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Endogenous retroviruses and retrotransposons also termed retroelements (REs) are 
mobile genetic elements that were active until recently in human genome evolution. REs 
regulate gene expression by actively reshaping chromatin structure or by directly provid-
ing transcription factor binding sites (TFBSs). We aimed to identify molecular processes 
most deeply impacted by the REs in human cells at the level of TFBS regulation. By using 
ENCODE data, we identified ~2 million TFBS overlapping with putatively regulation- 
competent human REs located in 5-kb gene promoter neighborhood (~17% of all TFBS 
in promoter neighborhoods; ~9% of all RE-linked TFBS). Most of REs hosting TFBS were 
highly diverged repeats, and for the evolutionary young (0–8% diverged) elements we 
identified only ~7% of all RE-linked TFBS. The gene-specific distributions of RE-linked 
TFBS generally correlated with the distributions for all TFBS. However, several groups of 
molecular processes were highly enriched in the RE-linked TFBS regulation. They were 
strongly connected with the immunity and response to pathogens, with the negative 
regulation of gene transcription, ubiquitination, and protein degradation, extracellular 
matrix organization, regulation of STAT signaling, fatty acids metabolism, regulation of 
GTPase activity, protein targeting to Golgi, regulation of cell division and differentiation, 
development and functioning of perception organs and reproductive system. By con-
trast, the processes most weakly affected by the REs were linked with the conservative 
aspects of embryo development. We also identified differences in the regulation features 
by the younger and older fractions of the REs. The regulation by the older fraction of 
the REs was linked mainly with the immunity, cell adhesion, cAMP, IGF1R, Notch, Wnt, 
and integrin signaling, neuronal development, chondroitin sulfate and heparin metabo-
lism, and endocytosis. The younger REs regulate other aspects of immunity, cell cycle 
progression and apoptosis, PDGF, TGF beta, EGFR, and p38 signaling, transcriptional 
repression, structure of nuclear lumen, catabolism of phospholipids, and heterocyclic 
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molecules, insulin and AMPK signaling, retrograde Golgi-ER transport, and estrogen 
signaling. The immunity-linked pathways were highly represented in both categories, 
but their functional roles were different and did not overlap. Our results point to the 
most quickly evolving molecular pathways in the recent and ancient evolution of human 
genome.

Keywords: endogenous retrovirus, transcription factor binding site, retrotransposon, retroelement, molecular 
pathway, immunity, evolution, human genome evolution

(19). For the HERV/LR elements, ~110,000 inserts (~15%) had at 
least 2 TFBS and ~140,000 individual inserts (~19%)—at least 1 
DHS, as shown in the previous report (19). Finally, at least ~31% 
of all mapped human transcription start sites were identified 
within the REs (20).

Like never before, high-throughput mapping of functional 
genomic features such as TFBS, DHS, and different types of his-
tone binding sites provides opportunity to explore RE influence 
on gene expression in a comprehensive way. Besides individual 
affected genes, their functional groups can be assayed, including 
gene families and molecular pathways. Intracellular molecular 
pathways are involved in all major events in the living organisms. 
The major groups are metabolic, cell signaling, cytoskeleton 
reorganization, and DNA repair pathways (21, 22).

The pathways may include tens or hundreds of nodes and 
aggregate up to several hundreds of different gene products (23, 
24). Remarkably, each node in a pathway is typically built not by 
just a single-gene product, but rather by their groups. Those can 
be formed by the homologous families of similarly functionally 
charged proteins, or by the various protein subunits which may be 
all needed to execute a function required for the pathway activity 
(25, 26).

For few decades, the molecular pathways are still on the 
forefront of biomedical sciences (27–30). Hundreds of thousands 
of molecular interactions and thousands of molecular pathways 
have been discovered by the molecular biologists and cataloged 
in different databases (31–37).

On the other hand, the gene products can be sorted accord-
ing to their functional role in the cell and with reference to the 
molecular or supramolecular processes they are involved. This 
way of data aggregation does not require knowledge of the 
particular chains of molecular interactions, as for the above 
group of the pathway databases. For example, the gene ontology 
(GO) database provides functional and structural labels to the 
gene products or their groups.1 By uploading a specific set of 
gene products, one can find it out whether this list is statistically 
significantly enriched in certain types of functional gene families. 
For example, in certain applications this enables to make a quick 
overview of the differentially expressed and most frequently 
mutated groups of genes (38).

