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Abstract
This study was conducted to identify genes that are differentially expressed in paracancerous tissue and to determine
the potential predictive value of selected gene panel. Gene transcriptome data of bladder tissue was downloaded
from UCSC Xena browser and NCBI GEO repository, including GTEx (the Genotype-Tissue Expression project) data,
TCGA (The Cancer Genome Atlas) data, and GEO (Gene Expression Omnibus) data. Differentially Expressed Genes
(DEGs) analysis was performed to identify tumor-DEGs candidate genes, using the intersection of tumor-
paracancerous DEGs genes and paracancerous-normal DEGs genes. The survival-related genes were screened by
Kaplan–Meier (KM) survival analysis and univariable Cox regression with the cutoff criteria of KM < 0.05 and cox p-
value < 0.05. The risk model was developed using Lasso regression. The clinical data were analyzed by univariate and
multivariate Cox regression analysis. Gene Ontology (GO) and KEGG enrichment analysis were performed in the DEGs
genes between the high-risk and low-risk subgroups. We identified six survival-related genes, EMP1, TPM1, NRP2,
FGFR1, CAVIN1, and LATS2, found in the DEG analyses of both, tumor-paracancerous and paracancerous-normal
differentially expressed data sets. Then, the patients were classified into two clusters, which can be distinguished by
specific clinical characteristics. A three-gene risk prediction model (EMP1, FGFR1, and CAVIN1) was constructed in
patients within cluster 1. The model was applied to categorize cluster 1 patients into high-risk and low-risk subgroups.
The prognostic risk score was considered as an independent prognostic factor. The six identified survival-related genes
can be used in molecular characterization of a specific subtype of bladder cancer. This subtype had distinct clinical
features of T (topography), N (lymph node), stage, grade, and survival status, compared to the other subtype of
bladder cancer. Among the six identified survival-related genes, three-genes, EMP1, FGFR1, and CAVIN1, were
identified as potential independent prognostic markers for the specific bladder cancer subtype with clinical features
described.

Introduction
Bladder cancer is a malignant tumor with high mor-

bidity and high mortality. The steadily-rising incidence
and prevalence make bladder cancer one of the most
common urogenital cancers in the word. There were
549,393 new cases and 199,922 deaths reported world-
wide in 20181. The most common pathological type of
bladder cancer is transitional cell carcinoma, with non-
muscle-invasive bladder cancers (NMIBCs), and muscle-

invasive bladder cancers (MIBCs). The treatment out-
comes are very different for bladder cancer patients with
MIBCs and NMIBCs2. MIBCs are usually associated with
less favorable prognosis, lower 5-year survival rates, can-
cer progression, and metastasis. Patients with NMIBCs
have much higher expected 5-year survival rate. However,
NMIBCs could progress into MIBCs3. We conducted in
silico study to improve the accuracy in prediction of 5-
year patient survival rates for both types of bladder
cancer.
Analysis of differentially expressed genes between con-

ditions is an integral part of understanding the molecular
basis of phenotypic variation in biology, including
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diseases4. Paracancerous tissue, the tissue adjacent to a
solid tumor, is often used as a histologically normal,
control sample in research studies on tumors. However, a
recent study reported that the paracancerous tissue had
quite distinct characteristics compared to either tumor
tissue or histologically normal healthy tissue, suggesting a
unique intermediate state between healthy tissue and
tumor5. Additional essential information might be
obscured when paracancerous tissue was used as a control
instead of using healthy normal tissue.
In this study, we aimed to understand the differences in

gene expression between tumor-adjacent and healthy
tissue, and to determine potential prognostic value of the
genes differentially expressed in paracancerous tissue. We
first obtained the survival-related genes from RNA
expression interaction of tumor-paracancerous DEGs
genes and paracancerous-normal DEGs genes. Subse-
quently, we classified the bladder cancer patients with six
survival-related genes by the consistent clustering algo-
rithm and Lasso cox regression. The clusters and sub-
groups of patients were systematically analyzed with their
clinicopathological features, and the difference between
subgroups was analyzed by GO and KEGG enrichment.

