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ABSTRACT

The human sirtuin silent information regulator 1 (SIRT1) is a NAD"-dependent deacetylase enzyme. It
deacetylates many protein substrates, including histones and transcription factors, thereby controlling
many physiological and pathological processes. Several synthetic inhibitors and activators of SIRT1 have
been developed, and some therapeutic applications have been explored. The indole EX-527 and its deriva-
tives are among the most potent and selective SIRT1 inhibitors. EX-527 has been often used as a pharma-
cological tool to explore the effect of SIRT1 inhibition in various cell types. Its therapeutic potential has,
therefore, been evaluated in animal models for several pathologies, including cancer. It has also been
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tested in phase Il clinical trial for the treatment of Huntington’s disease (HD). In this review, we will pro-
vide an overview of the literature on EX-527, including its mechanism of inhibition and biological studies.

1. Introduction

Human silent information regulator 1 (SIRT1) belongs to the sirtuin
family of enzymes, which constitute class Il of the histone deace-
tylase family (HDAQ). It is the most studied of the seven human
sirtuins known to date. It is a NAD*-dependent deacetylase, which
deacetylates many protein substrates, including histones and tran-
scription factors’. SIRT1 has been linked to type 2 diabetes?, can-
cer’, Alzheimer disease®, and more generally diseases of ageing™®.
In particular, the contradictory roles of human SIRT1 in cancer
have been reviewed and are still a subject of debate’®. To study
these biological activities, the modulation of SIRT1 expression and
activity by bioengineering (mutations, overexpression, siRNA, or
knockout for example) has been largely employed”®'°.

In addition to these genetic manipulation studies, pharmaco-
logical modulation of SIRT1 has been the subject of intense
research. SIRT1 modulators in general and their roles in cancer in
particular have been often reviewed, usually giving an overview of
several inhibitors and activators, but limited information on each
one'"™™. We present here an overview of the literature data on
the SIRT1 selective and potent inhibitor EX-527 (SEN0014196 or
selisistat) since its first disclosure in 2005'>. Key data are reported,
regarding its mechanism of inhibition and inhibitory potency
in vitro, its effect on various cell types (used alone or in combin-
ation with other molecules), biological studies in animal models,
and results of a clinical trial. This review primarily describes stud-
ies in which EX-527 is the main compound of interest, but we
also included selected studies using EX-527 as a control and/or
pharmacological tool to explore SIRT1 related pathways. To com-
plete this overview, we also included some examples in which the
inhibitor EX-527 was used to counteract the effects of other mole-
cules, such as SIRT1 activators.

2. In vitro assays of EX-527 on isolated enzymes and
mechanism of inhibition

2.1. Discovery, properties, ICso values, and structure/activity
relationship studies

EX-527 was identified in 2005 by high throughput screening of
libraries of compounds on the enzyme SIRT1 (Figure 1)'°. It has
now been the subject of more than 200 articles.

A typical synthesis of this family of compounds is depicted in
Scheme 1. These compounds were obtained by a Bischler indole
synthesis. In the first step, a ff-keto ester was brominated on o to
the ketone, affording a bromo keto ester, which was heated in
the second step with an aniline, affording the tetrahydrocarbazole
ester. The ester was then converted to the primary amide under
pressure. In case enantiomerically pure material was needed, sep-
aration by chiral column chromatography was achieved'”.

EX-527 is a potent and selective SIRT1 inhibitor, with 1C5o val-
ues as low as 38nM, depending on assay conditions'®. In the first
report, it was shown to be more selective for SIRT1 than for SIRT2
or SIRT3 (200-500-fold)">. EX-527 does not inhibit class I/l HDAC
activity at concentrations up to 100 uM. EX-527 is racemic, the
active isomer (designated EX-243) being (S), whereas the other (R)
isomer (designated EX-242) is inactive. ICsq values for sirtuin inhib-
ition by EX-527 have been measured in several studies, using a
variety of assay methods and peptide substrates (Table 1). They
range from 0.038 to 3 uM, usually between 0.1 and 1uM. They
depend mostly on the nature and concentration of the peptide
substrates and on NAD" concentration, because of the uncom-
petitive inhibition mechanism of EX-527 (see below). Very strin-
gent structure/activity relationships were described in the original
article’ and were later explained in light of the crystal structure
published in 2013 (see below)*'. Compound 35 (Figure 1) is an
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Figure 1. Structures of SIRT1 inhibitors EX-527 and its analogue Compound 35,
indicating their absolute stereochemistry and the corresponding names used in
the literature’. EX-527 and CHIC-35 are now commercially available from

suppliers.
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Scheme 1. Chemical synthesis of EX-527"°.

analogue of EX-527, very potent inhibitor of SIRT1: the ICs, of the
(S) isomer is 60 nM, and the ICsy of the racemic mixture is 124 nM.
It is selective for SIRT1, with an ICs, for SIRT2 of 2.77 uM'®,

EX-527 was also identified independently in 2006 from another
high throughput screening. The screened compound was in fact
the N-((dimethylamino)methylene)acetamide derivative (a dime-
thylformamide adduct), which was rapidly hydrolysed in aqueous
solution to form EX-527 and dimethylformamide (Scheme 2)*2

EX-527 is also able to block the protein-protein interaction tak-
ing place between deleted in breast cancer 1 (DBC1) and SIRT1%.
DBC1 is an endogenous protein shown to interact with SIRT1 and
to inhibit its catalytic activity>*3. The regulation of this interaction
is complex. For example, DBC1 itself is a substrate of SIRT1, and
deacetylated DBC1 does not bind to SIRT13. However, the team
of Sinclair showed that EX-527 blocks the interaction via an acetyl-
ation-independent mechanism in vitro. They also demonstrated,
using a luciferase complementation assay, that the inhibitor is
able to block the SIRT1-DBC1 interaction in cells with an ICsy of
approximately 1 uM?33,