In this study, we aimed to identify molecular processes most 
deeply regulated by the RE inserts in the human cells. To this end, 
we mapped the available TFBS data on the individual human REs 
for K562 cells. We found that in the close gene neighborhood, 

1 www.geneontology.org.

inTrODUcTiOn

Retrotransposable elements (REs) are mobile genetic elements 
that self-reproduce in the host DNA. For proliferation of their 
copies, they use a specific molecular mechanism based on 
RNA-dependent synthesis of DNA by an enzyme termed reverse 
transcriptase (RT) (1). Taken together, REs occupy ~40% of 
human DNA. They are represented by three major classes: human 
endogenous retroviruses/LTR reprotransposons (HERV/LRs) 
and LINE and SINE retrotransposons (2). The first group shaped 
~8% of human genome, whereas LINEs and SINEs ~20 and 13%, 
respectively. HERV/LRs are thought to be remnants of multiple 
previous retroviral infections (3, 4). Unlike many common 
infectious retroviruses, they became inheritable because their 
insertions occurred in the ancestral germ cells (5). By contrast, 
LINEs and SINEs are non-infective retrotransposons. HERV/LRs 
and LINEs are called autonomous mobile elements because they 
encode RT, and SINEs—non-autonomous because for their life 
cycle they use foreign, LINE-encoded enzymes (6).

The studies of evolutionary dynamics of REs revealed that 
they were actively proliferating in human DNA until the most 
recent events in human speciation (7). All groups of REs include 
transcription of their genomic copies as the necessary step in 
their life cycle. Therefore, RE sequences are enriched in transcrip-
tion factor binding sites (TFBSs) and other regulatory motifs 
(8–11). Moreover, most of the RE copies accumulated mutations 
and could strengthen their regulatory repertoire. For example, 
the HERV/LRs include promoters (12), enhancers (13, 14), 
polyadenylation signals (5), chromatin folding reshapers (15), 
and binding sites for various nuclear proteins (16). In human 
genome, REs are represented by millions of individual elements 
that can be found in the vicinity of any known gene. Therefore, 
the REs are considered among the major factors of evolution of 
gene expression regulatory networks. For example, ~30% of all 
transcriptional factor p53 binding sites in the human genome 
fall within the HERV/LR elements (17). We recently showed 
that functional TFBS within the human-specific endogenous 
retroviruses may control expression of schizophrenia-linked gene 
PRODH in human hippocampus (14).

Transcription factor binding sites denote regulatory fragments 
of DNA that can bind transcription factors and influence gene 
expression. Congruently, mapping DNaseI hypersensitivity sites 
(DHS) became a golden standard for the identification of regula-
tory loci of an open chromatin (18). Recent studies evidence that 
huge numbers of DHS and TFBS in the human genome are located 
within the TEs. For example, totally, ~155,000 and ~320,000 
HERV/LR-derived DHS and TFBS were identified, respectively 
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~17% of TFBS overlap with the RE sequences, of them 44% 
belong SINEs, 33%—to LINEs, and 23%—to LR/ERVs. Most of 
the REs hosting TFBS were highly diverged repeats, and for the 
evolutionary young (0–8% diverged) elements we identified only 
~7% of all RE-specific TFBS. Among them, SINEs hosted ~68%, 
LINEs ~15%, and LR/ERVs ~17% of TFBS.

Depending on the number of RE-mapped TFBS in the vicini-
ties of the particular genes, we calculated a score for each gene 
positively reflecting the RE impact on gene regulation. Based on 
the scores for the individual genes, for the first time we could 
identify the molecular processes most strongly impacted by the 
RE regulatory features. To this end, we applied and modified 
bioinformatic method Oncofinder that has been used before only 
for the analysis of gene or microRNA expression profiles (39) and 
could effectively reduce experimental noise caused by different 
experimental platforms and batch effects (40, 41). In the initial 
version, this method makes it possible to calculate the quantita-
tive value reflecting molecular pathway activation, called pathway 
activation strength (PAS). The absolute value of PAS reflects the 
extent of a molecular pathway perturbation. Negative PAS values 
indicate downregulation of molecular pathways, positive values 
mean upregulation, whereas 0 values represent non-significant 
difference with the control samples (42). Previously PAS values 
were calculated only based on the gene expression profiles (high-
throughput mRNA or protein levels). Here, we for the first time 
applied this rationale to quantitatively measure the impact of REs 
on the evolution of human molecular pathways with the input 
data on TFBS distribution.

