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Abstract

Several determinants are suspected to be causal drivers for new cases of COVID-19 infec-

tion. Correcting for possible confounders, we estimated the effects of the most prominent

determining factors on reported case numbers. To this end, we used a directed acyclic

graph (DAG) as a graphical representation of the hypothesized causal effects of the deter-

minants on new reported cases of COVID-19. Based on this, we computed valid adjustment

sets of the possible confounding factors. We collected data for Germany from publicly avail-

able sources (e.g. Robert Koch Institute, Germany’s National Meteorological Service, Goo-

gle) for 401 German districts over the period of 15 February to 8 July 2020, and estimated

total causal effects based on our DAG analysis by negative binomial regression. Our analy-

sis revealed favorable effects of increasing temperature, increased public mobility for essen-

tial shopping (grocery and pharmacy) or within residential areas, and awareness measured

by COVID-19 burden, all of them reducing the outcome of newly reported COVID-19 cases.

Conversely, we saw adverse effects leading to an increase in new COVID-19 cases for pub-

lic mobility in retail and recreational areas or workplaces, awareness measured by searches

for “corona” in Google, higher rainfall, and some socio-demographic factors. Non-pharma-

ceutical interventions were found to be effective in reducing case numbers. This compre-

hensive causal graph analysis of a variety of determinants affecting COVID-19 progression

gives strong evidence for the driving forces of mobility, public awareness, and temperature,

whose implications need to be taken into account for future decisions regarding pandemic

management.

Introduction

As the COVID-19 pandemic progresses, research on mechanisms behind the transmission of

SARS-CoV-2 shows conflicting evidence [1–3]. While effects of mobility have been extensively

discussed, less is known on other factors such as changing awareness in the population [4–6]

or the effects of temperature [7–9]. A limiting factor in many studies is the lack of a causal
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approach to assess the causal contributions of various factors [10]. This can lead to distorted

estimates of the causal factors with observational data [10–12].

With COVID-19, we find ourselves in a situation in which information on the causal con-

tribution of various influencing factors in the population is urgently needed to inform politi-

cians and health authorities. On the other hand, trials cannot be carried out for obvious ethical

and legal reasons. Therefore, when assessing the effects of determinants of SARS-CoV-2

spread, special attention must be paid to strategies for the selection of confounding factors.

Another problem with assessing the effects of various determinants of SARS-CoV-2 spread

is the heterogeneity of the countries and regions examined for example in the Johns Hopkins

University (JHU) COVID-19 database [13]. The comparison of time series of case numbers

from different countries and observational periods can be strongly distorted by different fac-

tors like testing capacities and regional variations.

Our objective is to provide valid estimates of the effects of the main drivers of the pandemic

with a causal graph approach. We conducted a scoping review of the available studies regard-

ing signaling pathways and determinants of the spread of SARS-CoV-2 infections and the

reported new COVID-19 cases. Then we integrated the current findings into a directed acyclic

graph for the progress of the pandemic at the regional level. Using the resulting model and the

do-calculus we found identifiable effects without blocked causal paths whose effects can be

analyzed with observational data [14]. We used regional time series data of all German districts

(401) from various publicly available sources to analyze these questions on a regional level.

Germany is a good choice in this regard, because it has ample data on contributing factors

on the regional level and has had high testing and treatment capacities from early on in the

pandemic.

Causal model

We used a directed acyclic graph (DAG) [11, 12] as a tool to analyze the causal relationships

between several exposures and SARS-CoV-2 spread. To get an overview on published associa-

tions, a scoping review was conducted from 20th to 22nd of May 2020 within Pubmed and

Google scholar. Restrictions were applied to English and German language and the publication

date in the last one year. The following search terms were applied to abstracts and title in

Pubmed (“COVID-19” OR “COVID19” OR “Corona” OR “Coronavirus” OR “SARS-CoV-2”)

and connected separately in each case with the exposure variables (“mobility”, “public aware-

ness”, “awareness”, “google trends”,“ambient temperature”, “temperature”). For “mobility”,

we analyzed n = 8 studies, N = 103 were scanned in Pubmed, together with the first ten pages

(100 results) in Google scholar (“awareness”/“public awareness”/“google trends” n = 9,

N = 215; “temperature”/“ambient temperature” n = 16, N = 235). We integrated these findings

where possible into the construction of our DAG, which can be seen in Fig 1.

A number of studies report a strong association of mobility restrictions on the number of

new COVID-19 cases: Restrictive measures (e.g. “stay-at-home” orders, travel bans, or school

closures) are shown to possibly reduce the COVID-19 incidence [2, 15–21]. However, some

studies point out the combination of various non-pharmaceutical interventions (NPIs) is deci-

sive to prevent new infections [22, 23].

Google Trends [24] data can be used as a tool to get insights into public interest (aware-

ness) in the coronavirus disease. Several recent studies imply a connection of relative search

volumes (RSV) indices and reported new COVID-19 cases [4–6, 25–30]. Some search terms

e.g. “COVID-19” or “coronavirus” predated newly infected cases/total number of cases by

roughly 7 to 14 days for different countries [4–6, 26]. Additionally, we acknowledged that
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individual risk-aware behavior might be a reaction to the current COVID-19 burden (mea-

sured as reported cases at the day of exposure).

Mixed evidence is available regarding the effect of temperature: On the one hand several

papers report an association between increase in temperature and decrease in newly infected

COVID-19 cases [7–9, 31–36]. On the other hand, also the opposite has been found [37, 38].

Some studies found no association at all [22, 39–42]. It should be noted that few studies con-

sidered other confounding variables than meteorological ones (especially age and population

density among others [22, 36, 39]). In addition, the transferability of results between different

climate zones is questionable. To avoid possible bias caused by weather variables other than

temperature, we included rain, wind, and humidity in our model.

