characteristic curve) and
P&R_auc (area under precision & recall curve) are the most impor-
tant criteria from the method perspective as they reflect accuracies
in a continuous range of thresholds for a binary prediction while
the other measurements are affected by the chosen thresholds. In
the upper part of Table 1, MULoc, a mitochondrion-specific method
developed by our lab has the highest score in most of the measure-
ments. Except for this, MULocDeep has more than half of the mea-
surements better than any other method in a pair-wise
comparison. Especially, the ROC_auc and P&R_auc are consistently
higher in MULocDeep than others. At the suborganellar level pre-
diction (Table 1 middle), MULocDeep is consistently better in pre-
dicting subchloroplastic proteins. It is also generally better in
predicting cis-Golgi network proteins, mitochondrion matrix and
outer membrane proteins. DeepMito [23] is better for the predic-
tion of the mitochondrion intermembrane space proteins and Sub-
Golgi v2 [43] is better in trans-Golgi network protein prediction. It
is noted that all the better methods than MULocDeep are
organelle-specific, which suggests tuning models for a single orga-
nelle may have some advantages. In the lower part of Table 1,
MULocDeep achieved a higher score in most of the measurements
than DeepLoc. It is worth mentioning in Table 1 that MULocDeep’s
performance using the non-redundant training set did not drop
significantly compared to the model using the redundant training



Table 1
Evaluation and Comparison of Protein Localization Prediction Methods.

Mitochondrion localization prediction using the Mito3 dataset:

Method Scope AVAIL Subcellular Suborganellar Assessments

ROC_auc P&R_auc MCC Recall Prec Acc

MULocDeep 1–10 W&L Mitochondrion / 0.74/0.69 0.79/0.77 0.39/0.31 0.30/0.29 0.94/0.90 0.64/0.57
MULoc(21) 4 W&L / 0.78 0.82 0.42 0.52 0.85 0.67
DeepLoc [20] 1–10 W&L / 0.70 0.63 0.39 0.35 0.76 0.75
TargetP v5 [22] 3,4,7 W&L / 0.72 0.79 0.23 0.13 0.97 0.50
MitoFates [44] 4 W&L / 0.63 0.71 0.22 0.15 0.90 0.50
SherLoc2 [17] 1–11 W / 0.68 0.73 0.22 0.18 0.85 0.51
MultiLoc2 [18] 1–11 W&L / 0.68 0.73 0.22 0.15 0.90 0.50
Predotar [12] 4,6,7 W / 0.60 0.68 0.24 0.21 0.87 0.53
Suborganellar localization prediction using UniLoc-sub dataset:

MULocDeep 1–10 W&L

Mitochondrion
Inner membrane 0.83/0.75 0.74/0.70 0.41/0.37 0.92/0.78 0.55/0.58 0.65/0.67
Outer membrane 0.71/0.49 0.67/0.27 0.67/0.18 0.59/0.13 0.86/0.50 0.91/0.82
Matrix 0.88/0.76 0.81/0.53 0.71/0.42 0.86/0.64 0.72/0.51 0.89/0.77
Intermem. space 0.83/0.58 0.56/0.16 0.38/0.15 0.31/0.50 0.56/0.16 0.91/0.71

Golgi apparatus Trans-Golgi 0.72/0.59 0.92/0.85 0.38/0.26 0.63/0.23 0.92/1.00 0.67/0.41
Cis-Golgi 0.81/0.49 0.58/0.26 0.48/0.06 0.64/0.09 0.58/0.33 0.80/0.74

Plastid (chloroplast) Membrane 0.54/0.36 0.51/0.25 0.45/0.12 0.38/0.21 0.82/0.21 0.79/0.54
Stroma 0.80/0.60 0.76/0.43 0.63/0.13 0.67/0.52 0.82/0.40 0.84/0.59
Thylakoid lumen 0.86/0.82 0.49/0.29 0.52/0.30 0.50/0.67 0.60/0.22 0.94/0.80
Thylakoid mem. 0.87/0.72 0.84/0.68 0.38/0.30 0.86/0.59 0.50/0.53 0.65/0.67

DeepMito [23] 4 W&L Mitochondrion Inner membrane 0.78 0.66 0.48 0.82 0.63 0.73
Outer membrane 0.80 0.57 0.62 0.65 0.72 0.89
Matrix 0.78 0.59 0.60 0.61 0.76 0.86
Intermem. space 0.85 0.53 0.65 0.75 0.63 0.93

