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Abstract: This study aimed to determine the effects of diets chronically supplemented 

with branched-chain amino acids (BCAA) on the fatigue mechanisms of trained rats. 

Thirty-six adult Wistar rats were trained for six weeks. The training protocol consisted of 

bouts of swimming exercise (one hour a day, five times a week, for six weeks). The 

animals received a control diet (C) (n = 12), a diet supplemented with 3.57% BCAA (S1) 

(n = 12), or a diet supplemented with 4.76% BCAA (S2) (n = 12). On the last day of the 

training protocol, half the animals in each group were sacrificed after one hour of 

swimming (1H), and the other half after a swimming exhaustion test (EX). Swimming time 

until exhaustion was increased by 37% in group S1 and reduced by 43% in group S2 

compared to group C. Results indicate that the S1 diet had a beneficial effect on 

performance by sparing glycogen in the soleus muscle (p < 0.05) and by inducing a lower 

concentration of plasma ammonia, whereas the S2 diet had a negative effect on 
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performance due to hyperammonemia (p < 0.05). The hypothalamic concentration of 

serotonin was not significantly different between the 1H and EX conditions. In conclusion, 

chronic BCAA supplementation led to increased performance in rats subjected to a 

swimming test to exhaustion. However, this is a dose-dependent effect, since chronic 

ingestion of elevated quantities of BCAA led to a reduction in performance.  

Keywords: amino acids; dietary supplements; exercise; fatigue; sports performance  

 

1. Introduction  

Fatigue may be defined as the inability to maintain the expected muscle strength, leading to a 

reduced performance during prolonged exercise. The mechanisms that directly affect the muscles are 

peripheral and those residing in the brain are central [1,2]. The following events are considered to be 

the five major metabolic causes of fatigue: (1) muscle phosphocreatinine depletion; (2) proton 

accumulation in muscle (acidosis); (3) muscle glycogen depletion; (4) reduced blood glucose 

concentration; (5) increased ratio of specific amino acids in plasma (free tryptophan/branched-chain 

amino acids (TRPL/BCAA)). The first three causes are directly related to peripheral fatigue and the last 

two are probably related to central fatigue [1,3,4]. In addition to these causes, the increased plasma 

ammonia concentration that occurs during prolonged exercise can be highly toxic and is associated 

with both peripheral and central fatigue [5–7].  

In contrast to the liver, which can oxidize the twenty amino acids present in the tissue protein of the 

organism, skeletal muscle can oxidize only six: BCAA, aspartate, asparagine and glutamate [8,9]. In 

muscle tissue, BCAA participates in protein synthesis and act as a precursor in the synthesis of other 

amino acids, in addition to being used as energy substrates during physical exercise [10–12]. Of the 

three BCAAs, leucine is the one primarily responsible for the stimulation of protein synthesis induced 

by intake of a mixed meal. The stimulatory effect of leucine on protein synthesis is mediated through 

upregulation of the initiation of mRNA translation [13].  

The hypothesis of central fatigue suggests that the increase in serotonin or 5-hydroxytryptamine  

(5-HT) concentration in the brain during prolonged exercise may be directly related to the 

development of fatigue and to the consequent reduction in performance. On the other hand, BCAA 

supplementation may act on the reduction of the plasma TRPL/BCAA ratio since these amino acids 

have the same mechanism of transport through the blood-brain barrier, a fact that may reduce the 

influx of TRPL (a serotonin precursor) in the central nervous system (CNS). This occurrence  

may cause a reduced 5-HT synthesis in the brain, consequently delaying the symptoms of  

fatigue [3,7,14,15]. In addition, BCAA may act on glycogen metabolism during prolonged exercise, 

since supplementation with these amino acids can preserve hepatic and muscle glycogen possibly 

resulting in increased performance [16,17]. 

The effects of BCAA supplementation on performance in prolonged exercise have not been clearly 

demonstrated in the literature, since there are reports of both beneficial effects [18–20] and of  

a non-ergogenic effect [20,21]. However, these controversial results may be justified by differences 
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between experimental protocols, such as an animal or human models; quantity, time of supply (chronic 

or acute) and route of administration of the supplement: type, duration and intensity of exercise. 