When investigating causal determinants of SARS-CoV-2 infections, a number of confound-

ers have to be considered. Well-known risk factors for SARS-CoV-2 as well as for other infec-

tions are demographic factors such as age, gender, socio-economic status (SES), population

density, and foreign citizenship/ethnicity [13, 43, 44]. In Germany along with other countries

(i.e. Brazil, USA, or the UK), populist parties or politicians and their electorate tend to be more

Fig 1. DAG of determinants of reported COVID-19 cases on the district level. Unobserved variables are light gray,

variables marked with an asterisk (�) are confounded by weekday/holiday.

https://doi.org/10.1371/journal.pone.0237277.g001
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sceptical about effects of containment measures than the other part of the electorate [45, 46].

Therefore we considered both “right-wing populist party votes” and “voter turnout” as possi-

ble confounders. Public health interventions were also taken into account (contact restrictions,

school closures etc.), as their implementation showed strong correlations with controlling the

spread of SARS-CoV-2 [22, 23, 47]. To avoid bias due to reporting delay of case numbers we

had to include weekday and German holidays. We included some unobserved variables in our

DAG (e.g. “Herd immunity”), too. Please note that “Exposure to SARS-CoV-2” is itself an

unobserved variable: German case numbers are reported with delay after date of exposure and

symptom onset. Exposure to the virus should not be confused with the formal exposure vari-
ables of the DAG.

Materials and methods

Data

We collected and aggregated data on reported COVID-19 cases, regional socio-demographic

factors, weather, and general mobility on district and state level in Germany for the period of

15 February 2020 to 8 July 2020. Our observation period for the outcome consisted of all dates

from 20 February 2020 to 8 July 2020 (T = 140), since we used a lag of 5 days for all confound-

ers. We did not exclude any states or districts (K = 401). We analyzed the daily reported num-

ber of new cases as outcome (K � T = 56 140 observations). The set of possible predictors was

derived from our causal DAG (see Table 1 and Fig 1). Due to modelling and data limitations,

some of the predictors were unobserved or were modelled as a construct consisting of several

variables. For our causal graph analysis, we computed adjustment sets separately for all

observed exposures within the DAG (if the respective exposure was identifiable within the

DAG causal analysis framework).

Variables. We downloaded German daily case numbers on district level reported by Rob-

ert Koch Institute (RKI, [48]) and aggregated them by date. The number of daily active cases

for day d was derived by subtracting the total number of reported cases on day d and day d
− 14 (14 days as a conservative estimate for the infectious period, which corresponds here to

the required quarantine time in Germany).

To assess the mobility of the German population, we used data publicly available on Ger-

man state level from Google [49]. Measurements are daily relative changes of mobility in per-

cent compared to the period of 3 January 2020 to 6 February 2020. Missing values (25 out of

13 488) were imputed with value 0 and the state level measurements were passed onto districts

within the corresponding state. Google mobility data was available for six different sectors of

daily life (“retail and recreation”, “grocery and pharmacy”, “parks”, “transit stations”, “work-

places”, “residential”) which means that “mobility” is a construct consisting of several vari-

ables. All variables but “residential” mobility are relative changes of daily visitor numbers to

the corresponding sectors compared to the reference period. “Residential” mobility is the rela-

tive change of daily time spent at residential areas. The six mobility variables showed high

correlations among each other and with other variables. To reduce multicollinearity, we trans-

formed them by principal component analysis (PCA) into six uncorrelated principal compo-

nents which were used in place of the original variables.

The notion of awareness in the population of COVID-19 describes the general state of alert-

ness about the new infectious disease. As such, it was hard to measure directly. As a proxy, we

used the relative interest in the topic term “corona” as indicated by Google searches. The daily

data was available on state level [24] and passed onto district level. As a second proxy for

awareness, we used the daily reported number of COVID-19 cases on the day of the exposure:
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Since media reported case numbers prominently, we assumed that this could reflect individual

awareness, too.

We constructed daily weather from four variables (“temperature”, “rainfall”, “humidity”,

“wind”). Weather data was downloaded from Deutscher Wetterdienst (DWD, [50]) for all

weather stations in Germany below 1000 meters altitude with daily records for our observation

period. District level daily weather data was aggregated per district by averaging the data from

the three nearest weather stations (which includes weather stations inside the district). Missing

values were imputed with mean values (n = 59 for wind).

The reported number of COVID-19 cases varied strongly by day of the week. Thus, we

included “weekday” as a categorical variable. Similarly, the reported cases and the exposure

to the virus were affected by official holidays. Within the observation period, this included

Table 1. Observed model variables.

Variable Dynamics Level Type Unit/comment Source

Weekday daily national categorical Sat through Thu as six binary variables, Fri as baseline -

Holiday (report) daily national binary - -

Holiday (exposure) daily national binary - -

Mobility

Retail and recreation daily state numeric percent change compared to reference period Google [49]

Grocery and pharmacy daily state numeric percent change compared to reference period Google [49]

Parks daily state numeric percent change compared to reference period Google [49]

Workplaces daily state numeric percent change compared to reference period Google [49]

Residential daily state numeric percent change compared to reference period Google [49]

Transit stations daily state numeric percent change compared to reference period Google [49]

Awareness

Searches corona daily state numeric percent relative to other states and observation period Google [24]

COVID-19 burden daily district numeric reported cases on day of exposure RKI [48]

Weather

Rainfall daily district numeric mm (l/sqm) DWD [50]

Temperature daily district numeric ˚C DWD [50]

Humidity daily district numeric relative humidity (%) DWD [50]

Wind daily district numeric m/s DWD [50]

Interventions

Ban of mass gatherings daily national binary - -

School and kindergarten closures daily state numeric 0 for no closure, 1 for full closure, 0.5 for partial reopening -

Contact restrictions daily national binary - -

Mandatory face masks daily district binary - IZA [52]