In addition to sirtuins, EX-527 and racemic 35 (rac-35) have
been tested in vitro on other isolated enzyme and receptor tar-
gets. Overall, they displayed very little to no activity. They did not
inhibit class | and Il HDACs and NAD™" glycohydrolase at 100 pM'=.
PARP are enzymes using the NAD" as cosubstrate for ADP-ribosyl
transfer, producing nicotinamide, like sirtuins. Therefore, inhibitors
targeting the nicotinamide binding pocket like EX-527 could have
an inhibitory effect on PARP enzymes. No inhibition was observed
on PARP1 and PARP10%?2%, On cardiac potassium channels (hERG/
lkr), EX-527 had an 1Cso of 43 uM, with 0% inhibition at 10 uM*’,
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and rac-35 displayed only 10% inhibition at 10 uM'>. Cytochrome
P450 are key enzymes involved in metabolism of drugs. They are
largely evaluated in screening panels of new biologically active
molecules, to identify P450 substrates or inhibitors. On cyto-
chromes P450 (3A4, 2D6, 2C9, 2C19, 1A2, 2C8, and 2E1), both mol-
ecules had weak or no inhibitory potency at 1uM, the highest
values being 23% inhibition for 2C19 and 1A2 with rac-35. ICsg
values determined for EX-527 were higher than 100 uM for all
cytochromes P450 except 2C9 (62.4uM), 2C19 (72.2 pM), and A2
(8.7 pm)'>37,

2.2. Mechanism of inhibition and crystal structures

A simplified mechanism of deacetylation of a substrate catalysed
by sirtuins is represented in Figure 2(A)*®. The acetylated substrate
makes a nucleophilic substitution on the C1’ of the NAD" cofac-
tor, releasing nicotinamide. The 1’-O-alkylimidate intermediate
formed reacts intramolecularly to generate a bicyclic intermediate.
This intermediate is subsequently hydrolysed to form the deacety-
lated product and the 2’-O-AcADPr coproduct.

The mechanism of SIRT1 inhibition by EX-527 is represented in
Figure 2(B), adapted from Gertz et al.?®>. Mechanistic studies on
SIRT1, SIRT3, and Sir2Tm (sirtuin from Thermotoga maritima) dem-
onstrated in all three cases that the inhibition by EX-527 was non-
competitive with substrate and uncompetitive with NAD™.
Therefore, the inhibition potency depends on the NAD" concen-
tration. Binding parameters are summarised in Table 2. K4 values
for EX-527 measured for the apo enzymes and in the presence of
NAD" confirmed the uncompetitive nature of the inhibition.
Indeed, EX-527 does not bind to the apo enzyme, but binds with
low micromolar affinity in the presence of NAD™.

Another interesting aspect of these mechanistic studies con-
cerns the specificity of EX-527 for sirtuin isoforms. The authors
propose that the difference between EX-527-sensitive enzymes
(like SIRT1 and Sir2Tm) and less sensitive ones (like SIRT2 and
SIRT3) comes from differences in their kinetics of catalysis, and
not from differences in the binding pockets, which are very simi-
lar®. Indeed, they suggest that binding of EX-527 either after or
before the rate-limiting step leads to differences in inhibition
potency.

Six crystal structures of sirtuins in complex with the active
enantiomers of the inhibitors, compound (5)-35 and EX-243, have
been described. The first one was between SIRT1, NAD', and
compound (5)-35 (PDB 4I51)>". The others were part of a series of
structures solved to study the mechanism of sirtuin inhibition by
EX-243 (the active enantiomer of EX-527), with human SIRT3 and
Sir2Tm: SIRT3/NAD'/EX-243 (4BV3), SIRT3/ADPr/EX-243 (4BVB),
SIRT3/2'-O-AcADPr/EX-243 (4BVH), Sir2Tm soaking (4BUZ, partially
with substrates Ac-p53 peptide and NAD", and partially with
product 2’-O-AcADPr and EX-243), and Sir2Tm/2'-O-AcADPr/deace-
tyl p53 peptide/EX-243 (4BV2)*.

In all these structures, the inhibitors occupy the nicotinamide
binding pocket (the so-called C-pocket) of the sirtuin, and one of
the following molecules is also co-crystallised, forming a ternary
complex: NAD™, the coproduct 2'-O-AcADPr, or ADPr (Figure 3).
This observation is in agreement with the uncompetitive nature of
the inhibition with the cofactor NAD", which is required for effi-
cient inhibition, as mentioned above. The inhibitors are deeply
buried in the C-pocket and make hydrogen bonds contacts and
hydrophobic interactions with the enzyme, which explain the
stringent structure/activity relationships observed'”.

Moreover, the mechanistic studies showed that sirtuin inhib-
ition with EX-527 allows the formation of one molecule of product
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Table 1. In vitro assays of EX-527 and its analogue 35 on isolated recombinant sirtuins expressed in bacteria.