In many of the animal studies, in which the effects of BCAA supplementation on metabolism and 

physical performance were determined, a single BCAA dose (acute form) was administered before 

exercise, by gavage [22] or by intraperitoneal injection [23,24]. We hypothesized that chronic BCAA 

supplementation (through the diet, using different BCAA concentrations) would increase performance 

in rats subjected to a swimming exhaustion test. Furthermore, we hypothesized that the mechanism by 

which chronic BCAA supplementation improved the performance is via preservation of liver and 

muscle glycogen stores or decreasing the 5-HT concentration in the hypothalamus.  

2. Experimental Section  

2.1. Animals 

The study was conducted on male Wistar rats weighing on average 240 ± 18 g at the beginning of 

the experiment, supplied by the animal house of the Faculty of Pharmaceutical Sciences, University of 

São Paulo. The animals were kept in individual cages in a room with controlled temperature of  

22 ± 2 °C, on an inverted 12 h light/12 h dark cycle, with lights on at 19:00 h.  

The animals had free access to food and water and the consumption of ration and body weight was 

determined three times a week. The final weight was measured on the day of sacrifice. The animals 

were followed for a total period of seven weeks, with the first week being devoted to adaptation to the 

environment and to the diet, and the remaining weeks being used for physical training.  

All procedures carried out on the rats were approved by the Ethics Committee on Animal 

Experimentation of the Faculty of Pharmaceutical Sciences, University of São Paulo, according to the 

guidelines of the Brazilian College on Animal Experimentation. 

2.2. Experimental Diets  

The animals received a control (C), supplemented 1 (S1) or supplemented 2 (S2) diet throughout 

the experiment. The C diet was elaborated according to the recommendations of the American  

Institute of Nutrition (AIN-93M) for the maintenance of adult rodents [25] and the S1 and S2 diets 

were elaborated according to the AIN-93M and respectively supplemented with 3.57% and  

4.76% BCAA. The diets supplemented with 3.57% and 4.76% BCAA represent an increase of  

50% and 100% of BCAA quantity in comparison to the amount of these amino acids in the C diet, 

respectively. The amino acids were supplied by Ajinomoto Interamericana Indústria e Comércio Ltda 

(São Paulo, Brazil). 

In the formulation of the supplemented rations the amount of starch equivalent to the addition of 

BCCA (in grams) was removed so that the diets would be isocaloric with the non-supplemented ration. 

Table 1 presents the formulation of the three diets, which were elaborated according to the AIN-93M.  
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Table 1. Formulation of the experimental diets * (g/kg diet).  

Ingredients C ** S1 **  S2 **  

Starch 620.692 584.992 573.092 

Casein (>85% protein) 140.000 140.000 140.000 

Saccharose 100.000 100.000 100.000 

Soy oil 40.000 40.000 40.000 

Fiber (cellulose) 50.000 50.000 50.000 

Mineral mix  35.000 35.000 35.000 

Vitamin mix  10.000 10.000 10.000 

L-Cystine 1.800 1.800 1.800 

Choline bitartrate (41.1% de colina) 2.500 2.500 2.500 

Tert-butylhydroquinone 0.008 0.008 0.008 

L-Isoleucine 

L-Leucine 

L-Valine 

- *** 

- *** 

- *** 

8.85 

16.35 

10.5 

11.8 

21.8 

14.0 

BCAA total addition - 35.7 47.6 

* The C diet was elaborated according to the recommendations of the American Institute of Nutrition  

(AIN-93M) for the maintenance of adult rodents [25] and the S1 and S2 diets were elaborated according to 

the AIN-93M and respectively supplemented with 3.57% and 4.76% BCAA; ** (control diet (C), 

supplemented 1 diet (S1) or supplemented 2 diet (S2)); *** Estimated branched-chain amino acids (BCAA) 

composition of the AIN-93M diet (g/kg diet): L-isoleucine: 5.9; L-leucine: 10.9; L-valine: 7.0.  

2.3. Training Protocol 

A swimming system developed by Vieira was used [26]. The training protocol lasted six weeks; in 

the first two weeks the animals were adapted to the water medium and exercised with increasing 

overloads attached to the tail until an overload corresponding to 5% of total body weight was reached. 