Socio-demographic

Age constant district numeric 2 variables: share of population > = 65 years & <18 years INKAR [51]

Gender constant district numeric share of female population INKAR [51]

Population density constant district numeric population per sqkm INKAR [51]

Foreign citizens constant district numeric 2 variables: share of foreign citizens & of population seeking refuge INKAR [51]

Socio-economic status constant district numeric share of households with low income INKAR [51]

Turnout constant district numeric voter turnout in last election INKAR [51]

Right-wing populist party votes constant district numeric share of votes for AfD in last election INKAR [51]

Nursing homes constant district numeric number of nursing (retirement) homes INKAR [51]

Case numbers

Reported new cases of COVID-19 daily district numeric - RKI [48]

Active cases daily district numeric active cases on day of report RKI [48]

https://doi.org/10.1371/journal.pone.0237277.t001
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among others Good Friday, Easter Monday, and Labor Day. To correct for effects of these

days, we included two variables in the model, “Holiday (report)” (indicates if the day of the

report was a holiday, because governmental health departments were less likely to be on full

duty) and “Holiday (exposure)” (indicates if the day of exposure to the virus was a holiday,

because the population behaves differently on holidays).

For different official and political interventions on a daily basis and the district level we

used one-hot encoded daily variables, i.e. ban of mass gatherings, school and kindergarten clo-

sures and their gradual reopening, contact restrictions, and mandatory face masks for shop-

ping and public transport.

We included several social, economic, and demographic factors on the district level with

direct or indirect influence on the risk of exposure to SARS-CoV-2 in our analysis. All are

readily available from INKAR database [51]. We used the share of population that is 65 years

or older and the share of population that is younger than 18 years (Age), the share of females

in population (Gender), the population density, the share of foreign citizenships and the share

of the population seeking refuge (Foreign citizenship), the share of low-income households

(Socio-economic status), voter turnout, share of right-wing populist party votes, and the num-

ber of nursing (retirement) homes.

All continuous variables but the outcome “Reported new cases of COVID-19” and the offset

“Active cases” were centered and scaled by one standard deviation for numerical stability,

while we left binary variables as-is. After estimating the effects of variables, we re-scaled con-

tinuous variables’ effects to their original scale. Additionally for mobility variables, we re-trans-

formed the effects of the principal components to the original mobility variables. Furthermore,

we lagged the effect of all variables (but outcome, offset, and the non-dynamic socio-demo-

graphic variables) by 5 days (optimal lag found by cross-validation) which means that we

assumed that their effects on the outcome will be visible after 5 days.

Methods

Causal analysis with DAG and adjustment sets. We used a directed acyclic graph as a

graphical representation of the hypothesized causal reasoning that leads to exposure to the

SARS-CoV-2 virus, onset of COVID-19, and finally reports of COVID-19 cases. We use the

terms “causal effect” or “causal relationship” for effect estimates that are based on this causal

graph framework. Every node vi in the graph is the graphical representation of an observed or

unobserved variable xi, a directed edge eij is an arrow from node vi to vj that implies a direct

causal relationship from variable xi onto variable xj. The set of all nodes is denoted by V, the

set of all edges by E, as such, the complete DAG is the tuple G = (V, E). The seminal works of

Spirtes and Pearl [53, 54] introduce the theory of causal analysis, do-calculus, and how to ana-

lyze a DAG to estimate the total or direct causal effect from a variable xi onto a variable xj. The

direct effect is the effect associated with the edge eij only (if it exists), while the total effect takes

indirect effects via other paths from vi to vj into account, too. Here we estimated total effects

only, since most of our variables were not hypothesized to have a direct effect on the reported
number of new COVID-19 cases. In contrast to prediction tasks, where one would include all

variables available, it is actually ill-advised to use all available variables to estimate causal

effects, due to introducing bias by adjusting for unnecessary variables within the causal DAG.

This is why we need to identify a valid set of necessary variables (an adjustment set) to estimate

the proper causal effect [54]. The “minimal adjustment set” [55] is a valid adjustment set of

variables that does not contain another valid adjustment set as a subset. However, identifying a

minimal adjustment set might not be enough to reliably estimate the causal effect. Thus, we
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identified the “optimal adjustment set” [56] as the set of variables which is a valid adjustment

set while having the lowest Akaike information criterion (AIC).

We analyzed the DAG from Fig 1 with the R Software [57] and the R packages dagitty
(formal representation of the graph and minimal adjustment sets [12]) and pcalg (for find-

ing an optimal adjustment set [58]). For the defined exposures and the outcome “Reported

new cases of COVID-19”, we computed the minimal and optimal adjustment sets. Since it was

possible that these sets contained unobserved variables that needed to be left out of the regres-

sion model, we chose the valid set with the lowest AIC (see next section) to estimate the final

total causal effect from exposure to outcome.

Regression with negative binomial model. We can estimate the causal effect from expo-

sure to outcome by regression [54]. Since the outcome “Reported new cases of COVID-19” is a

count variable, one should not employ a linear regression model with Gaussian errors, but

instead we assumed a log-linear relationship between the expected value of the outcome Y
(new cases) and regressors x, as well as a Poisson or negative binomial distribution for Y:

logðE½Yjx�Þ ¼ aþ
X

i2S

bi � xi; ð1Þ

where α is the regression intercept, S is the set of adjustment variables for the exposure i�

including the exposure variable itself, βi are the regression coefficients corresponding to the

variables xi. As such βi� is the total causal effect from exposure variable xi� on the outcome Y.

The Poisson regression assumes equality of mean and variance. If this is not the case one

observes so-called overdispersion (the variance is higher than the mean), this indicates one

should use regression with a negative binomial distribution instead to estimate the variance

parameter separately from the mean.