Results
Dataset included in the analyses
For gene transcriptome data, we analyzed a total of 411

cases of TCGA bladder cancer, 19 cases of TCGA para-
cancerous tissue, nine cases of GTEx healthy bladder, 36
cases of GEO bladder cancer, 29 cases of GEO paracancerous
tissue, and five cases of GEO healthy bladder. There were
only 345 cases of available TCGA clinical information.
Among the clinical information, the metastasis could not be
measured in more than half of the cases (176 cases). No
available clinical information on GEO data was found.

Identification of DEGs genes in bladder cancers
Using Limma and edgeR packages, 1413 tumor-

paracancerous DEGs RNA sequences and 3223
paracancerous-normal DEGs RNAs were identified in the
TCGA-GTEx dataset, and 771 tumor-paracancerous DEGs
RNAs and 2963 paracancerous-normal DEGs RNAs in the
GEO dataset. After overlapping all data, a total of 60 genes
were selected as potential tumor-DEGs genes.

The survival-related genes
The expression of six survival-related genes in the

TCGA database was shown in Fig. 1, i.e., EMP1 (epithelial
membrane protein 1), TPM1 (tropomyosin 1), NRP2
(neuropilin 2), FGFR1 (fibroblast growth factor receptor
1), CAVIN1 (caveolae associated protein 1), and LATS2
(large tumor suppressor kinase 2). The expression of the
six genes in tumor tissues was downregulated significantly
compared to the paracancerous tissue (p < 0.001).

The characteristics of two clusters
Based on the expression of the survival-related genes in

TCGA, patients were clustered into two groups by con-
sistent clustering (Fig. 2). The principal component ana-
lysis (PCA) showed that RNA expression in two clusters
was mainly specific (Fig. 3).
The clinical information of gender, age, N, T, stage, grade,

and survival status were analyzed in 345 patient cases; all of
them had a significant difference between two clusters
except gender and age (Fig. 4a). Prognostic factor M, which
was analyzed in 169 cases of patients with complete clinical
information, had no significant difference between two
clusters (Fig. 4b). By comparing the expression of survival-
related genes in cluster 1 and 2 (Fig. 4a–c), the difference in
expression of all six survival-related genes were significantly
higher in cluster 1 (p < 0.001). The overall survival rate
of cluster 2 was significantly higher than cluster 1
(p= 8.356 × 10−4, Fig. 4d).

Predictive value of the three-survival-related-gene risk
model in prognosis
With six survival-related genes for analysis, a risk model

was constructed in cluster 1 to divide patients into high-
risk and low-risk subgroups (Fig. 5a, c). The result showed
that three survival-related genes, EMP1, FGFR1, and
CAVIN1, were included in the risk model, with risk
coefficients were 0.240, 0.191, and −0.121, respectively.
The survival rates of the high-risk and low-risk subgroups
were compared, finding a significant difference in overall
survival between the two subgroups (p= 6.423 × 10−3,
Fig. 5e). The accuracy of the predictive survival model was
confirmed by the area under the curve (AUC= 0.672), as
shown in Fig. 5f.
The clinical characteristics and the expression of EMP1,

FGFR1, and CAVIN1 were also compared between the two
subgroups (Fig. 6). The subgroups cannot be distinguished by
the clinical characteristics. However, both EMP1 and FGFR1
expression in the high-risk group were significantly higher
than those in the low-risk group (p < 0.001), while CAVIN1
was less expressed in the high-risk group (p < 0.05).
The Hazard ratio (HR) of different clinical features

(with the exception of M) in the two subgroups was fur-
ther analyzed. HR of grade and its 95% confidence interval
could not be obtained because there was only high grade
in this cluster. As shown in Fig. 7a, b, the resulting
prognostic factors were estimated by univariate and
multivariate Cox regression analysis. It showed that the p
values of risk score were all <0.001, and the HR values
were >1.