This final overload was used until the end of the training protocol, which was performed five times a 

week, for one hour a day, between 9:00 and 12:00, with a water temperature of 32 °C [27]. The 

overloads were corrected weekly according to the variations in animal weight. The efficiency of the 

training protocol was assessed on the basis of maximum activity of the enzyme citrate synthase in the 

soleus muscle, with a group of sedentary animals being used as the control for this parameter. 

2.4. Animal Sacrifice and Sample Collection 

On the last day of the protocol the animals were deprived of food for two hours before the 

beginning of physical activity and then decapitated under two conditions; after one hour of swimming 

(1H) and after the swimming exhaustion test (EX). The 1H groups were sacrificed between 9:00 and 

11:00 and swimming time was recorded individually for the animals in the EX groups. Time of 

swimming exhaustion test was defined as the time when the animal remained submersed for 

approximately 12 s [27]. We have chosen to kill the animals after one hour of swimming because this 

time point allowed investigating the effects of BBCA supplementation in a similar situation to the 

daily protocol training. On the other hand, the results from the animals killed after the swimming 

exhaustion test allowed evaluating the effect of BCAA supplementation on the peripheral fatigue and 

central fatigue mechanisms. 
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Immediately before sacrifice, 25 μL blood was directly collected into heparinized capillary tubes 

from the tip of the animals’ tail for lactate determination. After decapitation, blood was collected and 

centrifuged in order to obtain the plasma and serum fractions. The hypothalamus, liver and 

gastrocnemius and soleus muscles were removed, weighed, wrapped and immediately frozen in liquid 

nitrogen. The samples were stored in a freezer at −80 °C for later biochemical analysis. 

2.5. Biochemical Analyses 

The concentrations of the following substances were determined: blood lactate (by an 

electrochemical technique after sample stabilization with 2% sodium fluoride using a 1500 lactimeter 

model from Yellow Springs Instruments, Yellow Springs, OH, USA), plasma glucose (with a Labtest 

Diagnóstica kit, Glucose PAP Liquiform, Lagoa Santa, Minas Gerais, Brazil), plasma ammonia (with a 

Sigma Diagnostics kit, St. Louis, MO, USA), serum insulin (by radioimmunoassays using at Biotrak™ 

kit, Amersham International, Piscataway, NJ, USA), muscle glycogen—gastrocnemius and soleus—and 

liver glycogen [24], muscle protein—gastrocnemius—and liver protein [28], maximum citrate 

synthase activity [29].  

Hypothalamic serotonin was determined by HPLC with electrochemical detection, according to the 

method of Ribeiro [30] and modified from Cipolla-Neto [31]. The chromatographic system (Shimadzu, 

Kyoto, Japan) composed by an isocratic LC-10AD vp HPLC pump, a Resolve 5 μm spherical C18,  

3.9 × 150 mm steel column, and a L-ECD-6A electrochemical detector operated in DC mode, was 

controlled by the Shimadzu CLASS-VP Software through a System Interface Module. Each 

hypothalamus was sonicated (microson XL 2005, Heat System Inc., Farmingdale, NY, USA) for 10 s 

in 120 μL of ice cold 0.1 M perchloric acid containing 0.02% EDTA and 0.02% sodium bisulfite. 

Protein and cell debris were removed by centrifugation (14,000× g, 2 min) (Eppendorf 5415C 

centrifuge, Brinkmann Instruments Inc., Westbury, NY, USA). The clear supernatant (60 μL) was 

injected into the system through a syringe loading injector (20 μL loop, Mod 7125, Rheodyne Inc., 

Oak Harbor, WA, USA). The chromatographic system was operated with the following phase at 

30 °C: 0.1 M sodium acetate, 0.1 M citric acid, 0.15 M EDTA, 35% methanol, pH 3.7 at a constant 

flow rate of 1.0 mL/min. The detector potential was adjusted to a steady value of +900 mV  

(vs. Ag/AgCl reference electrode). The total run was 15 min and, typically, serotonin was eluted at 

10 min. Free fatty acids were determined by the method of Regouw [32] and samples were read  

in a spectrophotometer. 