Compd SIRT1 SIRT2 Other sirtuins References
EX-527 0.0951a 19.6° SIRT3: 48.7° Napper et al."¢
1.29
0.038%¢ SIRT5: > 50 uM® Solomon et al.'®
3 [1-5]f 79 [45-140]9 Huhtiniemi et al."”
0.165 +0.050" Liu et al."®
0.125 +0.021'
0.74+0.25 Smith et al."
1.18 £0.24¢
0.38° 32.6' Peck et al.2°
0.16 £0.01° > 10 Pasco et al.!
(~35% at 0.5 PM
0.16+0.01° 48.5+15.2 Rotili et al.2?
83.6+4.2% at 50 pM? 455+2.8% at 50 pM' Mellini et al.?
0.26™ 29" SIRT3: > 50™ Disch et al.>*
0.09+0.03" SIRT3: 22.4+2.7° Gertz et al®
Sir2Tm: 0.90 +0.30™P
SIRT5: > 25 pM®
SIRT6: 56 + 8% at 200 M’ Kokkonen et al 2
0.33+0.03° Yang et al.”’
0.5t 6.5t Therrien et al.?®
0.10 [0.05-0.19]" 3.0 [2.1-4.4]" SIRT3: 165 [63-430]" Ekblad et al.®®
SIRT6: 107 [48-240]"
0.1+0.06 20.1+4.2° Schnekenburger et al.*°
EX-243 0.123° Napper et al."
EX-242 > 100°
Rac-35 0.1242 2.77° SIRT3: > 100°
0.652°
(5)-35 0.063°
(R)-35 23.0°

ICso values are given in uM (with errors as published) and/or %inhibition is indicated at the given concentration. This table constitutes an overview of representative
data in the literature. It is important to note that only ICsy values from assays performed under the same experimental conditions are comparable.
aFluorlmetrlc assay using a peptide substrate derived from the sequence of p53 (K382): Ac-RHKK(Ac)-AMC (AMC = 7-amino-4-methyl-coumarin).

PRadioactive nicotinamide release assay using unlabelled 19-aminoacid peptide substrate.

SEM (standard error of the mean) < 30% for all data in this article.
9SIRT1 expressed and purified from mammalian cells.
eRelease of PHJacetate from acetylated cytochrome c.

fRadioactive nicotinamide release assay using a peptide substrate derived from the sequence of p53 (K382): Ac-RHKK(Ac)-AMC.

9Radioactive nicotinamide release assay using a peptide substrate derived from the sequence of p53 (K330): Ac-QPKK(Ac)-AMC.

_hMicroquidic mobility shift assay using a labelled peptide substrate derived from the sequence of p53 (K382): fluorescein-SKKGQSTSRHKK(Ac)LMFKTEGPDS.

fNAD+ bioluminescence assay using a peptide substrate derived from the sequence of p53 (K382): HLKSKKGQSTSRHKK(Ac)LMFK.

JEnzyme-coupled system detecting nicotinamide formation, using a peptide substrate derived from the sequence of histone H3 (K14) named AcH3:

KSTGGK(Ac)APRKQ.
kCharcoal-binding assay using [*H]JAcH3.

'Fluorimetric assay using a peptide substrate derived from the sequence of p53 (K330): Ac-QPKK(Ac)-AMC.

MMass spectrometry assay using the peptide substrate derived from the sequence of p53 (K382): Ac-RHKK(Ac)W-NH,.

"Enzyme-coupled system detecting nicotinamide formation, using a peptide substrate derived from the sequence of p53 (K382): RHKK(Ac)LMFK.

°Enzyme-coupled system detecting nicotinamide formation, using a peptide substrate derived from the sequence of acetyl-CoA synthetase 2 (ACS2, K642):

TRSGK(AC)VMRRL.
PSir2Tm: sirtuin from Thermotoga maritima.

9Enzyme-coupled system detecting nicotinamide formation, using a peptide substrate derived from the sequence of carbamoyl phosphate synthetase 1 (CPS1, K527):

FKRGVLK(AC)EYGVKV.

"Fluorimetric assay using a peptide substrate derived from the sequence of histone H3 (K56): Ac-RYQK(Ac)-AMC.
*Luminescence assay using a peptide substrate derived from the sequence of p53 (K330): Z-QPK(Me),K(Ac)-aminoluciferin.

Fluorometric assay using the substrate Chz-K(Ac)-AMC.
“Fluorometric assay kits, undisclosed substrates.

CEHQQJ& Cf@r ot

N-((dimethylamino)methylene)
acetamide derivative of EX-527

Scheme 2. Spontaneous hydrolysis of the DMF adduct of EX-527.

EX-527 DMF

per molecule of enzyme, indicating that the inhibitor binds
most efficiently after bicyclic intermediate formation and allows
coproduct formation®*. The authors proposed that EX-243
inhibits sirtuins mostly by binding in the presence of the copro-
duct 2'-O-AcADPr. Finally, from the comparison of crystals struc-
tures with and without the inhibitor, it appears that a flexible

cofactor-binding loop moves towards the inhibitor and the copro-
duct during inhibition, resulting in a “closed” conformation pre-
venting product release®

3. Cellular assays of EX-527

EX-527 has been tested on several cell lines, either as the main
molecule of interest for potential therapeutic applications, or as a
control experiment for comparison with other sirtuin modulators
(inhibitors or activators). Often, it has been used as a pharmaco-
logical tool to demonstrate the involvement of SIRT1 in a bio-
logical response. An overview of literature data is summarised in
Table 3.
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Figure 2. (A) Mechanism of sirtuin-catalysed deacetylation of a peptide (or protein) substrate Ac-Pep (acetylated peptide). For simplicity, acidic and basic general
catalysis is not represented in this mechanism. (B) Proposed simplified mechanism of sirtuin inhibition by EX-243, adapted from Gertz et al.”®. E: enzyme. Note that for-
mer studies of SIRT1 inhibition by substrate analogues suggested (i) a random addition of substrates (therefore, Ac-Pep could be added first to the enzyme, not repre-
sented here for simplification) and (i) a departure of the peptide product from the enzyme in the last step (which would disagree here with the existence of the
crystallised complex E/2-O-AcADPr/EX-243)%.