GO and KEGG pathways enriched in high-risk and low-risk
DEGs genes in the cluster 1
Eleven DEGs genes were selected from the differential

gene analysis between the high-risk and low-risk

Cheng et al. Cell Death Discovery            (2020) 6:58 Page 2 of 11

Official journal of the Cell Death Differentiation Association



subgroups of the cluster 1 (Fig. 8a). After the functional
annotation of the DEGs genes, a list of GO and KEGG
pathway terms was enriched (Fig. 8b). However, only two
GO terms, i.e., “GO:0045786~negative regulation of cell
cycle” and “GO:0070062~extracellular exosome”, were
estimated to be with a p-value < 0.05.

Discussion
Bladder cancer is one of the most common urogenital

cancers in the word. It carries a high risk of morbidity and
mortality and is one of the main causes of death. It is
acknowledged that NMIBCs has a higher survival rate
than MIBCs, and the survival rate increases when it

progresses to MIBCs3. Most research focused on bladder
cancer has been carried out using paracancerous tissue as
normal control. However, it has been suggested that some
additional information might be obscured when using
paracancerous tissue as a control5.
The goal of our study was to reveal the potential value

of paracancerous tissue in predicting the prognosis of
bladder cancer patients. Sixty DEGs were identified in
paracancerous tissue comparing to both, tumor tissue and
normal control. Since the GEO data had no clinical
information, the survival analysis and clinical correlation
analysis were conducted in TCGA data. Lastly, we iden-
tified six survival-related genes (EMP1, TPM1, NRP2,

Fig. 1 Expression of survival-related genes in bladder cancer. a Heatmap of the expression of six survival-related genes in paracancerous and
tumor tissue of bladder cancer. Red color represents a high expression of the gene, while the green color represents low expression. ***p < 0.001.
b The violin diagram showed the differential expression of six survival-related genes in bladder cancer and paracancerous tissue. Blue color
represents paracancerous tissue, and the red color represents the bladder tumor.
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FGFR1, CAVIN1, and LATS2) and used this gene-set to
group the bladder cancer patients into two clusters, while
three survival-related genes (EMP1, FGFR1, and
CAVIN1) were used to estimate the prognostic risk for
the patients grouped in cluster 1.
All six selected survival-related genes (EMP1, TPM1,

NRP2, FGFR1, CAVIN1, and LATS2) were reported to
play a positive role in disseminating cancer cells or
invasion in many kinds of cancers6–11. EMP1 belongs to
the peripheral myelin protein 22-kDa (PMP22) gene
family. It promotes glioblastoma progression through the
PI3K/AKT/mTOR signaling pathway6, and the unusual
expression of EMP1 has been revealed in most tumor

types12. TPM1 gene is a member of a tumor-associated
protein family (the tropomyosin family) - it plays an
important role in tumor-specific variations of actin fila-
ment aggregation via stress fiber modulation and actin
cytoskeleton modification7. LATS2 gene belongs to the
LATS tumor suppressor family. It encodes a serine/
threonine protein kinase, reported to be involved in
Hippo signaling pathway11. Similarly, the essential
caveolar gene CAVIN1 is also involved in the Hippo
pathway10. It appears the Hippo signaling pathway might
be associated with the particular cluster 1 of bladder
cancer. However, further experimental verification is
needed.

Fig. 2 Consistent cluster analysis of bladder cancer. a The relative change in area under the cumulative distribution function (CDF) curve from 2
to 9 of k. b The consensus CDF plot corresponding to the consensus matrices when k is between 2 and 9. c The correlation between groups when k
is equal to 2. d The distribution of samples when k is between 2 and 9.
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Moreover, NRP2 and FGFR1 expressions were explicitly
associated with cancer survival in bladder cancer13,14.
NRP2 is a member of the membrane-associated neuro-
pilin family and has been reported to be expressed during
macrophage differentiation and facilitated tumor growth8.
The NRP2 gene is reported as a prognostic indicator for
reduced survival in bladder cancer patients15. FGFR1 is a
member of the fibroblast growth factor receptor (FGFR)
family, and is known to be involved in the progression of
different cancer types, including bladder cancer9.
In our analysis, all six survival-related genes were expressed

