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Objectives: This study aimed to examine the interactive effects of dopamine (DA)

pathway gene and disease on spontaneous brain activity and further to explore the

relationship between spontaneous brain activity and the early antidepressant therapeutic

effect in patients with major depressive disorder (MDD).

Methods: A total of 104 patients with MDD and 64 healthy controls (HCs) were recruited.

The Hamilton Depression Scale-24 (HAMD-24) was used to measure the depression

severity. Both groups were given resting-state functional magnetic resonance imaging

(rs-fMRI) scan. The amplitude of low-frequency fluctuation (ALFF) was calculated to

reflect the spontaneous brain activity based on the rs-fMRI data. After treatment for 2

weeks, depression severity was evaluated again, and HAMD-24 reductive rate was used

to measure the therapeutic effect of antidepressants. Multilocus genetic profile scores

(MGPS) were used to assess the multi-site cumulative effect of DA pathway gene. The

interactive effects of MDD and DA pathway gene on the ALFF of regional brain areas were

measured by the multivariate linear regression analysis. Finally, partial correlation analysis

(age, sex, education, and illness durations as covariates) was performed to identify the

relationship between regional ALFF and therapeutic effect.

Results: MDD and DA-MGPS had interactive effects on the left fusiform gyrus (FG_L),

right calcarine sulcus (CS_R), left superior temporal gyrus (STG_L), bilateral cerebellum

posterior lobe (CPL), bilateral inferior frontal gyrus (IFG), and bilateral superior frontal

gyrus (SFG). Partial correlation analysis revealed that the ALFF of STG_L had a significant

negative correlation with 2-week HAMD-24 reductive rate (r = −0.211, P = 0.035).

Conclusions: The spontaneous activity of STG_L may be a potential biomarker of

antidepressant-related early therapeutic effect underlying the influence of DA pathway

genes in MDD.

Keywords: major depressive disorder, amplitude of low-frequency fluctuation, multilocus genetic profile scores,

dopamine, early therapeutic effect
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INTRODUCTION

Major depressive disorder (MDD) is of increasing importance
due to its high incidence, recurrence, disability, and burden
(1). The overall remission rate of MDD is only about 70% (2).
The first-line treatment strategy recommended for MDD is drug
treatment, and the most commonly used in a clinical setting
are selective serotonin reuptake inhibitors (SSRIs) and selective
serotonin-noradrenalin reuptake inhibitors (SNRIs) (3). Besides,
these antidepressants are often criticized by the delayed onset of
efficacy; usually, it takes 2 weeks or longer on average to work (4,
5). Thus, the biomarkers used to predict the response to a certain
antidepressant would help for the selection of clinical medication
and the achievement of individualized treatment regimens,
this preventing “trial-and-error” in the clinical treatment of
MDD and reducing unnecessary waste of medical resources and
patients’ pains as well as suicide risks. In general, the efficacy
assessment window for antidepressants is 4–6 weeks. Nowadays,
researchers have suggested to shorten the window to 2 weeks, to
evaluate the early therapeutic effect (6), which is more helpful to
adjust the treatment strategy in a timely manner.

A genetic component in the etiology of MDD is evident
with a 37% heritability (7). The deficits in monoamine system
including a reduced neurotransmission of dopamine (DA) are
known to be closely related toMDD (8). So far, several DA-related
genetic variants have been suggested to modulate endogenous
DA neurotransmission, and the most frequently studied are
catechol-O-methyltransferase (COMT) gene rs4680, monoamine
oxidase A (MAOA) gene rs6323, DA D2 receptor (DRD2) gene
rs6277, DRD3 gene rs6280, and DA transporter (DAT) gene
rs27072 (8–12).

However, many previous studies of the association of DA and
MDD are based on a single polymorphism, which is unlikely to
yield significant effects unless very large samples are included
(13). Thus, researchers begin to incorporating multiple genes
or polymorphisms to determine the pathogenesis of depression
from the perspective of genetic pathways.

Genes do not directly encode clinical symptoms, which
means there may be some intermediaries between them, whereas
imaging genetics is proposed as a bridge linking gene and clinical
behavior (7). Gong et al. used themethod of imaging genetics and
found that the DAmultilocus genetic profile played an important
role in the reward network and anxious depression in MDD (14).
However, previous studies including the studiesmentioned above
are all the exploration of the relationship between DA pathway
genes and depressive symptoms. As far as we know, there is no
study on the association between DA pathway genes and the
therapeutic effect in MDD.