SubGolgi v2 [43] 8 W Golgi apparatus Trans-Golgi 0.77 0.92 0.47 0.85 0.88 0.80
Cis-Golgi 0.77 0.45 0.47 0.63 0.58 0.80

TetraMito [45] 4 W Mitochondrion Inner membrane 0.61 0.55 0.17 0.52 0.51 0.59
Outer membrane 0.71 0.59 0.45 0.46 0.62 0.85
Matrix 0.62 0.29 0.06 0.50 0.26 0.55

Schloro [46] 7 W
Plastid (chloroplast) Membrane 0.43 0.26 �0.09 0.29 0.23 0.51

Stroma 0.50 0.32 0.00 0.00 0.00 0.67
Thylakoid lumen 0.50 0.07 0.00 0.00 0.00 0.92
Thylakoid mem. 0.53 0.37 0.03 0.65 0.36 0.47

Subcellular localization prediction using UniLoc-single dataset:

MULocDeep 1–10 W&L

Nucleus / 0.97/0.94 0.93/0.85 0.81/0.68 0.91/0.87 0.82/0.69 0.93/0.86
Cytoplasm / 0.94/0.86 0.83/0.66 0.71/0.53 0.83/0.74 0.74/0.59 0.89/0.81
Extracellular / 0.99/0.98 0.92/0.83 0.87/0.82 0.92/0.89 0.86/0.80 0.97/0.96
Mitochondrion / 0.98/0.94 0.92/0.82 0.87/0.74 0.84/0.70 0.92/0.82 0.98/0.96
Cell membrane / 0.96/0.91 0.89/0.76 0.77/0.64 0.86/0.76 0.76/0.65 0.94/0.90
ER / 0.96/0.87 0.82/0.50 0.80/0.48 0.75/0.41 0.88/0.62 0.98/0.95
Plastid / 0.99/0.94 0.86/0.68 0.83/0.71 0.82/0.64 0.85/0.79 0.99/0.99
Golgi apparatus / 0.95/0.89 0.71/0.49 0.70/0.44 0.67/0.57 0.75/0.37 0.98/0.96
Lysosome / 0.97/0.80 0.63/0.10 0.66/0.14 0.50/0.10 0.87/0.20 0.99/0.99
Peroxisome / 0.98/0.94 0.75/0.53 0.75/0.54 0.57/0.38 1.00/0.78 0.99/0.99

DeepLoc 1–10 W&L

Nucleus / 0.96 0.91 0.78 0.85 0.83 0.91
Cytoplasm / 0.90 0.78 0.64 0.75 0.72 0.86
Extracellular / 0.97 0.85 0.81 0.84 0.83 0.95
Mitochondrion / 0.97 0.89 0.82 0.86 0.82 0.97
Cell membrane / 0.92 0.80 0.72 0.67 0.87 0.93
ER / 0.93 0.75 0.70 0.75 0.69 0.96
Plastid / 0.96 0.76 0.74 0.81 0.68 0.98
Golgi apparatus / 0.93 0.66 0.66 0.62 0.72 0.98
Lysosome / 0.88 0.32 0.35 0.47 0.28 0.98
Peroxisome / 0.93 0.55 0.52 0.54 0.52 0.99

The upper part of the table uses ourMito3 dataset to evaluate the performance of the mitochondrial protein prediction; the middle part uses the UniLoc-sub dataset to evaluate the
performance at the suborganelle level prediction; and the lower part uses theUniLoc-single dataset to evaluate the performance at the subcellular level. Availability (AVAIL) is either
through a web server (W) or a local tool (L). The prediction scope includes compartments in: 1. nucleus; 2. cytoplasm; 3. extracellular; 4. mitochondrion; 5. cell membrane; 6.
endoplasmic reticulum; 7. plastid/chloroplast; 8. Golgi apparatus; 9. lysosome/vacuole; 10. peroxisome; 11. plasma membrane. Criteria of assessment are ROC_auc (area under the
receiver operating characteristic curve), P&R_auc (area under precision & recall curve), MCC (Matthew’s correlation coefficient), recall, precision, and accuracy. Localization
categories with less than 6 samples were removed. The performance after the slash is from theMULocDeepmethod trained using non-redundant dataset (UniLoc-train-40nr). It was
evaluated using the same test datasets, except the upper part of the table, where non-redundant MULocDeep model was evaluated using Mito3-40nr.
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set in terms of ROC_auc and P&R_auc which indicates a good gen-
eralization of MULocDeep.