We needed to account for the fact that our outcome is not counted per time unit (one day)

only, but depends on the number of active COVID-19 cases: Holding all other variables fixed,

the number of new cases Y is a constant proportion of the number of active cases A. This was

modeled by including an offset log(A + 1) in the regression model Eq (1):

logðE½Yjx�Þ ¼ aþ logðAþ 1Þ þ
X

i2S

bi � xi

, log
E½Yjx�
Aþ 1

� �

¼ aþ
P
bi � xi ð2Þ

,
E½Yjx�
Aþ 1

¼ expðaÞ �
Y

expðbiÞ
xi : ð3Þ

Here we added a pseudocount “+1” to ensure a finite logarithm and avoid division by 0.

One can interpret the model as approximating the log-ratio of new cases and active cases by

a linear combination of the regressor variables in Eq (2). If all variables xi are centered in Eq

(3), we have for the baseline 8i xi ¼ 0) E½Yjx ¼ 0� ¼ expðaÞ � ðAþ 1Þ. In other words, the

exponentiated intercept is the baseline daily infection rate (how many people does one infected

individual infect in one day). If we hold all variables xi fixed (e.g. at baseline 0) in Eq (3) but

now increase the exposure variable xi� = 0 by one unit to xi� + 1 = 0 + 1, we have

E½Yjx0� ¼ expðaÞ � ðAþ 1Þ � expðbxi�þ1

i� Þ
Y

i6¼i�
expðbiÞ

0

¼ expðaÞ � ðAþ 1Þ � expðbi� Þ;
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which means the exponentiated coefficient βi� describes the rate change of the outcome by one

unit increase of the exposure.

In practice, given observations of Y and x we estimate the regression coefficients α and βi by

maximum likelihood [59]. Our observational measurements are ykt and xikt, where k indicates

the corresponding district and t the date of measurement.

We conducted a log-linear regression (function glm with family = poisson() for

Poisson regression, and glm.nb from the MASS package for the negative binomial regression

[60]) for the full data set to assess general model adequacy and to estimate the θ parameter of

the negative binomial. The proper lag between exposures and outcome was found by 10-fold

cross-validation on different lags between 1 and 20 days. Model diagnostics on the final full

model did not show severe problems with model assumptions (linearity, distribution of residu-

als, independence of observations). Analysis of variance inflation factors revealed some prob-

lems with multicollinearity. To reduce the effects of multicollinearity, first we transformed the

highly correlated mobility variables by PCA as described above. Second, we used a ridge

regression approach [61], which is a regularization method that shrinks regression coefficients

and alleviates the effect of correlation between variables on their respective regression coeffi-

cients. Furthermore, regularized regression allows for better fits on unseen data, thus prevent-

ing overfitting the data, too. The hyper-parameter λ of the ridge regression was chosen by

10-fold cross-validation, where the folds were constructed from random subsets of the 401 dis-

tricts. We used this hyper-parameter with the cv.glmnet function from the R package

glmnet [62] with family = negative.binomial(theta) and chose the λ value

within one standard deviation from the minimal λ as regularization hyper-parameter. After-

wards, we calculated the effects of separate exposures on the outcome. For every exposure, we

analyzed the different valid adjustment sets given by analysis of the causal DAG (i.e. the mini-

mal and optimal adjustment sets). Then, we first checked if the respective set included unob-

served variables. If this was the case for the optimal adjustment set, we discarded the

unobserved variables from the set and checked if it was still a valid adjustment set (function

gac in package pcalg [63]). If a minimal adjustment set contained unobserved variables, we

discarded the whole set. If no valid adjustment set for a given exposure was available, we con-

cluded that the effect of this exposure was unidentifiable within our causal graph. We used the

function glmnet with the parameters θ and λ as above on every remaining valid adjustment

set as regressors (that is, we applied ridge regression) and calculated the Akaike information

criterion (AIC) for this model/set of regressors. Finally, for every exposure, we decided for the

model/adjustment set (if available) with the lowest AIC. We report the exponentiated esti-

mated coefficients for the separate exposures on their original scale.

Results

Descriptive statistics for the included variables are presented in Table 2.

In the observational period, the number of daily reported COVID-19 cases increased till the

end of March/beginning of April and continually decreased afterwards till the beginning of

June 2020 with a slight increase and decrease afterwards (Fig 2A). On the other hand, the (log-

)ratio of reported cases over active cases decreased steeply till the mid of April and increased

steadily afterwards with a slight decrease close to the end of the observation period (Fig 2B).

Both figures examplify a considerable variation among the districts (light blue points are indi-

vidual district’s data).

In Germany, we observed a rebound in mobility after the initial political measures, reduc-

tions in incident cases were associated with a diminishing public interest in COVID-19, and

temperatures were overall increasing (cf. Fig 3); with correlations between temporal
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progression and mobility in retail and recreation rA,B = 0.02, awareness (“Searches corona”)

rA,C = -0.3, and temperature rA,D = 0.8.

Main results

We list the results of our causal analysis for the effects of different exposure variables in

Table 3. The estimates are multiplicative rates of increase/decrease for a one unit increase of

the respective variable: Values above 1 lead to an increase, below 1 to a decrease of the infec-

tion rate. To put these estimates into perspective, Fig 4 shows the relative causal effect of the

different exposure variables on the number of reported COVID-19 cases on a range of sensible

values of the exposure variables (95 percent quantiles of data points).

Table 2. Descriptive statistics for observed variables.