We found that the gene-specific distributions of the RE-linked 
TFBS generally correlated with the distributions for all the TFBS. 
However, several groups of molecular processes were highly 
enriched in the RE-linked TFBS regulation. They were strongly 
connected with the immunity and response to pathogens, with 
the negative regulation of gene transcription, ubiquitination, and 
protein degradation, extracellular matrix organization, regulation 
of STAT signaling, fatty acids metabolism, regulation of GTPase 
activity, protein targeting to Golgi, regulation of cell division 
and differentiation, and with development and functioning of 
perception organs and the reproductive system. By contrast, the 
processes most weakly implicated by the REs were linked mainly 
with the embryonic development.

We also found that both the gene- and pathway-specific 
scores significantly correlated for the evolutionary young and 
all RE-linked TFBS, thus evidencing that the major evolutional 
trends in RE-linked TFBS regulation are largely conserved in the 
evolution. However, we identified many differences in the regula-
tion features by the younger and older fractions of the REs. The 
regulation by the older fraction of the REs was linked mainly with 
the immunity, cell adhesion, Notch, Wnt, and integrin signaling, 
neuronal development and sensing, chondroitin sulfate and 
heparin metabolism, cAMP metabolism, endocytosis, and IGF1R 
signaling.

By contrast, the younger REs were regulating the other aspects 
of immunity, cell cycle progression and apoptosis attenuation, 
PDGF, TGF beta, EGFR, and p38 signaling, histone deacetyla-
tion and DNA methylation interplay, structure of nuclear lumen, 
metabolism (primarily catabolism) of phospholipids and 

heterocyclic nitrogen-containing molecules, insulin and AMPK 
signaling, retrograde Golgi-ER transport, estrogen signaling, 
and oocyte maturation. The immunity-linked pathways were 
highly represented in both categories (recently and long-term 
evolving), but their functional characteristics were different and 
did not overlap. Our results shed light on the evolution of regula-
tory network in humans and point to the most quickly evolving 
molecular pathways in higher primates.

resUlTs

Mapping of re-specific human TFBs
From the ENCODE database, we extracted TFBS information 
for the human myelogenous leukemia cell line K562. The TFBS 
data for different transcription factor proteins were based on the 
sequencing of immunoprecipitated DNA fragments (43, 44). The 
cell line K562 was chosen because it was assayed for the maxi-
mum number of transcription factor proteins (225 versus only 
120 in the next by abundance cell line GM12878). The TFBSs for 
all available transcription factor proteins were then mapped onto 
genomic sequences of the human REs. To identify a fraction of 
TFBS most likely involved in the regulation of gene expression, 
we took the elements located in the 5-kb neighborhood of the 
transcription start sites of known protein-coding genes. A total 
of 13,029,963 TFBS reads were identified close to transcription 
start sites. Among them, 2,232,273 (~17%) overlapped with the 
RE sequences and were referred as the RE-specific fraction of 
TFBS. Among them, ~44% were attributed to SINEs; ~33%—to 
LINEs, and 23%—to LR/ERVs. Most of the REs hosting TFBS 
were highly diverged repeats. For the evolutionary younger REs 
(0–8% diverged from their consensus sequence), we identified 
154,275 TFBS (~7% of all RE-specific TFBS). Among them, 
SINEs hosted ~68%, LINEs ~15%, and LR/ERVs ~17% of the 
RE-specific TFBS (Figure  1B). The analogous distribution of 
RE-linked TFBS outside the gene promoter neighborhoods (the 
rest of the genome) is shown on Figure 1A. Interestingly, our data 
strongly suggest that there is a bias against active TFBS within 
the evolutionary young LINE elements located close to the gene 
promoters (Figure 1B).