Table 2. Binding parameters of EX-527 with sirtuins.

Kd Ka Kd Kq
Sirtuin Ki (Ac-Pep) K; (NAD™) (apo) [Ac-Pep] [NAD '] (Ac-Pep +NAD™) References
SIRT1 0.408° 0.287° Not binding® 130 Napper et al.'®
Mixed Mixed/uncompetitive [1 mM] Zhao et al.’’

Sir2Tm 1.8 0.4 3.3+04° >180° >170° 6.0 +£0.4° 49+05° Gertz et al.”

Non-competitive Uncompetitive [T mM] [5mM]
SIRT3 33.4+4.49 31.3+2.19 >330° >180° 16.5+2.9° 10.0 £ 1.4¢

Non-competitive Uncompetitive [1TmM] [5mM]

Ki and Kq4 values are given in uM (Ac-pep: acetylated peptide).

Fluorimetric assay using a peptide substrate derived from the sequence of p53 (K382): Ac-RHKK(Ac)-AMC (AMC = 7-amino-4-methyl-coumarin).

PDetermined by SPR.

‘Enzyme-coupled system detecting nicotinamide formation, using a peptide substrate derived from the sequence of p53 (K382): RHKK(Ac)LMFK.

9Enzyme-coupled system detecting nicotinamide formation, using a peptide substrate derived from the sequence of acetyl-CoA synthetase 2 (ACS2, K642):
TRSGK(AC)VMRRL.

Kq4 values determined using microscale thermophoresis.

On tumour cell lines, several reports demonstrated the ability Ten years after this report, the list of EX-527 studies has grown
of EX-527 to increase p53 acetylation from 1 to 25puM concentra- to reinforce this view (Table 3). For example, a decrease in cell
tions, when used either alone or in combination with cytotoxic  survival and migration and an increase in apoptosis was recently
molecules'®?*#446:51:5663 "EX_527 was shown to improve the effi-  observed on hepatocellular carcinoma (HCC: HepG2 and Huh7)
ciency of cytotoxic agents on cancer cells, with several chemother- (el [ines with EX-527 alone®. Moreover, the same study demon-
apeutic and genotoxic agents"**>®°. However, in few cases, strated that EX-527 induced the downregulation of ABC transport-
EX-527 administered alone increased cell proliferation of cancer g P-gp and MRP3 in HepG2 cells, suggesting an additional
cell lines*”". The conclusion of one of these studies on the role potential application of this SIRT1 inhibitor in combination with
of SIRT1 in cancer cells is a simple summary of these apparently ., entional therapeutic drugs to overcome multi-drug resistance
contradictory results: (MDR) during HCC therapy®®. Indeed, one of the most potent

In summary, our results suggest that both activators and inhibitors of effect was obtained when EX-527 was used in combination with
SirT1 have therapeutic potential as anti-tumor agents. A simple scenario Hsp-90 inhibitors on CSCs (cancer stem-like cells) or MDR variants,
is that SirT1 activators may impart cancer prevention effects by . R . .. s e .

enhancing the growth-inhibitory effect of SirT1 in benign tumors. Its with a potent mcresaszeE in cytotoxicity of the Hsp-90 inhibitor with
effect on advanced stage tumors may be heterogeneous, depending on only 10nM EX-527°"°. Moreover, EX-527 at 1uM decreased col-
whether a tumor has evolved to rely on SirT1 for survival. However, ony formation of ovarian carcinoma cells, with or without overex-

when tumors are being treated with chemotherapy, SirT1 inhibitors may

be useful for enhancing apoptotic response®® pression of SIRT172. At 600nM, it suppressed cell migration and

inhibited the occurrence of epithelial-mesenchymal transition
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Sir2Tm

Figure 3. Crystal structures of sirtuins in complex with indole inhibitors EX-243 and its analogue (S)-35. Left: SIRT1/NAD"/(S)-35 (4151)®"; middle: SIRT3/ADPr/EX-243
(4BVB); right: Sir2Tm/2’-0-AcADPr/deacetyl p53 peptide/EX-243 (4BV2)®. Active site close-up representations are displayed below the full structures. Pep: deacetyl p53

peptide.

(EMT) in chemotherapy resistant oesophageal cancer cells’".
Overall, several factors are important to consider to understand
the effect of EX-527 on cancer cells: (i) the type of cell line and
the cancer stage, from benign to advanced, (ii) the presence of
other agents, conventional chemotherapy, or additional HDAC
inhibitors for example, and (iii) the dose, because at higher doses
(ex. 40uM or above), EX-527 may significantly inhibit SIRT2 and
may have other targets. For potential anti-cancer therapeutic
applications, aiming for a specific SIRT1 inhibition at low concen-
trations of EX-527 (ex. 1uM or below) in combination with cyto-
toxic agents may be the most promising strategy.

On non-cancer cell lines, fewer studies were published than on
cancer-cell lines. For example on HUVEC, EX-527 was shown to
protect from H,0, damage®®, but to abolish the protective effect
of resveratrol under high-glucose conditions®’. Several articles
described effects on cells involved in the immune system, macro-
phages, and T cells. Beneficial effects on autoimmune diseases
and graft rejection problems can be envisioned from these cell
assays, for example through reduction of effector T cell prolifer-
ation and differentiation®”%°, and increase in the number and sup-
pressive function of T regulatory cells Tregs (see Chapter
undefined for in vivo results)®.