In this study, using imaging genetics, we aimed to explore the
relationship of DA pathway genes on spontaneous brain activity
and to determine the brain areas associated with early therapeutic
effect in MDD.

METHODS

Participants
A total of 104 patients with MDD and 64 healthy controls (HC)
were included. All participants were right-handed and of Chinese

Han ethnicity. All participants signed informed consent forms as
approved by the Medical Ethics Committee for Clinical Research
of Zhongda Hospital Affiliated with Southeast University. The
participants received resting-state functional magnetic resonance
imaging (rs-fMRI) scan at baseline. After that, the MDD group
received antidepressant treatments.

Inclusion and Exclusion Criteria
The inclusion criteria for the MDD group were as follows:
subjects who (1) were aged ≥18 years; (2) met the criteria
for MDD of the Diagnostic and Statistical Manual of Mental
Disorders, fourth edition (DSM-IV); (3) had a Hamilton
Depression Scale-24 (HAMD-24) score of ≥20. The exclusion
criteria were as follows: individuals with a history of (1) other
major psychiatric disorders; (2) substance abuse, head trauma, or
a loss of consciousness; or (3) cardiac or pulmonary disease that
could influence the rs-fMRI scan.

HC subjects were required to have a HAMD-24 score≤ 7. The
exclusion criteria for HC subjects were as follows: (1) a history of
neuropsychiatric disease; (2) drug abuse; (3) insobriety; and (4)
the presence of implants that could influence the rs-fMRI scan.

Clinical Evaluations
Depression severity was evaluated by HAMD-24. The therapeutic
effect was assessed by the HAMD-24 reductive rate, calculated as:
(baselineHAMD-24 score – follow-upHAMD-24 score)/baseline
HAMD-24 score× 100%.

Genetic Data and MGPS Acquisition
DNA was extracted from the subjects’ blood using a standard
protocol, five polymorphisms that were relatively well studied in
the DA pathway (COMT rs4680, MAOA rs6323, DRD2 rs6277,
DRD3 rs6280, DAT rs27072) were selected, and genotypes
were determined using predesigned Illumina next-generation
sequencing and array technologies by Tianhao Biotechnology
Company. PLINK 1.9 software was used to calculate the Hardy-
Weinberg equilibrium (HWE) tests and linkage disequilibrium
statistics (15). MAOA rs6323 deviated from HWE (P < 0.05)
and the other four SNPs did not (P > 0.05), so MAOA rs6323
was excluded from the study. Each genotype of each SNP was
scored based on their function in the dopaminergic transmission.
Scoring details were provided in Table 1. Then, the scores of four
SNPs were added to obtain the multilocus genetic profile score
(MGPS) of a subject. The details had been described in previous
studies (14, 18).

rs-fMRI Data Acquisition
rs-fMRI data were obtained using Siemens 3.0-Tesla scanners
(Siemens, Erlangen, Germany) at the Second Affiliated Hospital
of Xinxiang Medical University and the affiliated Zhongda
Hospital of Southeast University. To minimize head motion,
the subject’s head must be stabilized with a cushion. To reduce
scanner noise, every subject was given a pair of earplugs. High-
resolution three-dimensional T1-weighted scans were recorded
using a magnetization-prepared rapid acquisition with gradient
echo (MPRAGE) sequence, and the parameters were repetition
time (TR) = 1900ms, echo time (TE) = 2.48ms, flip angle (FA)
= 9◦, acquisition matrix= 256× 256, field of view (FOV)= 250
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TABLE 1 | The putatively functional single-nucleotide polymorphisms included in the dopamine polygenic score.

Gene Genotype coding Functional associations

COMT rs4680 AA = 1 GA = 0.5 GG = 0 A allele presumably resulted in increased COMT activity (14) and greater synaptic levels of DA (16).

DRD2 rs6277 AA = 1 GA = 0.5 GG = 0 A allele predicted high DRD2 availability in healthy volunteers (17).

DRD3 rs6280 CC = 1 CT = 0.5 TT = 0 C allele was associated with greater reward-related DA release (11) and a higher affinity for DA (9).