For the same 5-kb neighborhood, we next calculated relative 
concentration of RE-linked TFBS per kilobase for different RE 
classes (Table 1). In may be seen that for the young elements, their 
ability to provide functional TFBS is generally ~14 times lower 
than for the group of all REs. For the LR/ERVs this factor is also 
~14-fold lower, whereas for the LINEs and SINEs ~32- and 9-fold 
lower, respectively. The extent of this suppression was different for 
the different types of REs varying from ~9-fold for SINEs till ~32-
fold for LINEs, with the median level for LR/ERVs (Table 1). The 
absolute concentrations for the REs were also different, varying 
from ~0.1 for LR/ERVs and LINEs till 0.4 for SINEs.

identification of human genes impacted 
by re-linked TFBs
For every individual gene, we calculated its enrichment score 
for the RE-linked TFBS. We introduced the value termed Gene 
RT-linked TFBS enrichment score (TES) or GRE score (Figure 2). 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TaBle 1 | Relative concentration of RE-linked transcription factor binding site 
(TFBS) in 5-kb neighborhood of human gene transcription start sites.

concentration of TFBs per kilobase

class of re all Young Fold change

LINE 2.939 0.093 −31.6
SINE 3.892 0.416 −9.4
LR/ERV 1.457 0.107 −13.6
Total REs 8.287 0.616 −13.5

FigUre 1 | Distribution of RE-linked transcription factor binding site (TFBS) (a) outside and (B) inside 10 kb neighborhoods of TSS between the different groups of 
REs. Numbers are given for the mapped TFBS of each category. Green columns denote TFBS for the evolutionary young REs (0–8% divergence from the respective 
consensus sequence). Blue columns show TFBS distribution for the fraction of all REs.
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GRE is the sum of RE-specific TFBS reads mapped close to the 
individual gene’s transcriptional start site, normalized on the 
average sum of RE-specific TFBS reads for all genes. For every 
individual gene, GRE score is calculated according to the formula:

 

GRE
TES

TES
g

g

i
n

in

=
∑ =

1
1

,

 

where GREg is the GRE score for a gene g; TESg is the number of 
RE-linked TFBS reads for a gene g; i is gene index and TESi is the 
number of RE-linked TFBS reads for a gene i; and n is the total 
number of genes.

For every gene, the GRE score makes it possible to measure 
the extent of enrichment by the RE-linked regulatory elements. 
For example, GRE = 1 means average impact on the regulation 
of a gene. GRE > 1 means that the individual gene is enriched in 
RE-specific TFBS. Contrarily, GRE < 1 means that the gene has 
lower than average number of RE-specific TFBS.

Our results suggest that there is a fraction of human genes 
highly enriched in the content of RE-specific TFBS in the regula-
tory regions, which is reflected by high GRE scores of up to 5 for 
the protein-coding genes (Table S1 in Supplementary Material; 
Figure  2). By contrast, many other genes had close to 0 GRE 
values (Figure 2).

While GRE provides an integral assessment of TFBS impact 
belonging to all 225 TFs studied here, we also elucidated how 
strongly each specific TF affects expression of each specific 

human gene via gene-linked REs. For each gene, i and TF j an 
entry with indices (i, j) is number of RE-linked TFBS of this TF 
in the neighborhood of this gene. Our results suggest that most 
human genes are affected by RE-linked TFBS of various different 
TFs (Table S2 in Supplementary Material).

identification of Molecular Pathways 
impacted by re-linked TFBs
To assess the impact of RE-linked TFBS on the regulation of 
molecular pathways, we introduced a quantitative metric termed 
Pathway Involvement Index (PII) that is calculated according to 
the following formula:

 
PII

GRE
p

i

n

i

n
= =∑ 1 ,

 

where PIIp is the PII score for a pathway p; GREi is the GRE score 
for a gene I; and n is the number of genes in a pathway p. To avoid 
misleading higher PII values for bigger pathways, PIIp value is 
normalized on the number of genes in a pathway.

For information about gene products forming molecular path-
ways, we used the databases BioCarta, KEGG, NCI, Reactome, 
and Pathway Central. For our profiling, we used 1,749 molecular 
pathways covering ~11,000 human genes.