Many of the studies evaluating the role of EX-527 in cells sum-
marised in this review incorporated control experiments with
SIRT1 knockdown, mostly with anti-SIRT1 siRNA. These studies, in
which the same effects were obtained with anti-SIRT1 siRNA or
with its pharmacological inhibition with EX-527, make a strong
case for the use of EX-527 as a pharmacological tool to study
SIRT1 activity. However, the fact that EX-527 only targets SIRT1
must be tempered. Indeed, in vitro studies show that the extent
of its specificity, in particular towards SIRT2, depends on the assay
types (nature of the substrate and concentration of NAD™ for
example) and may not be so high under certain conditions (Table
1). Consequently, its specificity inside cells or in vivo is even less
predictable and quantifiable. Therefore, the results of studies con-
cluding that SIRT1 is involved in the observed effect must be

taken with caution, if they are solely based on the effect of EX-
527 as a pharmacological control. SIRT2 and other unknown
potential protein targets may be involved.

4, In vivo assays of EX-527

EX-527 has been tested in several organisms, mostly mice and
rats, but also in the nematode C. elegans, in Drosophila mela-
nogaster (D. melanogaster) and in humans in exploratory clinical
trials (Tables 4 and 5).

Pharmacokinetic data were obtained in mice and human, both
in female and male. Selected parameters are given in Table 4. In
R6/2 mice model of Huntington’s disease (HD) with 10-20 mg/kg
dosing, average plasma concentrations over 24h were in the low
micromolar range (1.5-3.2uM)*. In healthy male human volun-
teers with 150-300 mg doses, average plasma concentrations over
24h were also in the low micromolar range (1.6-3.9uM)*’.
However, a higher than proportional concentration (11.8 M) was
observed with 600 mg dosing, suggesting that one or more clear-
ance mechanisms are approaching saturation at this dose. For
multiple oral doses (for ex. 300 mg daily for 7d for male), the data
suggested that the pharmacokinetic steady-state was reached
within 4d, with an exposure higher than predicted from single-
dose data.

The fraction of unchanged EX-527 excreted in the urine was
very low for all doses in male subjects (<0.02% up to 24h post-
dose). The compound was transformed in vivo by hydroxylation
and oxidative deamination followed by glucuronic acid conjuga-
tion, across all species studied (mouse, rat, dog, and human)®’.

Pharmacogenomics studies suggested that EX-527 treatment in
human was associated with a specific transcriptional signature in
blood cells, with genes involved in mechanisms of signal transduc-
tion and transmembrane transport, as well as metabolic and redox
processes®’.
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Table 3. Continued.

Cell lines®
HL-7702

References

Zhang et al %

Comments

Effect of EX-527 at the protein level
In combination with isoniazid, increases

Effect of EX-527 on cells

At 1 puM, aggravates the cell

Added agent

No effects on cells and proteins when

Isoniazid

damages caused by isoniazid further the expression of used alone

(antituberculosis drug)

inflammatory regulators and

cytokines, and the level of H3K9

acetylation in the promoter region of

the IL-6 gene
Increases p53 acetylation and total

Daenthanasanmak

At 10 pg/mL, reduces T cell

None

T cells stimulated with

et al.%®

protein acetylation

proliferation

allogenic APC (co-

cultures)
MDA-MB-231 (high

Wang et al.”

No effect without a cytotoxic agent

Decreases the protection against

Increases the cytotoxicity, the

Adriamycin or paclitaxel

Dose of EX-527 not found

cytotoxic agents given by the high

NNMT expression

inhibition of colony formation,

NNMT expression)

and the apoptosis caused by the

cytotoxic agents

?Cell lines: 697: B cell precursor leukaemia; A549: adenocarcinomic human alveolar basal epithelial cells (lung cancer); AML12: alpha mouse liver 12 (from hepatocytes); ASPC-1: pancreatic cancer; B-CLL: B cell chronic

lymphocytic leukaemia; BM(D)Ms: bone-marrow derived macrophages; BXPC-3: pancreatic cancer; CEM/VLB;o0: MDR variant of acute lymphoblastic leukaemia cells (overexpressing P-gp); CML: human chronic leukaemia;

CRC: colorectal cancer; CSCs: cancer stem-like cells; GBM: glioblastoma multiforme; HCC: hepatocellular carcinoma; HCT-116/HCT-15: human colon cancer; Hela: cervical cancer; HHUA, HEC151, and HEC1B: human endo-

metrial carcinoma; HMEC: primary human mammary epithelial cells; HL-7702: human normal liver cells; Hs683: glioblastoma; HUVEC: human umbilical vein endothelial cells; Jurkat: acute T cell leukaemia; MCF-7: human
breast cancer; MDA-MB-231: breast cancer; NCI-H460: human non-small cell lung cancer; PANC-1: pancreatic cancer; PC-12: rat pheochromocytoma cells; SGC7901: human gastric adenocarcinoma; SH-SY5Y: subclone

from bone marrow cells from neuroblastoma; Th17: T helper 17 cells (not naive CD4 T cells); THP-1: human leukaemia monocyte; TNBC: triple negative breast cancer; Tregs: T regulatory cells; U373: glioblastoma; U937:

human myeloid leukaemia (AML: acute myelogenous leukaemia); U-2 OS: human bone osteosarcoma epithelial cells.