2.6. Statistical Methods 

Results were expressed as mean ± S.D. Variance homogeneity was tested by the Hartley test. All 

data were considered statistically significant when the probability of Type I error was <0.05. The 

effect of supplementation on body weight, diet and BCAA intake was evaluated after one hour of 

swimming (1H) and also after the swimming exhaustion test (EX) by one way ANOVA followed  

by the Tukey HSD test. When variance homogeneity was not observed, data were evaluated by the  

Kruskal-Wallis ANOVA test. Except for two variables (liver and gastrocnemius muscle glycogen 

concentrations) that did not show variance homogeneity, mixed design factorial ANOVA was applied 

to analyze the biochemical variables considering as independent factors the supplementation at three 
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levels (−1 = AIN-93 M, 0 = AIN-93 M + 3.57% BCAA and +1 = AIN-93 M + 4.76% BCAA), and the 

time of exercise before the sacrifice at two levels (−1 = 1 h and +1 = exhaustion). All calculations and 

graphs were made using the Statistica 7.1 software [33] (StatSoft Inc., Tulsa, OK, USA).  

3. Results 

Daily food intake did not differ significantly between the experimental groups studied, whereas 

daily BCAA ingestion was significantly higher in the groups supplemented with BCAA (Table 2). 

There was no difference in final body weight between animals receiving the various diets. 

Table 2. Initial and final body weight (g), daily food intake (g/day) and estimated BCAA 

ingestion (mg/day) of experimental groups trained for 1 h (1H) or trained and submitted to 

exhaustion (EX), in animals that received a control, supplemented 1 (S1) or supplemented 

2 (S2) diet. 

Variables 
1
 

Control S1 S2 

1H EX 1H EX 1H EX 

Initial body weight 

(g) 
238.9 ± 17.1 240.5 ± 14.4 242.5 ± 7.4 240.8 ± 11.9 235.9 ± 29.9 236.07 ± 26.5 

Final body weight 

(g) 
336.6 ± 9.9 337.6 ± 27.4 340.5 ± 2.5 340.5 ± 21.5 336.2 ± 20.9 337.0 ± 22.9 

Diet intake (g/day) 21.6 ± 1.1 21.1 ± 0.9 21.6 ± 1.0 20.7 ± 2.0 20.7 ± 1.6 21.5 ± 1.5 

BCAA (mg/day) 
515.5 ± 26.8 

a
 

502.2 ± 22.4 
a
 

769.9 ± 35.3 
b
 738.6 ± 70.4 

b
 985.3 ± 74.8 

c
 1022.8 ± 70.5 

c
 

1
 Values are expressed as mean ± SD (n = 6). Probability value obtained by one way ANOVA followed by 

the Tukey HSD test. Values followed by the same superscript letters (a, b, c) are not statistically different  

(p < 0.05).  

A significant 75% increase in maximum citrate synthase activity (soleus muscle) was observed in 

the trained groups (1H: 5.84 ± 1.33 and EX: 5.95 ± 1.05 μmol/min/g fresh tissue) compared to the 

sedentary group (3.37 ± 0.73 μmol/min/g fresh tissue). As noted in Figure 1.  

Figure 1. Swimming time (minutes) of the experimental groups submitted to exhaustion 

(EX) that received a control diet (C), supplemented 1 diet (S1) or supplemented 2 diet (S2). 

Columns with different letters are statistically different (p < 0.05, one way ANOVA 

followed by the Tukey HSD test). Values are expressed as mean ± S.D. (n = 6). 
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Swimming time for the EX-S1 group was significantly higher (37%) than the EX-C group. On the 

other hand, the EX-S2 group showed a significant decrease in performance of 43% and 59% in relation 

to the EX-C and EX-S1 groups, respectively. 

EX-S2 group demonstrated a significantly greater plasma concentration of ammonia than those of 

the EX-C and EX-1H groups, while the EX-S1 group presented a significant 34% decrease, compared 

to the EX-C group (Figure 2). The EX-S1 group showed a significantly greater soleus muscle glycogen 

concentration than that of the EX-C (Table 3).  