The UniLoc-multi dataset was used to compare with pLoc-mEuk
[47], which is a subcellular localization prediction method for
multi-label eukaryotic proteins (i.e., predicting multiple labels
simultaneously). All the proteins in the UniLoc-multi dataset have
more than one localization annotation. The comparison result for
the multi-label localization prediction is shown in Table 2. We
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used the exact match as the criterion to evaluate the overall perfor-
mance of each method, and MCC, recall, precision, and accuracy to
evaluate individual classes. According to Table 2, MULocDeep,
either the redundant or non-redundant model, has significantly
better individual scores than pLoc-mEuk in almost every case.

To evaluate different approaches from the method perspective
under a rigorous condition, we created a variant of the MULocDeep
model. We used the variant model to compare with different meth-



Table 2
Comparison of Multi-label Protein Localization Prediction Performance.

UniLoc-multi dataset:

Method Localization MCC Recall Prec ACC Exact match

MULocDeep Nucleus 0.59/0.53 0.66/0.62 0.99/0.97 0.76/0.72 243/144(35%/21%)
Cytoplasm 0.36/0.21 0.68/0.59 0.95/0.92 0.70/0.61
Extracellular 0.60/0.29 0.60/0.40 0.60/0.22 0.99/0.99
Mitochondrion 0.47/0.23 0.40/0.20 0.60/0.33 0.96/0.95
Cell membrane 0.74/0.51 0.73/0.54 0.85/0.64 0.93/0.86
ER 0.70/0.41 0.53/0.22 1.00/0.87 0.94/0.90
Golgi apparatus 0.73/0.33 0.58/0.32 0.98/0.47 0.96/0.90
Lysosome 0.64/0.23 0.47/0.12 0.89/0.50 0.99/0.98

pLoc-mEuk Nucleus 0.38 0.57 0.89 0.65 161(23%)
Cytoplasm 0.28 0.52 0.95 0.57
Extracellular 0.09 0.20 0.05 0.97
Mitochondrion 0.28 0.26 0.36 0.94
Cell membrane 0.36 0.34 0.58 0.83
ER 0.43 0.32 0.70 0.89
Golgi apparatus 0.33 0.26 0.54 0.90
Lysosome 0.11 0.05 0.25 0.97

Criteria are Matthew’s correlation coefficient (MCC), recall, precision (Prec), accuracy (ACC), and exact match. The exact match means that there is no difference in all the
organelle labels between the predicted ones and the experimental ones. The best score in each sub-category is shown in bold. Localization categories with less than 6 samples
were removed. The performance after the slash is from the MULocDeep method trained using non-redundant dataset (UniLoc-train-40nr).
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ods individually at both subcellular and suborganellar levels. The
details of the variant model are provided in Supplementary Note
2. At the suborganellar level, only a few methods have provided
clearly separated datasets for training and testing, which makes
it difficult to make a fair comparison. Here we compared with
DeepMito [23], a recently published deep learning method for
sub-mitochondrial protein localization prediction. A variant model
was trained using the same DeepMito datasets provided by the
DeepMito paper. The output layer was a 4-dimensional vector rep-
resenting four target compartments (outer membrane, inner mem-
brane, intermembrane space and matrix) in mitochondria as in
DeepMito. Processing the data as in the DeepMito method, the
SM424-18 dataset and the SubMitoPred dataset were split into 10
and 5 folds, respectively. The comparison was based on the MCC
of different compartments from the cross validation as reported
in the DeepMito paper [23]. MULocDeep performed better than
DeepMito for every mitochondrial compartment in both datasets
(Table 3).

For protein localization prediction at the subcellular level, the
DeepLoc dataset was originally used to compare between DeepLoc
and eight other methods [20]. The results show that the DeepLoc
method outperformed other methods in terms of both accuracy
and Gorodkin value [48]. To demonstrate the effectiveness of our
method in predicting protein localization at the subcellular level,
like what we did for the sub-mitochondrial prediction, the variant
model with ten target localizations (nucleus, cytoplasm, extracel-
Table 3
Comparison of Method Effectiveness between MULocDeep and DeepMito.