5-FU: 5-fluorouracil; ABC: ATP binding cassette; AMPK: AMP-activated protein kinase; APC: antigen-presenting cells; ATF4: activating transcription factor 4; Atg5: autophagy-related 5; Bcl-xL: B cell lymphoma-extra-large;

FoxO: forkhead box O; FOXP3: human forkhead box P3; HMGB1: high-mobility group box 1; HSF1: heat shock factor 1; Hsp: heat shock protein; LPS: lipopolysaccharides; MRP3: multidrug resistance-associated protein 3;

mHtt (mHttex1pQ72): mutated Htt (huntingtin) exon 1 fragment with expanded Q repeat, presenting aggregates, and cytotoxicity, model of Huntington’s disease (HD); MnSOD: manganese superoxide dismutase; NNMT:

nicotinamide N-methyl transferase; Ox-LDL: oxidised low-density lipoprotein; P-gp/MDR1: P-glycoprotein/multidrug resistance protein 1; RANKL: receptor activator of nuclear factor-xB ligand; RORyt: RAR-related orphan

receptor y-t; TNF-oi: tumour necrosis factor-o.
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The conclusion of the safety study in healthy volunteers indi-
cated that EX-527 was safe and well tolerated by female and male
subjects after single doses up to 600 mg and multiple doses up to
30000/d for 7d. Moreover, no meaningful cardiovascular effects
were observed in beagle dogs up to 100 mg/kg®’.

In vivo, numerous studies have been carried out to explore the
effect of EX-527 under physiological or pathological conditions
(see Table 5 for representative examples). Although most cell-
based assays used cancer cells, in vivo, EX-527 was assayed in a
more diverse set of pathologies, and only in a small number of
cancer models on mice xenograft. Overall, it appeared very well
tolerated when administered alone, in agreement with the phase |
clinical trial described above®’.

Apparent detrimental effects of EX-527 often consisted in
inhibition of beneficial effects induced by additional compounds.
For example, mice and rats suffering from ischaemia, sepsis, or
chronic obstructive pulmonary disease were treated with several
natural products including melatonin’®78° diallyl trisulphide®,
and punicalagin®. Other examples include the effects of ghre-
[in82#* hydrogen-rich saline®, carbon monoxide®, the SIRT1 acti-
vators resveratrol®”7%°" and scopolin®?, and the PARP inhibitor 3-
aminobenzamide®. In all these cases, EX-527 was used as a
pharmacological tool to demonstrate that SIRT1 activation was
involved in the beneficial effects of the compounds under study.
When used alone, a detrimental effect of EX-527 on pancreatic
tumour xenograft was observed in one study, which gave surpris-
ing results”’. Indeed, EX-527 increased the cytotoxic effect of gem-
citabine in vitro in PANC-1 cells, in agreement with another
study®, but it activated the tumour xenograft of the same cells
in vivo’’. The activity of EX-527 on other cell types in the tumour
microenvironment is a possible explanation for this discrepancy.
We note that in this xenograft study, the addition of EX-527 at
10mg/kg with gemcitabine apparently did not have any effect,
but the tumour growth in the control experiments with gemcita-
bine alone was already very limited.

Beneficial effects were observed in several pathologies. In can-
cer, EX-527 decreased the tumour growth of xenografted mice
with endometrial and lung cancer cells®**. In immunity-related
diseases, a first report in 2011 indicated that, when used in com-
bination with rapamycin, it prolonged heart allograft survival in
mice”®. The involvement of Tregs through increased expression of
Foxp3 was proposed. Other studies confirmed these beneficial
effects of EX-527 on Tregs through increased Foxp3 expression
and acetylation, and the possible involvement of another SIRT1
substrate, NF-xB%*7>3, In a mouse model of multiple sclerosis, an
immune disorder, it strongly suppressed the number of paralysed
mice, through an effect of Th17 effector cells®.

In a phase Il clinical trial involving HD patients, EX-527 was
found to be safe and well-tolerated’®. However, no clinical benefit
was observed after the two weeks treatment. For this slowly pro-
gressive neurodegenerative disease, longer treatment durations of
2years may be required to observe clinical benefits. In addition,
and maybe for the same reason, no effects on the levels of sol-
uble mutated huntingtin (mHtt) in healthy peripheral blood
mononuclear cells (PBMCs) were observed.

5. Conclusion

EX-527 has been tested on many cell lines, alone or in combin-
ation with other molecules, resulting in a variety of cellular effects.
Moreover, it displayed several biological effects in vivo in various
pathological conditions. These results are in agreement with the
fact that its specific target SIRT1 is a key regulator of cell fate,
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Table 4. Selected pharmacokinetics parameters of EX-527 (in plasma).

Organism Dose Crnax (HM) tmax (h) ti/2 (h) Cssavg (M) References
C57bl/6J mice 10 mg/kg 23 Napper et al."”
R6/2 mice 5mg/kg 6.9+6.9 03+0.1 27423 0.4+0.2 Smith et al.*’
(mean+SD, n=3) 10 mg/kg 10.5+£3.6 0.8+0.4 14+0.5 1.5+04
10 mg/kg? 21.5+3.3% 1.0+0.0° 2.8+04° 3.0+£04°
20 mg/kg 293+6.4 0.5+£0.0 0.9+0.2 32104
Healthy human volunteers® 150 mg 6.7+1.8 37 39+1.6 1.6+0.6 Westerberg et al.>’
300mg 13.1+45 35 49+0.8 39+£22
600 mg 26.6+£10.5 4.0 6.1+£14 11.8+6.0
HD patients” 10mg/d 0.6+0.2 2.0 23+09 0.11+0.05 Siissmuth et al.”?
100 mg/d 59+£19 3.0 33+16 1.8+09

R6/2 is a mice model of Huntington’s disease (HD).
Crmax: maximal plasma concentration; t;/,: terminal plasma half-life; Cgs g average plasma concentration over 24 h.
?Values measured in brain.
PData selected for males (larger samples and dose ranges).