at significantly lower levels in tumor tissue (p< 0.001, Fig. 1).
The PCA showed that RNA expression in these two groups
were mainly specific (Fig. 3). All six survival-related genes were
significantly higher expressed in cluster 1 (p< 0.001, Fig. 4a–c).
Also, all the clinicopathological features (with the exception of
M, gender, and age) were significantly different between the
two clusters (Fig. 4a, b). It indicates that this kind of clustering
can distinguish bladder cancer in the aspects of N, T, stage,
grade, and survival status. Based on the survival curve of the
two clusters, we concluded that patients in cluster 1 had lower
survival rates (Fig. 4d). The six survival-related genes, which
were the basis for clustering, played a negative role in the
survival of patients. This is in accordance with the previously
reported studies of these genes6–11.
We intended to construct the risk models including

survival-related genes for each of the two clusters, however,
we successfully outlined the risk model only for the cluster 1,
in which EMP1, FGFR1, and CAVIN1 were included (Fig. 5a,

c). It was not feasible to construct the risk model for cluster 2
because we could not define the model by probing any of the
six survival-related genes (Fig. 5b, d). In the risk model for
cluster 1, the low-risk subgroup had significantly better
survival than the high-risk subgroup (Fig. 5e), and the pre-
diction efficiency of the curve was good (Fig. 5f). The
expressions of EMP1, FGFR1, and CAVIN1 were related to
the risk model; however, this risk model did not corelate with
the clinical features (Fig. 6). Significantly higher expressions
of EMP1 and FGFR1 (p < 0.001) and relative lower expres-
sion of CAVIN1 (p < 0.05) in the high-risk subgroup sug-
gested that the risk was associated with altered expression of
these three genes. The results of univariate and multivariate
Cox regression analysis indicated that the risk score obtained
by our model can be used as an independent prognostic
factor for overall survival in a specific cluster of bladder
cancer patients (Fig. 7). This independent prognostic factor
was not related to the clinicopathological features of stage,
grade, gender, age, survival status, T, N, or M.
To explore the difference between the low-risk subgroup

and the high-risk subgroup, we identified their DEGs and
uploaded the DEGs to the DAVID tool for a GO and KEGG
pathway enrichment analysis. It appears that the risk score
was related to the negative regulation of cell cycle and the
component of extracellular exosome. NR4A1 (nuclear
receptor subfamily 4 group A member 1) and HPGD (15-
hydroxyprostaglandin dehydrogenase) were involved in the
negative regulation of cell cycle. While the component of
extracellular exosome were associated to the expression
levels of TMPRSS2 (transmembrane serine protease 2),
KRT13 (keratin 13), IGF2 (insulin-like growth factor 2),
MFAP4 (microfibril associated protein 4), GDF15 (growth
differentiation factor 15), and HPGD.
Among these enriched genes, IGF2 is reported to be fre-

quently overexpressed in bladder cancer16. Inhibition of the
gene expression of IGF2 and IGF2-mediated PI3K/AKT/
mTOR signaling pathway could suppress the development of
bladder cancer17. DNA methylation of GDF15 was sig-
nificantly high in bladder cancer. Therefore, this gene could
be used as an epigenetic biomarker to identify bladder can-
cer18. DNA demethylation of GDF15 would upregulate its
expression, which led to a suppression of cell proliferation,
invasion, and tumorigenesis in bladder carcinoma cells19. It
was also reported that methylation of KRT13 had a close
relationship with high-grade non-invasive bladder cancer20.
That is to say, lower expressions of IGF2, GDF15, and
KRT13 was associated with lower cell proliferation, invasion,
and tumorigenesis of bladder cancer. These findings were
consistent with our results, in which IGF2, GDF15, and
KRT13 expression were significantly decreased in the low-
risk subgroup. Interestingly, it was reported that an increase
of HPGD would suppress cell proliferation and invasion in
bladder cancer21, which implied that patients with a high
expression of HPGD might have a better survival rate.