DAT rs27072 TT = 1 CT = 0.5 CC = 0 T allele was associated with lower DAT activity (9).

COMT, Catechol-O-Methyltransferase; DRD2, D2 Dopamine Receptors; DRD3, D3 Dopamine Receptors; DAT, Dopamine Transporter.

TABLE 2 | The demographic and clinical data between MDD and HC groups.

Variable MDD group (n = 104) HC group (n = 64) P

Sex (M/F) 50/54 31/33 0.964

Age (years) 44.94 ± 13.28 41.48 ± 13.44 0.105

Education (years) 10.22 ± 4.45 11.84 ± 4.56 0.059

Family history (Y/N) 10/94 – –

Illness duration (months) 58.36 ± 86.54 – –

HADM-24 score 31.73 ± 6.07 1.19 ± 1.97 0.000

HAMD-24 reductive rate 0.48 ± 0.16 – –

MGPS 0.87 ± 0.54 0.74 ± 0.56 0.182

MDD, Major Depressive Disorder; HC, Healthy Control; HADM-24, Hamilton Depression

Scale-24; MGPS, Multilocus Genetic Profile Scores; M/F, Male/Female; Y/N, Yes/No; P,

Compare between MDD group and HC group.

× 250 mm2, thickness= 1.0mm, gap= 0, time= 4min 18 s, and
176 volumes. The parameters of rs-fMRI were TR= 2000ms, TE
= 25ms, FA = 90◦, acquisition matrix = 64 × 64, FOV = 240
× 240 mm2, thickness = 3.0mm, gap = 0mm, 36 axial slices,
time = 8min, and 240 volumes. During the scans, subjects were
instructed to relax with their eyes open and not fall asleep.

rs-fMRI Data Preprocessing
The rs-fMRI data were preprocessed using the Data Processing
Assistant for Resting-State Function (DPARSF 2.3 advanced
edition) MRI toolkit (19). The 10 time points that were
first scanned were removed to ensure stable longitudinal
magnetization and adaptation. The remaining images were
processed according to the seven steps: (1) the 36th slice was
used as the reference slice according to the number of scanning
layers, then temporal differences were corrected, and participants
with a head motion >1.5◦ of angular motion or 1.5mm of
maximum displacement in any direction were ruled out; (2)
T1 was co-registered to fMRI and subsequently reoriented; (3)
T1-weighted anatomic images were segmented into gray matter,
white matter, and cerebrospinal fluid for spatial normalization
and then were normalized to the Montreal Neurological Institute
space using the transformation parameters estimated with a
unified segmentation algorithm (20); the above transformation
parameters were applied to the fMRI and the images were
resampled with a resolution of 3 × 3 × 3 mm3; (4) spatial
smoothing was conducted with a 4-mm full-width at half-
maximum (FWHM) isotropic Gaussian kernel; (5) the linear
trend was removed; (6) the nuisance signals and spiked regressors

were regressed out; and (7) a bandpass filter was applied to
maintain low-frequency fluctuations (0.01–0.08 Hz).

ALFF Value Calculation
Based on the preprocessed rs-fMRI data, the ALFF value
was calculated by the DPARSF software. First, fast Fourier
transformation was used to convert the time series to the
frequency domain for each voxel. Then, the power spectrum was
obtained. Second, the square root of the power spectrum was
calculated and the square root was averaged across a predefined
frequency interval. The averaged square root was taken as ALFF,
which reflected the absolute intensity of spontaneous brain
activity (19). Finally, ALFF was standardized by dividing the
whole brain voxel average ALFF to reduce the global effects of
variability across subjects.

Statistical Analyses
One-sample t test, independent two-sample t test, or chi-squared
test was employed to determine the differences in demographic
and clinical data using SPSS 20.0. Continuous variables in
the statistical results were expressed as the mean ± standard
deviation (SD).