Table 5. Representative examples of in vivo assays of EX-527.

Proposed protein(s) and/or

Organism Physiology/pathology Effect of EX-527 pathway(s) involved References
Transgenic nematodes Oculopharyngeal muscular Fully rescues motility at 33.3 uM Sir2% inhibition modulates the Pasco et al.”!
Caenorhabditis elegans dystrophy (OPMD) activity of FoxO transcription
factor, therefore, decreasing
polyalanine expansion in PABPN1
Transgenic flies Drosophila Model of Huntington’s At 0.1 and 1 pM, limits the loss of  Sir2* inhibition increases acetylation Smith et al.”’
melanogaster disease (HD) photoreceptor neurons of mHtt exon 1 fragment,
At 10 pM, increases the survival increasing its rate of clearance.
of flies Beneficial effects were eliminated in
Sir2 (—/—) flies
C57BL/6 mice Heart allograft At 1mg/kg/d in combination with  Involvement of Foxp3 in Tregs cells Beier et al.”*
rapamycin, prolonged heart
allograft survival
Mice Adoptively transferred Tregs At 40mg/kg/d i.p., increases Tregs  Promotes Foxp3 expression in Tregs,  Kwon et al.”
(potential applications in stability by increasing acetylation on 3 of
autoimmune diseases and its lysine sites
graft rejections)
R6/2 mice Model of HD At 20 mg/kg, increases the Increases acetylation of mHtt exon 1 Smith et al.*’
median survival by 3 weeks fragment, increasing its rate of
and decreases the number of clearance
aggregates in brains Possibly other SIRT1 substrates
At 5mg/kg, reduces the involved
ventricular volume in brains
(but not significant at
20 mg/kg)
Mice Thrombocytopenia At 20 mg/kg, decreases the Increases the acetylation of p53 and  Kumari et al.>
platelet count and the number the level of conformationally
of reticulated platelets active Bax
C57BL/6J mice Sepsis induced by caecal ligation At 5mg/kg i.p., abolishes the FoxO1, p53, NF-kB, and Bax Zhao et al.”®
and puncture protective effects of melatonin
Mice Model of multiple sclerosis At 10 mg/kg subcutaneous Effect on Th17 effector cells Lim et al.”’
injection, strongly suppresses through RORyt
the number of paralysed mice
(from 100 to ~20%)
Mice Endometrial cancer model with At 10 mg/kg/week i.p.:Decreases This study also shows that SIRT1 Asaka et al.>
HHUA and HEC1B cells the tumour volumes stimulates the proliferation of
xenografts No apparent adverse effects endometrial carcinoma cells
Mice Pancreatic cancer model with At 10 mg/kg i.p. alone, promotes - Oon et al.””
PANC-1 xenograft the tumour growth
No synergic effect with
gemcitabine (however, almost
no tumour growth was
observed with gemcitabine
alone)
Mice Model of depression induced by Injection in the nucleus BDNF signalling Kim et al.”®
chronic social defeat stress accumbens at 0.5 pg/d blocks
procedure anxiety-like (open field,
elevated maze) and social
avoidance behaviours
Mice Model of Parkinson’s disease (PD) At 10 mg/kg/d i.p., blocks the Reduces SIRT1-mediated (activated Guo et al.”

induced by MPTP

protective effects of resveratrol
(which ameliorates the motor
deficit and physiopathological
changes)

by resveratrol) LC3 deacetylation
and subsequent autophagic
degradation of o-synuclein

(continued)
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Organism

Physiology/pathology

Effect of EX-527

Proposed protein(s) and/or
pathway(s) involved

References

Mice

Male Balb/C mice

Mice (ApoE~"")
Mice (db/db)
Balb/C and several

other mice

Male Sprague-Dawley rats

Male Sprague-Dawley rats

Male Sprague-Dawley rats

Male Sprague-Dawley rats

Sprague-Dawley rats

Male Sprague-Dawley rats

Male Wistar rats

Male Sprague-Dawley rats

HD patients

Lung cancer model with A549
cells xenografts

Acute lung injury associated to
endotoxemia, induced by LPS
exposition

Atherosclerosis induced by collar
placement around the carotid
artery

Diabetic wound healing on
diabetic mice

Graft-versus-host disease (GVHD)
after mismatch grafts, and
graft-versus leukaemia (GVL)
treatment

Food intake of fasted animals

Orexigenic action of ghrelin (food
intake)

Model of cerebral oxidative stress
by intrastriatal infusion of
malonate

Light-induced retinal damage

Compression-induced skeletal
muscle injury

Model of partial hepatic warm
ischaemia/reperfusion injury
(microvascular clamp)

MCAO model of cerebral
ischaemia

Model of myocardial ischaemia/
reperfusion injury

HD

At 30 mg/kg/d:

Synergistically represses lung
cancer growth with MK-1775
(WEET1 kinase inhibitor)

No apparent toxicity on normal
tissues

At 10 mg/kg, suppressed LPS-
induced elevation of TNF-o and
IL-6, and attenuated
histological abnormalities

At 10 mg/kg i.p., increases the
atherosclerotic lesion

At 10 uM (topical application),
delays diabetic wound healing
promoted by resveratrol

At 2mg/kg/d i.p., improves the
clinical scores and prolongs
survival in GVHD.