Variable mean (SD)

n 56140

Mobility

Retail and recreation -26.62 (24.60)

Grocery and pharmacy -3.94 (22.77)

Parks 47.26 (58.20)

Workplaces -22.96 (20.35)

Residential 8.13 (6.49)

Transit stations -29.58 (21.11)

Awareness

Searches corona 26.94 (18.23)

COVID-19 burden 3.50 (10.28)

Weather

Rainfall 1.89 (4.01)

Temperature 10.90 (5.33)

Humidity 67.81 (13.03)

Wind 3.63 (1.66)

Interventions

Ban of mass gatherings 0.83 (0.38)

School and kindergarten closures 0.54 (0.36)

Contact restrictions 0.74 (0.44)

Mandatory face masks 0.49 (0.50)

Socio-demographic

Age (pop. 65 and older) 22.09 (2.74)

Age (pop. younger 18) 16.17 (1.25)

Gender 50.59 (0.64)

Population density 533.75 (701.84)

Foreign citizens 10.03 (5.14)

Foreign citizens (refugees) 1.88 (1.14)

Socio-economic status 30.64 (6.02)

Turnout 75.08 (3.79)

Right-wing populist party votes 13.39 (5.32)

Nursing homes 36.11 (30.69)

Case numbers (Outcome and offset)

Reported new cases COVID-19 3.53 (10.29)

Active cases 48.76 (120.86)

https://doi.org/10.1371/journal.pone.0237277.t002
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Within our framework, we saw very different effects for individual mobility variables. For

mobility in retail/recreation, an increase of 1 percent point mobility compared to the reference

period (03 January to 06 February 2020) leads to an increase of the daily reported case number

by about 0.11 percent. Similarly, mobility on workplaces showed an effect of 0.33 increase in

case numbers for every 1 percent point increase in mobility, while mobility on transit stations

showed an effect of 0.26 increase in case numbers for every 1 percent point increase.

Fig 2. Temporal and district level variation of outcome (log-scale).

https://doi.org/10.1371/journal.pone.0237277.g002

Fig 3. Temporal variation of outcome and main determinants.

https://doi.org/10.1371/journal.pone.0237277.g003
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Contrarily, the remaining three mobility variables showed negative effects on the number of

reported COVID-19 cases. An increase of 1 percent point mobility for the areas of grocery/

pharmacy leads to a decrease in the reported case number by approximately 0.23 percent,

while increased mobility of 1 percent point within parks leads to a decrease in the reported

case number by approximately 0.03 percent, and finally an increase of 1 percent point in resi-

dential mobility leads to a decrease by approximately 0.97 percent. Fig 4 shows the effects of

mobility on a range of possible values. Thus, we expect an increase of daily cases by approxi-

mately 7.8 percent if mobility in workplaces reaches baseline levels of 0 percent difference to

the reference period. On the other hand, an increase of mobility for residential areas by 10

percent points compared to the reference period leads to a reduction of the infection rate by

approximately 1.8 percent.

“Awareness” had two opposite effects on the outcome in our DAG. Awareness measured by

Google searches for corona had a positive effect on the number of reported cases. An one per-

cent point increase of the state’s Google searches (relative to other states and the observation

period) leads to an increase of approximately 0.89 percent. For example, if a district shows 10

percent points more relative searches for corona than another one, we expect approximately

Table 3. Effect estimates from causal graph analysis.

Cause Effect estimate

Mobility

Retail and recreation 1.0011

Grocery and pharmacy 0.9977

Parks 0.9997

Transit stations 1.0026

Workplaces 1.0033

Residential 0.9903

Awareness

Searches corona 1.0089

COVID-19 burden 0.9980

Weather

Temperature 0.9905

Rainfall 1.0121

Humidity 1.0057

Wind 1.0329

Interventions

Interventions (ban of mass gatherings) 0.9729

Interventions (school and kindergarten closures) 0.9277

Interventions (contact restrictions) 0.8314

Interventions (mandatory face masks) 0.9064

Demographic

Age (pop. 65 and older) 0.9953

Age (pop. younger 18) 1.0120

Foreign citizens 1.0048

Foreign citizens (refugees) 0.9985

Gender 0.9925

Nursing homes 1.0011

Population density 1.0000

Socio-economic status 0.9982

https://doi.org/10.1371/journal.pone.0237277.t003
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Fig 4. Relative causal effects of exposures.

https://doi.org/10.1371/journal.pone.0237277.g004
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9.3 percent more infections for this district after 5 days. COVID-19 burden (reported number

of cases on day of exposure) affected the outcome negatively, where every additional daily case

in the district leads to a 0.2 percent decrease in newly reported case numbers. The correspond-

ing plot in Fig 4 visualizes this relationship: For a local outbreak with 20 daily cases as COVID-

19 burden, we estimate as total causal effect a subsequent reduction of infection rate by 3.9

percent.

Within our model, we observed effects of temperature and all other weather variables.

Every increase of 1 degree Celsius in temperature leads to a reduction of the daily reported

case numbers by approximately 0.95 percent. On the other hand, we found an increasing effect

of rainfall: One millimeter (=1 liter per square meter) more rainfall leads to an increase of

reported case numbers by approximately 1.21 percent. We observe effects for humidity and

wind as well (higher humidity and stronger wind leading to more cases). In perspective (Fig

4), with temperature we expect an increase by approximately 21 percent at a daily average tem-

perature of 0˚C compared to a day with 20˚C. For rainfall, we expect on a rainy day with 10

mm rainfall a corresponding increase of the infection rate by approximately 12.8 percent com-

pared to a day with no precipitation.

The different intervention variables showed the strongest effects in our analysis, see

Table 3. While the first intervention (ban of mass gatherings) reduced subsequent daily case

numbers by 2.7 percent, the closure of schools/kindergartens reduced infections by an addi-

tional 7.2 percent and mandatory face masks reduced this by another 9.4 percent. The effect of

contact restrictions was the strongest in our observation period, with an reduction of the case

rates by 16.9.

The effects of the different socio-demographic factors are quite small in comparison to the

effects described above. We see an increasing effect on case numbers by additional nursing

homes between districts. Districts with a younger population, more foreign citizens, higher

population density and a lower average social-economic status showed higher case numbers,

too.