We used multivariate linear regression analysis to investigate
the potential effects of disease (D) and the DA-MGPS, as
well as the interactive effect between D and DA-MGPS (D
× MGPS) on spontaneous brain activity using SPM12 (https:
//www.fil.ion.ucl.ac.uk/spm/download/spm12) after removing
the effects of covariates (sex, age, education, and head motion).
Results were reported at the significant level of a threshold of
two-tailed voxel-wise P < 0.01 and cluster level P < 0.05 with
Gaussian Random Field (GRF) correction. The equation of the
multivariate regression analysis was as follows:

mi = β0+ β1×D+ β2×MGPS+ β3×(D×MGPS)+ β4×Sex

+β5×Edu+ β6×Age+ β7×Head Motion+ o̧

mi is the Z value of the ith voxel across all individuals; β0 is the
intercept of the straight line fitting in the model; β1, β2, and β3
are the main effects of disease, MGPS, and the interactive effects
of D × MGPS on the ALFF strength of the ith voxel on the
regional brain areas; in the above linear regression model, sex,
education, age, and head motion are discarded as covariates of
no interest; and β4, β5, β6, and β7 are the main effects of sex,
education, age, and head motion, respectively. The error term o̧
is assumed to have a Gaussian distribution and to be uncorrelated
across subjects.
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TABLE 3 | The interactive brain area of DA-MGPS and MDD.

Brain regions BA VN Coordinates MNI T score ES P

X Y Z

Left fusiform gyrus 20 97 −36 −9 −39 −3.1844 −0.5090 0.0017

Right cerebellum posterior lobe – 100 45 −69 −42 −3.7321 −0.5965 0.0003

Left superior temporal gyrus 38 72 −12 6 −27 −2.9737 −0.4753 0.0034

Left cerebellum posterior lobe – 88 −33 −63 −21 3.4038 0.5440 0.0008

Right inferior frontal gyrus 47 306 15 15 −18 3.8084 0.6087 0.0002

Left inferior frontal gyrus 47 163 −54 30 0 −3.1386 −0.5016 0.0020

Right calcarine sulcus 17 896 27 −51 6 3.829 0.6120 0.0002

Left superior frontal gyrus 9 218 −24 45 42 −3.5127 −0.5614 0.0006

Right superior frontal gyrus 6 117 18 −9 75 −3.2381 −0.5175 0.0015

BA, Brodmann Area; VN, Voxel Number; ES, Effect Size; MNI, Montreal Neurological Institute.

FIGURE 1 | The interactive brain areas of DA pathway gene and major depressive disorder. The colored bar indicated the display window for the threshold t-value

maps. Hot color represented a higher ALFF value, while blue represented a lower ALFF value. FG_L, left fusiform gyrus; CPL_R, right cerebellum posterior lobe;

STG_L, left superior temporal gyrus; CPL_L, left cerebellum posterior lobe; IFG_R, right inferior frontal gyrus; IFG_L, left inferior frontal gyrus; CS_R, right calcarine

sulcus; SFG_L, left superior frontal gyrus; SFG_R, right superior frontal gyrus.

Partial correlation analysis (age, sex, education, and
illness durations as covariates) was performed to identify
the relationships between regional ALFF and therapeutic effect.
The significant level was set at P < 0.05.

RESULTS

Demographic and Clinical Data
Demographic and clinical data are shown in Table 2. No
significant differences were found in sex, age, and education
between MDD and HC groups.

The Interactive Brain Areas of DA-MGPS
and MDD
The significant interaction effects between diagnosis and
DA-MGPS were observed in left fusiform gyrus (FG_L),
right calcarine sulcus (CS_R), left superior temporal

gyrus (STG_L), bilateral cerebellum posterior lobe (CPL),
bilateral inferior frontal gyrus (IFG), and bilateral superior
frontal gyrus (SFG). Among these brain areas, CPL_L,
IFG_R, and CS_R had an increased ALFF, while others
had a decreased ALFF (corrected by GRF; Table 3,
Figure 1).

Themain effects of disease andDA-MGPS on the spontaneous
brain activities, as well as the effects of DA-MGPS on spontaneous
brain activities in the MDD group and the HC group were
presented as Supplementary Materials.

Correlation Analysis
The correlation analysis between the ALFF value of interactive
brain areas with 2-week HAMD reductive rate is shown in
Figure 2. We found that the ALFF of STG_L had a significant
negative correlation with 2-week HAMD reductive rate (r =

−0.211, P = 0.035; Figure 2).
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FIGURE 2 | The STG_L ALFF had a negative correlation with 2-week HAMD

reductive rate (r = −0.211, P = 0.035). ALFF_STG_L, the amplitude of

low-frequency fluctuation of left superior temporal gyrus.