Dataset Method Feature/CV method

SM424-18 DeepMito SEQ
PROP
PSSM
SEQ + PROP
PSSM + PROP

MULocDeep PSSM + PROP
SubMitoPred SubMitoPred RS

DeepMito RS
DeepMito CL
MULocDeep RS

The comparison is at the sub-organellar level. Four target compartments are ‘‘O”: Out
Features used include one-hot encoding residue (SEQ), physico-chemical properties (P
include randomly splitting the dataset (RS) and confining local similarity into the same cr
(MCC).
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lular, mitochondrion, cell membrane, endoplasmic reticulum, plas-
tid, Golgi apparatus, lysosome, and peroxisome) was trained using
the same training dataset and tested on the same testing dataset
that was used for DeepLoc. To further reduce the bias resulting
from inappropriate implementation or parameter configuration,
we directly quote the performance reported in the DeepLoc paper
[20] and show the prediction results in Table 4.

As shown in Table 4, MULocDeep has comparable performance
in terms of prediction accuracy (each method has 5 out of 10
classes better than the other method). One reason is that our
method used a much smaller database for PSSM profile generation
(see Methods) than DeepLoc. A benefit of that is that MULocDeep is
much faster than DeepLoc. It takes approximately 4.2 s to run
MULocDeep per protein, which is a prediction speed more suitable
for online usage than DeepLoc, which takes approximately 30 s per
protein.

3.3. Attention weight interpretation and visualization

MULocDeep can not only make accurate localization predictions
but also indicate the contribution of each amino acid in localization
and suggest localization motifs. This is achieved by attentive
embedding through assigning higher weights to specific parts of
a protein sequence. We assume that the regions with higher atten-
tion weights are more likely to contribute to the localization. When
using a high resolution of attention, it is possible to predict sites
MCC(O) MCC(I) MCC(T) MCC(M)

0.17 0.15 0.13 0.07
0.17 0.07 0.22 0.13
0.51 0.47 0.42 0.57
0.16 0.07 0.55 0.09
0.46 0.47 0.53 0.65
0.53 0.59 0.59 0.67
0.42 0.34 0.19 0.51
0.45 0.68 0.54 0.79
0.42 0.60 0.46 0.76
0.67 0.76 0.67 0.79

er membrane, ‘‘I”: Inner membrane, ‘‘T”: Intermembrane space, and ‘‘M”: Matrix.
ROP), and position-specific scoring matrix (PSSM). Cross-validation (CV) methods
oss-validation set (CL). The assessment is based on Mathew’s correlation coefficient



Table 4
Comparison of Method Effectiveness between MULocDeep and DeepLoc.

Localization MCC from MULocDeep MCC from DeepLoc

Nucleus 0.725 0.784
Cytoplasm 0.549 0.608
Extracellular 0.896 0.907
Mitochondrion 0.823 0.812
Cell membrane 0.696 0.732
Endoplasmic reticulum 0.602 0.654
Plastid 0.901 0.883
Golgi apparatus 0.464 0.414
Lysosome 0.208 0.194
Peroxisome 0.412 0.321

The comparison is at the subcellular level. Both methods were trained using the
training samples in the DeepLoc dataset and tested using the testing samples in the
DeepLoc dataset.
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and motifs relevant to protein localization. For example, the pep-
tide cleavage site could be predicted directly from an amino acid
level attention [22]. Our method provides interpretable results
for all the 44 types of suborganelle localizations as far as 500
amino acids from each terminus.

Firstly, we used several proteins with known localization sig-
nals as cases to demonstrate the ability of attention weights for
indicating the contribution of each amino acid in localization.
The proteins are: SV40 large T antigen (P03070) located at the
nucleus, with the known signal motif ‘‘PKKKRKV” in the middle
of the protein sequence; lactalbumin (P09462) located at the
secreted pathway, with a known signal peptide
‘‘MMSFVSLLLVGILFWATEAEQLTKCEVFQ” at the N-terminus; and
COX4 (P04037) located in the mitochondrial inner membrane, with
the known transit peptide ‘‘MLSLRQSIRFFKPATRTLCSSRYLL” at the
N-terminus [49–51]. When using these proteins as input, MULoc-
Deep predicted the localization correctly for all three proteins.
We also obtained the attention weights for each protein along
the sequence, as shown in Fig. 2, indicating that the high attention
regions match the corresponding known signal motifs of the
proteins.