Figure 2. Plasma ammonia in the experimental groups trained for 1 h (1H) or trained and 

submitted to exhaustion (EX), in animals that received a control, supplemented 1 (S1) or 

supplemented 2 (S2) diet. Columns with different letters are statistically different  

(p < 0.05, probability value obtained by Factorial ANOVA for the factors interaction 

―supplementation × time of exercise before the sacrifice‖). Values are expressed as  

mean ± SD (n = 6). 

 

 

 1H
 EX

AIN-93 M 
AIN-93 M +3.57 g BCAA 

AIN-93 M +4.76 g BCAA 

BCAA 

0

2

4

6

8

10

12

14

16

A
m
ô
n
ia

a

b

c

d

a
a

Control S1 S2

μ
g

/m
L

 



Nutrients 2012, 4 1774 

 

Table 3. Determined parameters in blood and tissue muscle of experimental groups trained for 1 h (1H) or trained and submitted to exhaustion (EX), in 

animals that received a control, supplemented 1 (S1) or supplemented 2 (S2) diet. 

Variables 
1
 

Control S1 S2 
p 

2
 p 

3
 p 

4
 

1H EX 1H EX 1H EX 

Plasma glucose (mg/dL) 144.9 
a
 ± 34.2 55.6 

b
 ± 14.0 148.2 

a
 ± 12.5 60.8 

b
 ± 13.2 144.0 

a
± 15.2 55.0 

b
 ± 12.9 0.962 <0.001 - 

Plasma free fatty acids  

(mmol/L) 
0.27 ± 0.05 0.26 ± 0.04 0.29 ± 0.07 0.27 ± 0.05 0.25 ± 0.04 0.26 ± 0.04 0.525 0.669 - 

Serum insulin (ng/dL) 3.03 
b,c

 ± 0.73 1.48 
a
 ± 0.30 2.89 

b,c
 ± 0.53 1.43 

a
 ± 0.28 3.58 

c
 ± 0.35 2.14 

a,b
 ± 0.27 0.002 <0.001 - 

Blood lactate (mmol/L) 14.37 
a
 ± 1.31 18.99 

b
 ± 2.59 13.97 

a
 ± 1.84 18.64 

b
 ± 5.04 16.02 

a
 ± 3.19 19.21 

b
 ± 4.80 0.742 <0.001 - 

Liver glycogen  

(mg/100 mg tissue) 
0.76 

a
 ± 0.16 0.10 

b
 ± 0.02 0.72 

a
 ± 0.21 0.33 

b
 ± 0.04 0.79 

a
 ± 0.15 0.32 

b
 ± 0.03 

b
 - - <0.001 

Gastrocnemius muscle 

glycogen (mg/100 mg tissue) 
0.20 

a
 ± 0.06 0.11 

b
 ± 0.03 0.24 

a
 ± 0.06 0.13 

b
 ± 0.03 0.21 

a
 ± 0.05 0.10 

b
 ± 0.02 - - <0.001 

Soleus muscle glycogen  

(mg/100 mg tissue) 
0.33 

a,b
 ± 0.08 0.23 

c
 ± 0.05 0.41 

b
 ± 0.02 0.33 

a,d
 ± 0.05 0.34 

a,b
 ± 0.03 0.24 

c,d
 ± 0.03 <0.001 <0.001 - 

Hypothalamic serotonin  

(pg/mg tissue) 
242.3 

a
 ± 59.6 330.5 

a,b
 ± 74.5 256.1 

a,b
 ± 52.2 321.8 

a,b
 ± 94.9 272.8 

a,b
 ± 44.9 384.6 

b
 ± 108.6 0.359 0.011 - 

1
 Values are expressed as mean ± SD (n = 6) and there were no significant interactions (p > 0.05); 

2
 Probability value obtained by Factorial ANOVA to the factor 

―supplementation‖; 
3
 Probability value obtained by Factorial ANOVA to the factor ―time of exercise before the sacrifice‖; 

4
 Probability value obtained by Kruskal-Wallis 

ANOVA; Means of each parameter followed by the same letter (
a
, 

b
, 

c
, 

d
) did not differ significantly between groups (p < 0.05).  
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4. Discussion 

Food intake did not differ between groups, indicating that the supplementation of BCAA did not 

change the rats’ food consumption. Similarly, Shimomura [16] and Araujo, Jr. [34] who also 

administered BCAA to rats through diet, found no differences between the groups in relation to food 

intake. In addition, there were no statistically significant differences in the final weights between 

groups (338 ± 17 g), indicating that the supplemented diets (S1 and S2) had no effect on the final 

weight of the animals.  