For all exposures, our analysis pipeline opted to use the (reduced) optimal adjustment set

over the minimal adjustment sets because of lower AICs, except for exposure variable “nursing

homes”, for which the minimal adjustment set had the lowest AIC. For an overview of all final

adjustments sets, see Table 4. We found that there were no valid adjustment sets for the non-

identifiable variables turnout and right-wing populist party votes.

We decided for a lag of 5 days based on cross-validation. Similarly, negative binomial

regression was chosen over Poisson regression, because the latter showed overdispersion and

an higher AIC value.

Discussion

Main findings

Our objective was to identify effects of determining factors for COVID-19 cases within a causal

framework. We found that weather affects the reported number of infections, especially tem-

perature (which has a reducing effect on case numbers) and rainfall (which increases case

numbers). We saw that reports of high case numbers in districts led to a reduction in new

infection numbers, which indicates risk-averse awareness in the population and/or effective

public health measures to suppress a local outbreak. Mobility showed distinct effects: Increas-

ing activity in retail and recreational areas, as well as transit stations and workplaces increased

reported case numbers, while increased movement for essential shopping (grocery and phar-

macy) and in parks or residential areas led to reduced case numbers. All interventions consid-

ered (ban of mass gatherings, school/kindergarten closures, contact restrictions, mandatory

PLOS ONE Causal graph analysis for effects of determining factors on COVID-19 infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0237277 May 27, 2021 13 / 22

https://doi.org/10.1371/journal.pone.0237277


T
a

b
le

4
.

F
in

a
l

a
d

ju
st

m
en

t
se

ts
fo

r
ca

u
sa

l
a

n
a

ly
si

s.

M
o

b
il

it
y

S
ea

rc
h

es

co
ro

n
a

C
O

V
ID

-1
9

b
u

rd
en

T
em

p
er

a
tu

re
R

a
in

fa
ll

H
u

m
id

it
y

W
in

d
In

te
rv

en
ti

o
n

s
A

g
e

F
o

re
ig

n

ci
ti

ze
n

s

G
en

d
er

N
u

rs
in

g

h
o

m
es

P
o

p
u

la
ti

o
n

d
en

si
ty

S
o

ci
o

-

ec
o

n
o

m
ic

st
a

tu
s

W
ee

k
d

ay
x

x
x

x
x

x
x

x
x

x
x

x
x

x

H
o

li
d

ay
(r

ep
o

rt
)

x
x

x
x

x
x

x
x

x
x

x
x

x
x

H
o

li
d

ay
(e

x
p

o
su

re
)

x
x

x
x

x
x

x
x

x
x

x
x

x
x

M
o

b
il

it
y

M
o

b
il

it
y

x

A
w

a
re

n
es

s

S
ea

rc
h

es
co

ro
n

a
x

x
x

x
x

x

C
O

V
ID

-1
9

b
u

rd
en

x
x

x
x

x
x

x
x

x
x

x
x

x

W
ea

th
er

T
em

p
er

at
u

re
x

x
x

x
x

x
x

x
x

x

R
ai

n
fa

ll
x

x
x

x
x

x
x

x
x

x
x

x

H
u

m
id

it
y

x
x

x
x

x
x

x
x

x

W
in

d
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rv
en

ti
o

n
s

In
te

rv
en

ti
o

n
s

x
x

x
x

x
x

x
x

x
x

x
x

S
o

ci
o

-d
em

o
g

ra
p

h
ic

A
g

e
x

x
x

x
x

x
x

x
x

x
x

G
en

d
er

x
x

x
x

x
x

x
x

x
x

x
x

x

P
o

p
u

la
ti

o
n

d
en

si
ty

x
x

x
x

x
x

x
x

x
x

x
x

x

F
o

re
ig

n
ci

ti
ze

n
s

x
x

x
x

x
x

x

S
o

ci
o

-e
co

n
o

m
ic

st
at

u
s

x
x

x
x

x
x

x
x

x
x

T
u

rn
o

u
t

x
x

R
ig

h
t-

w
in

g

p
o

p
u

li
st

p
ar

ty

v
o

te
s

x
x

x
x

x
x

x
x

x

N
u

rs
in

g
h

o
m

es
x

x
x

x
x

x
x

x
x

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
2
3
7
2
7
7
.t
0
0
4

PLOS ONE Causal graph analysis for effects of determining factors on COVID-19 infections

PLOS ONE | https://doi.org/10.1371/journal.pone.0237277 May 27, 2021 14 / 22

https://doi.org/10.1371/journal.pone.0237277.t004
https://doi.org/10.1371/journal.pone.0237277


face masks) reduced case numbers considerably. Socio-demographic variables had small

effects individually, but in conjunction they explained larger case numbers in (urban) areas

with younger population, lower socio-economic status, and higher population density.

Furthermore, we made a strong case for the use of causal DAGs in epidemiology and a pan-

demic like COVID-19: DAGs allow to choose confounders for the analysis in a principled and

statistically correct way while reducing possible causes for bias. Also, the DAG formalization

allows for discussion about the underlying causal assumptions.

Comparison with previous research

Most research on determinants affecting case numbers of COVID-19 is restricted to single

aspects [5, 16, 32, 35]. To reliably identify (causal) drivers, one must adjust for confounders.

To this end, we used an integrated model with variables from different aspects like mobility,

awareness, weather, or socio-demographics and identified confounders by causal analysis with

a directed acyclic graph. A causal approach is used in another current COVID-19 analysis

[64]. There, however, they identify the causal relationships (reconstruct a DAG), while we esti-

mated effects for a given hypothesized causal DAG.

Several studies assessing the impact of public health measures on mobility have each

observed a downward trend accompanied by a decrease in the number of newly reported cases

[15–17, 19, 23, 47].