Next, we investigated the attention weights in terms of groups
of proteins from the same subcellular compartments and the same
suborganelle compartments. Firstly, we visualized the attention
weights of proteins from ten subcellular compartments (Figs. S4
to S6). Among them, the localization of proteins in extracellular,
mitochondrial, plastid, and thylakoid lumen (Fig. S4) are believed
to be controlled by signal peptides near the protein N-terminus
[22]. Comparing to other localizations (Figs. S5 and S6), the signals
near the N-termini of proteins in Fig. S4 have higher attention
weights, more over-represented amino acid patterns, and maintain
at high levels for longer sequence segments. Our result is consis-
tent with TargetP in detecting the N-terminal sorting signals using
attention weights [13,22]. These N-terminal sorting signals are
often proteolytically removed at the cleavage cites after the protein
reaches the final destination. We then aligned the weighted
sequences of these four types of proteins at the cleavage site. The
cleavage site annotation was obtained from the UniProt database.
The attention visualization result is shown in Fig. 3. An immediate
decrease in the attention weight is observed after the cleavage site
for the proteins from all four subcellular localizations. This indi-
cates that the high attention weights near the N terminus are
mostly contributed by signal peptides and transit peptides.

Looking at the attention weights at the termini of proteins in all
ten subcellular localizations (Figs. S4-S6), it is apparent that the
attention weight increases towards the termini in all cases
although more so at the C-terminus. We, therefore, wondered if
there is a terminus attention bias introduced by the MULocDeep
method. We did a control experiment to test for such a terminus
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bias on the proteins. For each localization, we randomly shuffled
the order of amino acids for each protein sequence. Then we plot-
ted the attention weights aligned at the termini for these four
localizations and indeed found some terminal bias (Fig. S7). We
can use this to distinguish true and false-positive signals, which
all give high attention weights near the termini. As shown in
Fig. S7, false-positive signals are characterized by a gradual
decrease from the terminus and the absence of dominant amino
acids at each residue position. In contrast, the features of true sig-
nals are: amino acids in each position are more conserved, the high
attention signal lasts relatively longer and sometimes the highest
attention weight appears as a ‘bump’ away from the termini (in
all four localizations shown in Fig. S4). Hence, although the termi-
nus attention bias exists, the attention weights in MULocDeep may
add values to illustrate biologically significant signals. We then
divided the attention weights from the real protein sequences of
the four protein classes in Fig. S7 by the attention weights from
the randomly shuffled protein sequences. The result is shown in
Fig. S8. For protein classes that do not have an N-terminal signal
(nucleus, cytoplasm), their attention weights are similar to the ran-
dom one and the attention ratio is near 1. While for the protein
classes that are known to have an N-terminal signal peptide, e.g.,
extracellular and mitochondrion, there is a region that the ratio
is much higher than 1.

Since the attention weights of a subcellular localization reflect
the average of attention weights of its suborganellar localizations,
there still could be suborganellar localizations that have strong N-
terminal or C-terminal sorting signals even though the subcellular
sorting signal is not obvious. We, therefore, show the attention
weights of proteins at the suborganellar localizations in nucleus,
cytoplasm, cell membrane, endoplasmic reticulum, Golgi appara-
tus, lysosome, and peroxisome (Figs. S9-S15). We found several
suborganelle localizations with strong signals near the termini.
These signals are shown in Fig. 4, including N-terminal signal pep-
tides in proteins from cytoplasmic granule (Fig. 4A), cell surface
(Fig. 4B) and endoplasmic reticulum lumen (Fig. 4C), and perhaps
also in Golgi apparatus membrane and Golgi stack membrane
(Fig. 4D), which all resemble the endoplasmic reticulum signal
peptide observed for extracellular proteins in Figs. S4 and S6. A
C-terminal KDEL/HDEL signal in the endoplasmic reticulum lumen
proteins (Fig. 4E), a C-terminal SRL/SKL/SRM signal for the peroxi-
some (Fig. 4F), and a less clear sequence for the peroxisome mem-
brane (Fig. S15) [52–53] are observed.