The improvement in the animals’ physical condition was demonstrated by the 75% increase in 

maximum citrate synthase activity in trained groups, when compared to the sedentary group. This 

demonstrated that the training protocol was effective in increasing the oxidative metabolism in the 

trained animals [25,35]. At the same time, no significant differences in maximum citrate synthase 

activity were observed between trained groups, indicating that the physical condition of the animals 

submitted to the training protocol was similar. Thus, the differences between the trained groups  

(1H and EX) in the present study were exclusively due to the effect of BCAA supplementation. 

Results show that BCAA improved performance in the group fed on the diet supplemented with 

3.57% BCAA (S1); this group showed a 37% increase in time to exhaustion compared to the group 

receiving the C diet. On the other hand, the group receiving the S2 diet supplemented with 4.75% 

BCAA showed a significant decrease in swimming time, when compared to the other groups. Among 

the possible hypotheses related to this result, we highlight the availability of plasma glucose and liver 

and muscle glycogen, which are relevant substrates for supplying energy during exercise of moderate 

intensity and long duration. During prolonged exercise to exhaustion, there is increased flow through 

the glycolytic pathway, resulting in decreased glucose levels and the concomitant increase in plasma 

lactate concentration, which are important factors in the etiology of fatigue during exercise [3,9]. In 

this study, the groups submitted to exhaustion had reduced blood glucose and liver and gastrocnemius 

muscle glycogen concentrations, with a concomitant increase in plasma lactate concentration 

compared to their respective control groups when exercised for one hour. This finding demonstrates 

that the effects of chronic supplementation with BCAA on performance in trained rats do not involve 

changes in glucose metabolism. 

Ammonia is a ubiquitous metabolic product producing multiple effects on physiological and 

biochemical systems. Its concentration in several body compartments is elevated during exercise, 

predominantly by the increased activity of the purine nucleotide cycle in skeletal muscle [12,36]. 

Depending on the intensity and duration of exercise, muscle ammonia may be elevated to the extent 

that it leaks (diffuses) from muscle to blood, and thereby can be carried to other organs [12]. The 

direction of movement of ammonia or the ammonium ion is dependent on concentration and pH 

gradients between tissues. As such, ammonia can also cross the blood-brain barrier, although the rate 

of diffusion of ammonia from blood to brain during exercise is unknown [37,38]. It seems reasonable 

to assume that exhaustive exercise may induce a state of acute ammonia toxicity which, although 

transient and reversible relative to disease states, may be severe enough in critical regions of the 

central nervous system (CNS) to affect continuing coordinated activity. Regional differences in brain 

ammonia content, detoxification capacity, and specific sensitivity may account for the variability of 

precipitating factors and latency of response in CNS-mediated dysfunction arising from an exercise 
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stimulus, e.g., motor incoordination, ataxia and stupor. There have been numerous suggestions that 

elevated ammonia is associated with, or perhaps is responsible for, exercise fatigue, although evidence 

for this relies extensively on temporal relationships [3,9].  

In our study, the greater chronic ingestion of BCAA, through the diet, in the EX-S2 group, 

increased the plasma concentration of ammonia in this group [27,33], which might have contributed to 

the reduction time of exercise tolerance in the EX-S2 group in relation to other groups submitted to the 

exhaustion test. This fact suggests that diets featuring high doses of chronically-administered BCAA 

may be toxic and lead to early fatigue during prolonged exercise. According to Shimomura [16], 

chronic BCAA supplementation is effective in increasing plasma BCAA concentration in a resting 

situation because the activity of hepatic branched-chain amino acid transaminase (BCAAT) is very 

low [33,39], in turn increasing the availability of BCAA to the blood circulation and, subsequently, to 

the skeletal musculature. In muscle tissue, BCAA are transaminated with α-ketoglutarate in a reaction 

catalyzed by BCAA aminotransferase, which generates one branched-chain α-keto acid (BCKA)  

and glutamate. Oxidative decarboxylation of BCKA in muscle is low since the activity of the  

branched-chain α-keto acid dehydrogenase (BCKAD) complex is reduced in this tissue. BCKA are 

therefore released into the circulation for subsequent metabolism in the liver, where the activity of the 

hepatic BCKAD complex is high [15]. This mechanism is probably associated with an increase in 

hepatic BCAAT activity, which seems to be proportional to the ingested amount of BCAA [16,33]. 