Our findings regarding awareness/Google Trends analysis are in good agreement with the

correlations found by others [4, 6, 26], who conclude that alertness to COVID-19 rises several

days before the highest number of cases are reported. At this point it should be noted, that

awareness is substantially influenced by public media coverage, which should be considered, if

possible, in future studies [4]. As such, awareness is difficult to measure and here the number

of Google searches for “corona” could only be a proxy for this concept.

In addition, in alignment with other recent published studies, our results confirm evidence

which associated a negative effect of temperature on new COVID-19 cases [7–9, 31–36]. It is

however controversial to other scientific literature describing no effects [22, 39–42] or even

converse correlations [37, 38]. The conflicting results might be explained by different climates

and characteristics of the populations under study. While we are confident that our strict

causal analysis resulted in effect estimates as undistorted as possible, there might be unconsid-

ered bias in those other studies. Further research needs to be done to elucidate the biological

characteristics of the novel virus SARS-CoV-2 regarding its ambient temperature survival

and transmission. Finally, we found a positive effect of increased precipitation and a raise in

COVID-19 cases, which supports previous observations [33].

A recent review on COVID-19 based on evidence from the US and UK concludes that low

socio-economic status groups are being hit harder by the pandemic [65]. Albeit specific path-

ways remain unclear, many studies found associations with poverty or its correlates such as

poor and potentially overcrowded housing conditions. For Germany, a higher case fatality of

COVID-19 cases in districts with higher socio-economic deprivation has also been reported

just recently, which was especially pronounced in the second wave of the pandemic [66]. Simi-

larly, our analysis identified a decreasing effect on COVID-19 case numbers within districts

with a higher socio-economic status during the first wave.

Limitations and strengths

While use of a causal DAG is itself a strong tool to identify causal effects (and not just statistical

associations), it introduces two limitations: causal assumptions within the graph (depicted by

edges) need to be well justified, and the statistical regression model that calculates total causal
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effects needs to be appropriate for the task at hand. We endorse our graph as a basis for discus-

sion on residual confounding. We did not try to construct the DAG from the available data (cf.

[64]). As such, our proposed DAG is not entirely consistent with the data and there are condi-

tional dependencies between variables that cannot be dissolved by adding edges to the DAG

(e.g. between the interventions like contact restrictions and mandatory face masks). Another

way to identify potential problems in the proposed DAG is to perform a sensitivity analysis of

its structure by inspecting its maximal ancestral graph (MAG) or its Markov equivalence class

represented by a complete partially DAG (CPDAG) and the existence of valid adjustment sets

for these generalized graphs [67]. For the MAG derived from our DAG, only the effects for

exposures mobility and searches for corona can be estimated with valid adjustment sets, while

for the Markov equivalence class all exposures but COVID-19 burden lead to valid adjust-

ments sets. A further analysis of these implications is out of the scope of this paper.

We observed overdispersion and a substantial increase in model performance with a nega-

tive binomial regression compared to Poisson regression, which is in line with the results on

COVID-19 daily case counts of [17] and others [7, 9, 68]. We did not model case counts with a

differential equation model like the classic SIR-model [69] and its successors, since these are

more suited to prediction e.g. [70], while our choice of a negative binomial regression frame-

work allowed us to estimate the effects of confounders more reliably. There are more advanced

statistical methods for count data, e.g. zero-inflated models and mixed models. We tested both

approaches as extensions to the negative binomial regression and experienced numerical prob-

lems and increased computing time, along with an insubstantial increase in model perfor-

mance. Furthermore, our model assumed that all variables have effects proportional to the size

of their measurements. It is possible that some variables show saturation effects or opposite

effects for low, medium, or high values. This could be modeled with polynomial or other trans-

formations of the variables, which we did not employ due to limited temporal and spatial data

availability. Interaction effects of variables and confounding effects or mediating variables

are explicitly taken care of by deriving the valid adjustment sets for a given exposure based on

the causal DAG. Use of a fixed DAG with effect estimation via regression assumes that data

was generated by the same underlying process for the observation period. By inclusion of the

successive mitigation interventions as binary variables we were able to explain some of the var-

iance caused by the changing dynamics of case numbers (similar to [68]). While multicolli-

nearity of variables poses less of a problem for a proper causal graph analysis [71], we

addressed the problem of multicollinearity in our predictors by two approaches: principal

component analysis for the highly collinear mobility variables as well as a regularized regres-

sion approach (ridge regression). The latter (in conjunction with cross-validation) also

reduced the problem of overfitting.

We stress the point that our effects were deduced on an aggregate (district) level in the

absence of available data on an individual level. As such, conclusions about effects cannot be

transferred on individuals without the possibility for an ecological fallacy. Furthermore, as we

were using administrative data for our analysis, the results are susceptible to the Modifiable

Area Unit Problem (MAUP) [72]. The MAUP postulates that different regional aggregations

of the units of observation may lead to different results and conclusions. Due to limited avail-

able data for the different variables, there is currently no way to overcome these problems that

are inherent to all analyses on aggregated data level.

Our observation period was restricted to succession from late winter to spring and summer

(February to July). Nevertheless, this transition with increasing temperature was a natural

experiment that allowed clues on weather effects.

We could not include data on health care utilization during the pandemic into our models

due to the lack of available resources. This is planned for a later follow up to this paper since
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we rank health care utilization and mobility within health care facilities among the strong fac-

tors for COVID-19 progression: personnel in hospitals and private practices is particularly

exposed to infection, while the lack of adequate care for other diseases has severe effects on

general health of the population. At the same time, health care facilities are key for testing and

surveillance of COVID-19 patients.