Besides the signals near the termini, we also analyzed the atten-
tion weights in the middle. We aligned sequences in the same way
as we did at the termini, but no signal was found at all. A likely rea-
son is that the signals in the middle do not appear in the same posi-
tion for different proteins. Thus, the sorting signal in the middle of
protein sequences was analyzed and visualized with the help of the
GLAM2 tool [39] in the MEME Suite, which can discover over-
represented, position-independent motifs in protein sequences
(see Methods for details). A well-known internal signal is the
nuclear localization signal (NLS). The visualization in Fig. 5 using
nuclear proteins was obtained by setting the ‘‘initial columns” (ini-
tial number of aligned columns in the motif) equal to 15, the ‘‘max-
imum columns” (upper bound on the number of aligned columns
in the motif) equal to 30 while other parameters remain the default
in the GLAM2 online tool. The classical NLS pattern includes
stretches of 4–5 Lys or Arg (e.g. KKKK) [49], which was readily rec-
ognized by GLAM2 (Fig. 5).

We carried out similar GLAM2 analyses on proteins from six
more subcellular localizations (Figs. S16-S21) and found a number
of well-defined internal signals where the signal found in the cyto-
plasm deserves special mention (Fig. S16, motif rank 2) – A L/I/
VxxxxxxL/V/I/F motif, which is known to be a nuclear export signal
[54].



Fig. 2. Visualization of attention weights for (A) SV40 large T antigen (P03070), (B) lactalbumin (P09462), and (C) cytochrome oxidase subunit 4 (P04037). The x-axis presents
the sequence position from the N-terminus to the C-terminus, and the y-axis presents the value of attention weights. The region of the known sorting motif is highlighted in
peach and labelled with the sequence of known localization signals.
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The interpretation of attention weights does not have to be lim-
ited to target peptides. If a localization class is well predicted by
our model, some features must have been learned, which are prob-
ably reflected by high attention weights. It is worth checking if
those features have any biological meaning. We did such evalua-
tions on membrane proteins, specifically, transmembrane proteins
that span the membrane only once. The alignment results of the
selected transmembrane protein attention weights and the known
transmembrane position annotations are shown in Fig. 6. For all
three cases, the peak of their attention weights matches the
transmembrane regions annotated in the Uniprot databases. This
suggests that the membrane interaction regions play important
roles in protein localization, possibly through membrane protein-
mediated transport [55]. Even though we did not use such
information to train the MULocDeep model, it learns this feature
automatically to help the localization prediction. This indicates a
broad interpretation ability by MULocDeep.

3.4. Application of MULocDeep_tool to the human proteome

We applied MULocDeep_tool in the human proteome and drew
pie charts of statistics in Fig. 7. Thehumanproteomedata is collected
from the UniProt database release 2020_04 [30]. Totally, 20,375
reviewed human proteins were collected. The green part in the left
pie chart in Fig. 7 containing proteins with experimentally verified
localization annotations (ECO: 0000269) is further divided based
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on if the experimental evidence is at the subcellular level, subor-
ganellar level, or both. Since subcellular localization can be inferred
from suborganellar annotation, one can consider all the proteins in
the green part to have subcellular level experimental evidence. For
the proteins without experimental evidence or without localization
annotation at all (proteins in the orange part in the left pie chart),we
combined them and applied MULocDeep_tool. The right pie chart is
drawn based on the prediction results. More than half the proteins
are predicted to be localized in the nucleus and cytoplasm. This
result is consistent with the conclusion in Thul et al [7], which was
obtained by mapping 12,003 human proteins at a single-cell level
using immunofluorescence microscopy. Furthermore, according to
Fig. 7, the number of human mitochondrial proteins is 1347 (com-
bining the proteins with experimental evidence and the proteins
predicted by MULocDeep_tool). This number matches the conclu-
sion in Calvo et al [56],which estimated1100–1400distinct proteins
in the human mitochondrial proteome. Thus, the prediction results
in Fig. 7 reflect the true localization distribution in human and
demonstrates the ability of MULocDeep_tool for proteome-wide
annotation.