Preserves the beneficial effect
of graft in GVL treatment

At 5 pg twice daily i.c.v. injection,
decreases food intake and
reduces body weight

At 1 pg/rat i.c.v.,, decreased the
orexigenic action of ghrelin

At 1 ng (cerebrospinal
concentration of ~6 pM)
reverses the beneficial effects
(neurological improvement and
reduction of striatal lesion) of
PARP inhibition by 3-
aminobenzamide

At 10 pg intravitreal injection,
reduces the retinal protection
by hydrogen-rich saline

At 1 mg/mg i.p., abolishes the
protective effect of
unacetylated ghrelin

At 5mg/kg i.v., decreases the
beneficial effects on liver injury
of a carbon monoxide-releasing
molecule [Ru(CO)3Cl,],

At 10 pg i.c.v., reduces the
infarction volume of ischaemic
brains and improves the
survival (but not the
neurological deficits)

At 5mg/kg/d ip.:

Abolished the beneficial effects of
punicalagin (enhanced cardiac
function and reduced
myocardial infarction)

No effect when administered
alone on sham-operated rats
At doses up to 100 mg/d for 14 d,
no observable clinical effects
and no change in immune

markers

Reduces homologous recombination
(HR) repair activity by acetylation
of machinery proteins NBS1 and
Rad51

The beneficial effects were reversed
by addition of an mTOR activator

Decreases the autophagy process
and enhances intraplaque
macrophage infiltration

Foxo1 and c-Myc transcription
factors involved

Reduces T cell proliferation
Less pathogenic T cells are
generated
Reduces pro-inflammatory
cytokines production

Involvement of melanocortin
receptors through SIRT1 mediated
FoxO1 activity regulation

Blocks the activation of
hypothalamic AMPK by ghrelin
through p53 pathway (does not
block the GH release)

No effect on the neurological score
and lesion when used alone
(without 3-aminobenzamide)

Targets SIRT1 inhibition of apoptosis
(through Bax and Bcl-2) and
oxidative stress (through SOD)

Increases the levels of apoptosis and
necroptosis in compressed muscle
tissues despite the presence of
unacetylated ghrelin

Decreases the inhibition of
acetylation, translocation to the
cytoplasm, and release of HMGB1
by [Ru(CO)sCly],

Decreases rip3 and mlkl gene
expression and protein levels
(regulators of necroptosis)

Blocks the beneficial effects of
punicalagin on oxidative/
nitrosative damage and
inflammation, and reverses its
activation of the NRF-2-HO-1
pathway

No effect on levels of total
circulating mHtt

Chen et al.%°

Huang et al.%

Yang et al.*'

Huang et al.5’

Daenthanasanmak
et al.®

Cakir et al.®

Velasquez et al.®?

Gueguen et al. >

Qi et al®

Ugwu et al.®*

Sun et al.%

Nikseresht et al.®®

Yu et al®

Siissmuth et al.”®

2Sir2 is the homologue of mammalian SIRT1.
AMPK: AMP-activated protein kinase; ApoE: apolipoprotein E; BDNF: brain-derived neurotrophic factor; FoxO: forkhead box class O; Foxp3: forkhead box P3; HHUA
and HEC1B: human endometrial carcinoma cells; HMGB1: high-mobility group box 1; HO-1: haem oxygenase-1; i.c.v.: intracerebroventricular; i.p.: intraperitoneal; LC3:
microtubule-associated protein 1 light chain 3; LPS: lipopolysaccharides; MCAO: middle cerebral artery occlusion; mHtt: mutated Htt (huntingtin) exon 1 fragment
with expanded Q repeat, presenting aggregates and cytotoxicity, model of Huntington's disease; mlkl: mixed lineage kinase domain-like protein; MPTP: 1-methyl-4-
phenyl-1, 2, 3, 6-tetrahydropyridine; mTOR: mammalian target of rapamycin; NRF-2: nuclear factor erythroid 2-related factor 2; PABPN1: polyadenylate-binding pro-
tein, nuclear 1; rip3: receptor-interacting protein kinase 3; Th17: T helper 17 cells (not naive CD4 T cells); TNF-oi: tumour necrosis factor-o; Tregs: T regulatory cells.
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through its deacetylation action on a large number of protein sub-
strates. The expression and the activity of SIRT1 can be either up-
or down-regulated, depending on the cellular state in the physio-
logical or pathological conditions under study. The administration
of EX-527 appears to be beneficial in cases where the activity of
SIRT1 is upregulated. Perhaps the most promising in vivo results
have been obtained on mice and rats in autoimmune diseases
and allograft tolerance, with a significant increase in survival.

Although the results of a phase Il clinical trial in HD did not
provide the expected beneficial effects, the safety of EX-527 was
demonstrated with patients in phase | clinical trials. Therefore, fur-
ther preclinical and clinical studies in other pathologies appear
attractive. In this way, the SIRT1 Antagonism For Endometrial
Receptivity (SAFER) clinical trial with EX-527 (Selisistat) will enrol
around 30 women with unexplained failure after embryo transfer
with euploid embryos. This phase Il trial will start on 1 January
2021, and finish on 31 December 2022. The drug will be adminis-
tered daily for 5d, beginning with the start of progesterone
therapy, and ending 24h before embryo transfer. Pregnancy
rates and pregnancy outcome will be monitored (trial number
NCT04184323).

New derivatives of EX-527 with greater activity and selectivity
for SIRT1, as well as improved pharmacokinetic and pharmacody-
namic properties, may lead to results that are even more promis-
ing, and reach further advanced clinical trials.
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