DISCUSSION

We found that bilateral CPL, bilateral IFG, bilateral SFG, FG_L,
CS_R, and STG_L were both affected by the cumulative effects
of DA pathway genes and disease. Zhou et al. found that
significant interactive effects of disease × COMT rs4680 were
found in the bilateral CS, left SFG, and FG (21). Gong et
al. revealed that DA-MGPS was widely associated with the
functional connectivity of nucleus accumbens (NAc)-IFG and
NAc-STG (14). The above two studies support our findings;
however, no studies have found that DA pathway gene and
MDD interactively influence cerebellar function. Cerebellum is
previously thought to be participated only in motor functions,
while increasing evidences demonstrate that this brain area is also
involved in emotion processing and cognitive functions (22–24),
and the pathophysiology of MDD (25–27). Moreover, a meta-
analysis indicated that the posterior and lateral part were mainly
responsible for this role (28), which was consistent with ours.

In recent years, the cerebellum has also been proposed as a
part of default mode network (DMN). DMN is more active in the
resting state, while in the task state, its activities is weakened (29).
More and more researches believe that DMN plays an important
role in MDD (30, 31), while DMN activities were found to be
regulated by DA levels (32). A previous study suggested that
DRD2 was critically involved in inhibitory processes, which
underlaid the DMN (33). Interestingly, in our study, apart
from IFG and FG_L, the other brain areas belonged to DMN,
suggesting that the abnormality of DMN in MDD may also be
influenced by the DA pathway gene in addition to the disease
itself, which of course needs further exploration.

More importantly, we found that the ALFF of STG_L had
a negative correlation with a 2-week HAMD-24 reductive rate,
indicating that the spontaneous activities of STG_L was closely
related with therapeutic effect. The STG contains Heschl’s gyrus
(primary auditory cortex), planum temporale, and planum polare

(auditory association cortical areas), and plays a crucial role
in emotional processing, language processing, and auditory
memory (34), while the left side of STG is one of the most
consistently identified regions involved in the pathophysiology of
MDD (35). Zheng et al. assessed the therapeutic effect of 2-week
repetitive transcranial magnetic stimulation (rTMS) in MDD
and found a decreased functional connection degree (FCD) in
right STG; however, the changed FCD is not associated with
therapeutic effect (36). Perhaps, the left side of STG is more
closely related to the efficacy of MDD rather than the right side.

The negative correlation shows that the lower spontaneous
activity in STG_L, the better the early therapeutic effect. Wang
et al. also identified a negative correlation between the abnormal
function of STG_L and the therapeutic effect in MDD, although
they studied the effects of electroconvulsive therapy (ECT),
rather than the antidepressants and they measured the functional
connectivity density rather than ALFF (37). Meanwhile, they
also found a reduced FCD in STG_L compared to the normal
controls, which is similar to the decreased ALFF of STG_L
underlying the interactive effect of disease× gene in our findings.
Combining with the negative correlation, we speculate that the
decreased spontaneous activities in STG_L is a compensatory
mechanism that contributes to the recovery of MDD. Similarly,
Xu et al. suggested that the increase of gray matter volume
(GMV) in right STG after a series of ECT reflected the ECT-
related brain compensatory mechanisms that contribute to brain
structure recovery in MDD (38). Anyway, it is only a conjecture
that the abnormal functions or structures of STG are involved
in the compensatory mechanisms of MDD, which needs to be
further explored in the future.

This study has several limitations. First, our sample size is
small, and the control and patient groups are not fully matched;
thus, larger and more matched samples are clearly needed to
further elucidate. In addition, this is a limited analysis based
on a few selected polymorphisms that have been well studied.
Further investigation is needed to determine the effects of other
DA pathway gene polymorphisms as well. Third, the samples are
all Chinese participants, so our results cannot be extrapolated to
other ethnic groups. However, samples from the same population
are characterized by a high degree of genetic homogeneity, which
could be considered both a strength of this work.

CONCLUSIONS

In conclusion, the present study indicates that the spontaneous
activity of STG_L may be a potential biomarker of early
antidepressants’ therapeutic effect underlying the influence of
DA pathway genes. This study has the potential to significantly
contribute to our understanding of genetic variabilities in the
DA system and how DA-related polymorphisms affect the
spontaneous brain activities in MDD.
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