3.5. The MULocDeep web server

We developed a user-friendly website (http://www.mu-loc.org/)
to make the application of the MULocDeep_tool more accessible.
Every page comes with a ‘‘help” button, which explains how the

http://www.mu-loc.org/


Fig. 3. The attention weight vs. sequence position by aligned N-terminal sequences at the cleavage site for proteins localized at extracellular, mitochondrion, plastid and
thylakoid lumen. The vertical lines indicate the cleavage sites. For extracellular proteins, the range covers 50 AAs before the cleavage cite and 100 AAs after the cleavage cite.
For the other three classes of proteins, the range covers 100 AAs before the cleavage cite and 50 AAs after the cleavage cite. The number of protein sequences in each class is
shown.
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specific page works. Every user has his or her personal workspace
in our database in which they can manage their jobs conveniently.
Many web servers offer protein localization prediction. Our web-
site is unique in that this is the only web server that can predict
all 44 suborganellar localizations within 10 main subcellular com-
partments. To the best of our knowledge, it is also the only web
server that provides an amino acid level interpretation and visual-
ization. Users can use this web server as a protein localization pre-
diction tool or a hypothesis generator with regard to protein
sorting signal motifs.
4. Discussion and conclusions

In this paper, we present ‘‘MULocDeep”, a deep learning method
for protein localization prediction (shown in Fig. 1). The core of the
model is the bidirectional LSTM to handle protein sequence infor-
mation and the multi-head self-attention to assign weights to each
amino acid of a sequence for interpretation. Some methods [20]
added CNN layers before LSTM layers and reported high perfor-
mance but at the cost of resolution for residue-level interpretation
in contribution to protein localization. Here, we discard CNN to
pursue a residue-level interpretation resolution for more biological
insight.
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To maximize prediction accuracy, we used a Bayesian optimiza-
tion method to determine the hyperparameters. However, our
experiments showed that the performance was insensitive to the
selection of hyperparameters (Table S6). This indicates that our
model is robust. The selected configuration of hyperparameters
remained the same for a variant model and the MULocDeep_tool,
instead of optimizing a new set of hyperparameters with the speci-
fic data, which could have yielded slightly better results.

Evaluations of different studies were conducted from both per-
spectives of method and tool. Representative methods at both sub-
cellular and suborganellar levels were compared with a variant
MULocDeep model, which was trained and tested with their own
data. We also provide several benchmark datasets with the exper-
imentally extracted mitochondrial proteome from three species
(Mito3 dataset) and a comprehensive dataset for 44 suborganelle
protein localization from the UniProt database (UniLoc dataset).
Note that even though the DeepLoc dataset was claimed to be split
the training and testing using PSI-CD-HIT with 30% sequence iden-
tity, we found that 44% of testing samples can find a sequence in
the training set that has a sequence identity above 30%. Many sam-
ples in testing have very high sequence identity with samples in
training: 2.2% have sequence identity above 80%; 0.79% have
sequence identity above 90%. This is, to some extent, caused by
the heuristic nature of the algorithm of PSI-CD-HIT. However, this



Fig. 4. Attention weights of 50 amino acids vs. sequence position near the termini at the sub-organellar level, which suggests potential localization signals. (A) N-terminus of
cytoplasmic granule. (B) N-terminus of cell surface. (C) N-terminus of endoplasmic reticulum lumen. (D) N-terminus of Golgi apparatus and Golgi stack membrane. (E) C-
terminus of endoplasmic reticulum lumen. (F) C-terminus of peroxisome proteins.

Fig. 5. The top three GLAM2 results for segments from nucleus proteins. For each result, its rank, score, sequence logo and the regular expression (RE) of the motif are given.
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Fig. 6. Visualization of attention weights for (A) CD4_HUMAN (P01730), (B) TNR16_RAT (P07174), and (C) ITB3_HUMAN (P05106). The x-axis presents the sequence position
from the N-terminus to the C-terminus, and the y-axis presents the value of attention weight. The region of the known transmembrane region is highlighted in orange and
labelled with the ‘‘start – end” positions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The human proteome localization pie chart. The left pie chart is based on the protein localization annotation, including with or without annotation, and with or
without experimental evidence (ECO: 0000269). The green part in the left pie chart are proteins with experimentally verified localization annotations (ECO: 0000269).
‘‘Others” include those proteins contain annotations not in any of the 10 major sub-cellular or 44 sub-organellar localization annotations in MULocDeep, or have different
localizations for different protein isoforms. The right pie chart is based on the distribution of prediction for the proteins in the orange part in the left pie chart. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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makes the DeepLoc dataset not a suitable dataset for method gen-
eralization evaluation. Our UniLoc dataset consists of UniLoc-train
and UniLoc-test, as well as UniLoc-train-40nr where the sequences
in UniLoc-train were removed if they have a sequence identity
above 40% with a sequence in UniLoc-test using blastp (see Meth-
ods section). Thus, even though the identity threshold we used in
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blastp is higher (40% versus 30% in deeploc using PSI-CD-HIT),
the actual resulting dataset is much more rigorous in terms of
non-redundancy. The Mito3-40nr is the non-redundant version
derived by removing proteins that have sequence identities above
40% against the UniLoc-train-40nr dataset. These benchmark data-
sets were used for a comprehensive evaluation of localization clas-
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sifiers at both subcellular and suborganellar levels (Table 1). The
results indicate a superior performance and a good generalization
ability of MULocDeep.