Fig. 3 PCA of 2 clusters on the total gene expressions. PCA was
performed in TCGA RNA-Seq FPKM data of bladder cancer. The
scattered dots showed the distribution of genes in the 2 cluster
groups. Red dots represented cluster 1 group, while green dots
represented cluster 2 group.
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However, in our analysis, an increased expression of HPGD
was found in the high-risk subgroup, with a worse overall
survival rate.
The current study has identified promising models

for characterization of a specific subtype of bladder
cancer and independent estimation of the prognostic

risk in this particular subtype. However, the general-
izability of these results is subject to evident limita-
tions. One limitation of this study is that our sample
size for normal control was too small, some potential
association could not be revealed. Another source of
limitation is that we did not have experimental

Fig. 4 Comparison of clinical characteristics and expression of survival-related genes between 2 cluster groups of patients divided by
consistent cluster analysis. a The clinicopathological features, which included N, T, stage, grade, gender, age, and survival status, and the
expressions of survival-related genes distributed in the heatmap of 2 defined clusters of 345 patients. **p < 0.01, ***p < 0.001. b The
clinicopathological features of M and the heatmap of survival-related genes distributed in the two defined clusters of 169 patients. c The violin
diagram shows the comparison of the median values of six survival-related genes in 2 clusters of bladder cancer, and the location of the white dots
represented the median value of expressions. d Comparison of overall survival rates between 2 cluster groups of bladder cancer.
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Fig. 5 (See legend on next page.)
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Fig. 5 Construction of the risk model in 2 clusters and its survival verification. The risk score model was constructed using the LASSO regression
analysis along with 10-fold cross-validation. a Processes of LASSO Cox model fitting in cluster 1 group. b Processes of LASSO Cox model fitting in
cluster 2 group. The LASSO coefficient of each gene associated with the overall survival was represented as a curve. c The partial likelihood deviance
with changing of log (λ) in cluster 1 was plotted. d The partial likelihood deviance with changing of log (λ) in cluster 2 was plotted. The number
corresponded to the point with the smallest cross-verification error was the gene numbers included in the Lasso regression risk model. e The overall
survival rate curves of high-risk subgroup and low-risk subgroup. f The ROC curve showed the accuracy of the predictive survival model by the area
under the curve (AUC).

Fig. 6 Comparison of clinicopathological characteristics and expression of EMP1, FGFR1, and CAVIN1 between the high-risk and low-risk
subgroups. a The clinicopathological features, which included N, T, stage, grade, gender, age, and survival status, and the expressions of EMP1,
FGFR1, and CAVIN1 distributed in the heatmap of 2 risk subgroups of 198 patients. **p < 0.01. b The clinicopathological features of M and the
expressions of EMP1, FGFR1, and CAVIN1 distributed in the heatmap of 2 risk subgroups of 78 patients.
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verification for the findings in this study. Therefore,
further research with larger sample sizes of normal
control and more experiments is warranted.
While there are limitations in our study, there are also

undoubted strengths. We do believe that this set of six
identified survival-related genes could be a useful tool for
identification of a particular subtype of bladder cancer.
This subtype of bladder cancer had quite different clinical
features of T, N, stage, grade, and survival status from the
other subtype of bladder cancer. The survival rate of
patients was negative related to the expressions of the six
survival-related genes. In this particular subtype, the
prognosis of bladder cancer can be independently eval-
uated by a risk model composed of EMP1, FGFR1, and
CAVIN1 genes. The high-risk and low-risk subgroups,
which were classified by the 3-gene prognostic factor
model, might have a different biological process on the
negative regulation of cell cycle and a different cellular

component in extracellular exosome. These might be the
reason account for their different prognostic factors.

Materials and methods
Data preparation
The Fragments per Kilobase of transcript per Million

mapped reads (FPKM) for the bladder cancer RNA-Seq data
from TCGA and GTEx were downloaded from the UCSC
Xena browser platform22. The latest clinical data of TCGA
was downloaded from GDC (Genomic Data Commons), and
patients with unavailable clinical information were excluded.
After combining the data from GTEx and TCGA, genes were
selected by FPKM> 0 for further analysis.
GEO RNA-Seq raw data of bladder cancer (GSE133624)

and normal healthy bladder in GSE120795 were down-
loaded from the NCBI GEO SRA database. After quality
control for the sequence data, raw counts were obtained by
alignment to “Homo_sapiens.GRCh38.96.gtf” by the read-
count program featureCounts23. Datasets were merged
according to the Ensembl IDs. The filtering criteria for the
merged dataset were raw counts > 0 and CPM> 1. Next, the
gene annotation was performed with “hsapiens_gen-
e_ensembl” dataset by the biomaRt R package24,25.