Therefore, chronic ingestion of large amounts of BCAA increases hepatic BCAAT activity, favoring 

the formation of BCKA in the liver itself. This, in turn, can increase hepatic BCAA catabolism, 

probably favoring during the swimming test to exhaustion, which may have increased the ammonia 

concentration in the EX-S2 group in relation to the other groups.  

Central fatigue is related to the increased release of neurotransmitters, particularly  

5-hydroxytryptamine (serotonin). This hypothesis stems from the fact that exhaustive exercise 

results in a gradual increase in the concentration of plasma free fatty acids, which compete with 

tryptophan for binding to plasma protein albumin [11,40]. Thus, there is an increased concentration 

of free tryptophan, through the displacement of this amino acid from plasma albumin. Under normal 

physiological conditions, tryptophan circulates in the blood with the main fraction (70%–90%) 

bound to plasma albumin. BCAAs compete with free tryptophan by binding to the same transport of 

neutral amino acids in the blood-brain barrier. Thus, the entry of tryptophan into the central nervous 

system (CNS) is regulated by the ratio plasma free tryptophan: BCAA and favored by the decrease 

in BCAA concentration in the blood, resulting from the increased rate of oxidation [41]. Thus, the 

decrease in glycogen stores, increased oxidation of BCAA and high concentration of plasma fatty 

acids act as important factors in increasing the synthesis of the neurotransmitter serotonin in the 

CNS, and this is dependent on the availability of tryptophan—a precursor of serotonin—in the CNS. 

The increased synthesis of serotonin during exercise may be related to the development of central 

fatigue, because this neurotransmitter has several physiological functions, since it operates by mood, 

lethargy, individual behavior, regulation of sleep, body temperature and blood pressure, appetite 

suppression and changes in perceived exertion [41]. In the present study, measurement of 

hypothalamic serotonin concentrations and plasma free fatty acids demonstrated no significant 

differences between the dietary groups, indicating that chronic BCAA supplementation was not 

effective in improving the main parameters indicative of central fatigue. 
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From the results of our study, it can be suggested that there is a tolerance level of BCAA ingestion 

in rats submitted to prolonged physical exercise. It should be noted that acute and sub-acute toxicity 

studies of BCAAs using mice and rats and a chronic toxicity study using rats have been reported. In 

these studies, the BCAA composition used was a 2.1:1:1.2 leucine:isoleucine:valine ratio, and no 

animals died from the single dose of 10 g of BCAA/kg body weight in the acute toxicity study, and the 

half-maximal lethal dose was estimated as >10 g/kg body weight. No toxic effects of BCAA were 

observed at a dose of 2.5 g/kg body weight per day for three months or 1.25 g/kg body weight per day 

for one year [42]. Furthermore, the studies on BCAA supplementation that have been conducted on 

physically active humans show that a rather large dietary excess of the three BCAAs is well tolerated 

when consumed in diets containing surfeit amounts of protein. Ingestion of BCAAs in the diet up to 

450 mg·kg
−1

 body weight per day, which is a little over three times the estimated average requirement, 

appears to cause no adverse effects in healthy adults [43]. 

5. Conclusions 

In conclusion, this study revealed that chronic BCAA supplementation led to increased performance 

in rats subjected to a swimming test to exhaustion following moderate-intensity swimming training. 

The benefits of the diet supplemented with 3.57% BCAA are related to peripheral fatigue but not to 

central fatigue mechanisms in our experimental conditions. However, the chronic ingestion of a diet 

supplemented with 4.76% BCAA led to a reduction in performance.  
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