The attention weight mechanism in the MULocDeep model can
detect sorting signals at the protein termini and in the middle of
protein sequences. The interpretation was validated by matching
the known transit peptides for proteins located in the nucleus,
extracellular, mitochondria, plastid, and thylakoid lumen
(Fig. S4). Particularly, plastid and thylakoid lumen proteins have
a high attention peak at position 2 from the N terminus, which is
enriched in alanine. A region enriched in serine follows. The signal
peptide in extracellular proteins apparently consists of a positively
charged amino acid followed by a number of hydrophobic residues,
a well-known endoplasmic reticulum localization signal (Fig. S6)
[57]). The mitochondrion transit peptides are enriched in arginine
and leucine. For other subcellular (Figs. S5 and S6) and suborganel-
lar (Figs. S9-S15classes of proteins, we also found high attention
regions near both N- and C-termini. Although most of them appear
to be caused by terminus bias, several known signals were recog-
nized; in particular, a well-known N-terminal endoplasmic reticu-
lum signal peptide recognized in extracellular proteins (Fig. S4)
was also seen in proteins from cytoplasmic granule (Fig. 4A) and
cell surface (Fig. 4B), both of which pass through the endoplasmic
reticulum on the way to those localizations [57]. This N-terminal
signal was particularly strong in proteins belonging to the endo-
plasmic reticulum lumen (Fig. 4C), where it was seen together with
a C-terminal KDEL/HDEL signal (Fig. 4E), which is an endoplasmic
reticulum retention signal [58–60]. We also found a clear C-
terminal SRL/SKL/SRM signal in peroxisome proteins (Fig. 4F),
which is a targeting signal for proteins belonging to the peroxi-
some [52–53].

To analyze the attention in the middle of proteins, we used the
GLAM2 tool in the MEME suite, and we demonstrate the effective-
ness of this approach by visualizing the attention of proteins
located in the nucleus (Fig. 5). We also found a clear L/I/
VxxxxxxL/V/I/F motif in proteins belonging to the cytoplasm
(Fig. S16), which is known to be a nuclear export signal [54]. Note
that the analysis by GLAM2 was influenced by the number of top
amino acids and the window size we chose. The parameters of
the GLAM2 itself could also affect the results. Changing the param-
eter configuration would result in different visualization results,
but the general motif information remains the same. For other
localizations, where the mechanisms are unclear, we provide a list
of attention visualizations in Figs. S16-S21. They could be used as
candidate motifs for these localizations.

There are limitations to the MULocDeep method, which may
lead to several future studies. First of all, more advanced
machine-learning methods, such as graph-based neural networks,
could be applied for feature representation and localization predic-
tion. Secondly, a more rigorous confidence assessment of each pre-
dicted localization could be provided instead of the current
prediction probabilities, and each predicted motif can be given a
confidence assessment as well. Furthermore, the prediction perfor-
mance could be further improved by building species-specific
models. Finally, future applications could be extended to
localization-related disease studies, e.g., to predict the impact of
a mutation in localization. With that said, we are still a long way
from understanding protein localization fully. Given the complex-
ities of decoding signal peptides or extracting features that can dis-
tinguish detailed levels of localizations, the interpretability of
MUlocDeep makes it possible to generate hypotheses regarding
protein sorting mechanisms. Some of them can be verified by cur-
rent knowledge, making the rest worth exploring by combining
computational prediction methods and experimental verification.
By making the datasets, the software code, and the MULocDeep
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website publicly accessible, our study constitutes a major step
toward understanding the protein localization mechanism.
5. Availability

The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE [61] partner repos-
itory with the dataset identifier PXD019987. Datasets used to train
and test the MULocDeep model can be found in the GitHub reposi-
tory (https://github.com/yuexujiang/MULocDeep). All the codes
for training and testing the MULocDeep model can be found in the
GitHub repository (https://github.com/yuexujiang/MULocDeep).
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