Analysis of differentially expressed genes
The Limma (Linear Models for Microarray Data) R

package26 and edgeR (Empirical Analysis of Digital Gene
Expression Data in R) R package27,28 were used to identify
the tumor-paracancerous DEGs genes and paracancerous-
normal DEGs genes respectively in the FPKM and count
data. In the screening, the FDR value < 0.05 and |logFC | > 1
cutoff criterion was applied. Tumor-DEGs genes were
obtained by overlapping the tumor-paracancerous DEGs
genes and paracancerous-normal DEGs genes from TCGA-
GTEx and GEO datasets. The high-low risk DEGs genes
(DEGs genes between high-risk subgroup and low-risk
subgroup) were also identified by the Limma package, using
FDR value < 0.05, and |logFC | > 1 cutoff criteria.

Kaplan–Meier survival analysis and univariable Cox
regression
Patient’s survival time and status, combined with

tumor-DEGs genes, were used for the KM survival ana-
lysis and univariable Cox regression, performed with
survival R package29,30. The cutoff criterion was set to
KM < 0.05 and cox p-value < 0.05 for screening of the
survival-related gene at overall survival.

Clustering of patients
ConsensusClusterPlus R package31 was executed to

evaluate the stability of clustering by the consistent clus-
tering algorithm. Small clusters were excluded in the
clustering data. The final clustering number of samples
was determined according to the slow growth rate of

Fig. 7 The independent prognostic analysis on risk score and
clinicopathological features. a The hazard ratio (HR) and 95%
confidence interval of risk score and all clinical features were
calculated by univariate regression analysis. b The hazard ratio (HR)
and 95% confidence interval of risk score and all clinical features were
calculated by multivariate regression analysis. The factor in the analysis
could be considered as an independent prognostic factor when both
p values were <0.05 in a, b.
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cumulative distribution function (CDF) value and high
correlation within the group.

Principal component analysis
PCA for all Tumor-DEGs genes was performed by

Limma R package26. The ggplot2 R package32 was used to
visualize the results.

Lasso regression
For the six survival-related genes, the Lasso regression

algorithm was executed for each of the two patient clus-
ters to develop a potential risk model and to evaluate the
risk characteristics by using the glmnet R package33. The
risk genes were identified among the survival-related
genes through the minimum standard, and their coeffi-
cients were calculated. The best penalty parameter λ,
related to the minimum ten times cross-verification in the
training set, was selected to obtain the risk score. Con-
sistent with the median risk score, patients were further
divided into high-risk and low-risk subgroups. Using the
survivalROC R package34, the area under the Receiver
Operating Characteristic (ROC) curve was calculated to
detect the accuracy of the predictive survival model35.

Analysis of the risk characteristics and prognosis in the
cluster 1
The survival analysis was performed and the survival

curves in different groups were compared by the log-rank
test. The prognostic factors (i.e., stage, grade, gender, age,
survival status, T, N, and M) and the risk genes in those

groups/subgroups were investigated and compared by the
χ2 test. The potential independent prognostic factor was
explored in stage, gender, age, TNM (topography, lymph
node, and metastases) classification, and risk score by
univariate and multivariate Cox regression analysis. These
programs were executed using the survival R package29,30.

Enrichment analysis
Biological function of high-/low-risk DEGs genes of

cluster 1 was evaluated with GO and KEGG enrichment
analyses, performed using DAVID Functional Annotation
Bioinformatics Microarray Analysis method (http://david.
abcc.ncifcrf.gov/home.jsp)36,37.

Statistical analysis
The expression of survival-related genes in tumor tis-

sues and paracancerous tissues was compared by one-way
ANOVA. The clinical characteristics and survival-related
genes of different groups were compared by the χ2 test.
Kaplan–Meier method was used for the bilateral loga-
rithmic rank test in overall survival analysis. All tests were
two-sided, and p values < 0.05 were considered statisti-
cally significant. All the statistical analyses in this study
are implemented by R v3.6.1 (https://www.r-project.org/).
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