Social determinants of health are important factors to consider in an epidemiological frame-

work of a pandemic disease like COVID-19. To account for this problem, we included several

socio-economic confounders that were available on a district level in Germany. While our anal-

ysis is not an exhaustive analysis of the effects of social determinants on COVID-19 infections,

we emphasize the necessity of their inclusion and our results add to the growing body of evi-

dence that these factors interact with each other and cluster especially among people or within

areas of underprivileged conditions, with detrimental effects on population health [73].

While our analysis focused on Germany and its districts, we assume that results may be

transferred to other countries by adjusting for their respective weather conditions, mobility

habits, socio-demographic characteristics, and other determining factors.

The code and resources for our analysis are available on Github, we invite other researchers

to replicate our analysis with different assumptions using the files provided in the repository of

the article (https://github.com/zidatalab/causalcovid19).

Discussion of causal effects

In our analysis, the adverse effects of mobility in retail/recreation and workplaces and the

favorable effect of mobility in grocery/pharmacy and residential areas indicate that interven-

tions like contact restrictions which limit the number of individual interactions can lead to

reduced infection numbers. This is due to retail/recreational and workplace areas encompass-

ing mostly places of (social) gatherings, while if people are doing more of their essential shop-

ping at supermarkets and stay at home with less contact to other people, they are less likely to

come in contact with infected individuals.

The effects of awareness measured via searches for “corona” and the COVID-19 burden are

harder to interpret. We assume that within our model, the searches for “corona” are an insuffi-

cient proxy for awareness, while the decreasing effect for future case numbers of high daily

COVID-19 burden indicates it affects individual risk-behavior and entails effective non-phar-

maceutical interventions.

Similarly, the effects of temperature and rainfall can be interpreted as causal effects for

indoor and outdoor activities, such that higher temperatures and low rainfall indicate more

people spending time outdoor while lower temperatures and high rainfall result in indoor

activities, which lead to more infections. Current research suggests this to be due to the preva-

lent airborne and respiratory droplets and aerosol transmission of the SARS-CoV-2 virus [74].

In this light, we advocate for precautious measures like increased hygiene, face masks, and air

ventilation for unavoidable indoor activities.

Furthermore, our analyses strongly support the effectiveness of non-pharmaceutical inter-

ventions. To a lesser extent, the adverse effects of some socio-demographic factors might help

to identify areas that are at higher risk of local COVID-19 outbreaks and more severe out-

comes of infection cases.

Conclusion

To the best of our knowledge, this is the most comprehensive analysis of causes for COVID-19

infections which integrates different data sources (all publicly available). Causal reasoning

with a DAG allows us to estimate the possible causal effects more reliably.
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Our findings suggest that the infection-driving effects of mobility, awareness, and weather

(and to some extent socio-demographic factors) need to be taken into account when deciding

for mitigation and suppression interventions, depending on the recent and future COVID-19

pandemic development.
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11. Schipf S, Knüppel S, Hardt J, Stang A. Directed Acyclic Graphs (DAGs)—Die Anwendung kausaler

Graphen in der Epidemiologie. Gesundheitswesen. 2011; 73(12):888–892. https://doi.org/10.1055/s-

0031-1291192 PMID: 22193898

12. Textor J, van der Zander B, Gilthorpe MS, Liśkiewicz M, Ellison GT. Robust causal inference using

directed acyclic graphs: the R package ‘dagitty’. International Journal of Epidemiology. 2017; 45

(6):1887–1894. https://doi.org/10.1093/ije/dyw341

13. Center for Systems Science and Engineering (CSSE). COVID-19 Data Repository by the Center for

Systems Science and Engineering (CSSE) at Johns Hopkins University; 2020. Available from: https://

github.com/CSSEGISandData/COVID-19.

14. Pearl J, Bareinboim E. External Validity: From Do-Calculus to Transportability Across Populations. Sta-

tistical Science. 2014; 29(4):579–595. https://doi.org/10.1214/14-STS486

15. Chang MC, Kahn R, Li YA, Lee CS, Buckee CO, Chang HH. Variation in human mobility and its impact

on the risk of future COVID-19 outbreaks in Taiwan. BMC Public Health. 2021; 21(1):226. https://doi.

org/10.1186/s12889-021-10260-7 PMID: 33504339

16. Fowler JH, Hill SJ, Obradovich N, Levin R. The Effect of Stay-at-Home Orders on COVID-19 Cases and

Fatalities in the United States. medRxiv. 2020; https://doi.org/10.1101/2020.04.13.20063628

17. Kraemer MUG, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, et al. The effect of human mobility

and control measures on the COVID-19 epidemic in China. Science (New York, NY). 2020; 368

(6490):493–497. https://doi.org/10.1126/science.abb4218

18. Lasry A, Kidder D, Hast M, Poovey J, Sunshine G, Winglee K, et al. Timing of Community Mitigation

and Changes in Reported COVID-19 and Community Mobility—Four U.S. Metropolitan Areas, February

26-April 1, 2020. MMWR Morbidity and mortality weekly report. 2020; 69(15):451—457. https://doi.org/

10.15585/mmwr.mm6915e2 PMID: 32298245

19. Linka K, Peirlinck M, Sahli Costabal F, Kuhl E. Outbreak dynamics of COVID-19 in Europe and the

effect of travel restrictions. Computer Methods in Biomechanics and Biomedical Engineering. 2020; p.

1–8. https://doi.org/10.1080/10255842.2020.1759560 PMID: 32367739

20. Mazzoli M, Mateo D, Hernando A, Meloni S, Ramasco JJ. Effects of mobility and multi-seeding on the

propagation of the COVID-19 in Spain. medRxiv. 2020; https://doi.org/10.1101/2020.05.09.20096339

21. Xiong C, Hu S, Yang M, Younes HN, Luo W, Ghader S, et al. Data-Driven Modeling Reveals the Impact

of Stay-at-Home Orders on Human Mobility during the COVID-19 Pandemic in the U.S. arXiv e-prints.

2020; p. arXiv:2005.00667.
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