The biggest PII scores suggested the highest impact of RE-linked 
TFBS on the regulation of the whole molecular pathway, and 
vice versa. Zero PII score means no impact on the regulation of 
the molecular pathway. Similarly to the figure observed for the 
individual genes, the distribution of PII scores suggests that many 
molecular pathways are enriched in the regulatory motifs con-
tributed by the REs. We next attempted to characterize the most 
strongly impacted individual genes and molecular pathways.

genes impacted by the re-linked TFBs 
regulation
The human genes were sorted according to their GRE scores.  
For different genes, they varied from 0 to 16.4 (Figure 2B; Table S1 
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FigUre 2 | Distribution of GRE score among the known human genes. (a) Distribution of GRE for the young fraction of REs (0–8% divergence from the respective 
consensus sequence). (B) Distribution of GRE for the total fraction of all REs.
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in Supplementary Material). The top and the bottom 6% of the 
genes with the highest and the lowest GRE scores profiled for all 
REs were next analyzed using GO annotation terms and DAVID 
software.

Top Genes
For the top 6% genes, we identified 48 significantly enriched 
annotation clusters (Table S3 in Supplementary Material). Among 
them, 8 (17%) were connected with ribosome biogenesis and 
translation, 7 (15%) with protein complex assemblies, 5 (10%) 
with chromatin organization and maintaining structure of the 
nucleus, 5 (10%) with cell stress and innate immune response 
mechanisms, 3 (6%) with microtubules and organization of 
mitotic spindle, 3 (6%) with the regulation of programmed cell 
death, 3 (6%) with oxidoreductase activity involving purine 
nucleosides, 2 (4%) with DNA replication and repair, 2 (4%) with 
formation of mitochondrial outer membrane complexes, and 2 
(4%) with the regulation of autophagy. One cluster represented 
p53-regulated signal transduction, another one—maintaining 
nucleolus structure. Other features were also presented by minor 
number of clusters.

Bottom Genes
For the least RE-impacted genes with close to zero RE scores  
(bottom 6%), quite distinct set of 96 annotation clusters was 
observed (Table S3 in Supplementary Material). Among them, 
notably high proportion was taken by 80 (83%) clusters directly 
linked with embryonic development. Among the others, 8% 
represented different transcription factor binding assemblies, 2% 
neuronal axon development, 2% cell–cell adhesion, and signal-
ing, and 2% positive regulation of cell proliferation.

Molecular Pathways impacted  
by the re-linked TFBs regulation
We next ranked the molecular pathways by their enrich-
ment with the RE-linked TFBS. For the analysis, we took the 

molecular pathways each including at least 10 gene products. 
The pathways were ranked according to their PII scores (Table S4 
in Supplementary Material). We analyzed 65 top (pathways with 
the highest PII score) and 65 bottom (pathways with the lowest 
PII score) molecular pathways.

Top Pathways
The following groups of top molecular pathways were identified: 
15 (24%) pathways linked with DNA replication and repair, 
19% for ribosome and translation, 11% for cytoskeleton remod-
eling and cell migration, 10% for nuclear transport of mRNA, 
10% for other types of nuclear trafficking, 6% for cell stress and 
innate immune response, 6% for cellular export machinery 
and vesicle trafficking, 3% for regulation of microtubules and 
mitotic spindle assembly, 3% for mRNA decay mechanisms, 
and 8% for the other processes (Table S5 in Supplementary 
Material).

The major featured molecular processes dealt with protein 
translation, cell stress and innate immune response, cytoskeleton 
remodeling, and DNA replication and repair.

Bottom Pathways
The following groups of molecular pathways had the lowest PII 
scores (Table S5 in Supplementary Material): 18 (30%) for extra-
cellular matrix and cell migration, 16% for interleukin-related 
cell signaling, 21% for neurogenesis, 15% for embryogenesis and 
morphogenesis, 3% for PTEN signaling, 3% related to G protein 
coupled receptors (GPCR) signaling, 3% for fatty acids metabo-
lism, and 9% for the other processes.

comparison of re-linked and  
non-re-linked TFBs Profiles
However, it appeared unclear whether the genes/pathways were 
enriched in RE-linked TFBS congruently with the overall (not 
RE-specific) TFBS distribution. To characterize total TFBS 
distribution trends, we introduced a relative value termed GTE 
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(Gene TFBS Enrichment). GTE is expressed by the following 
formula:

 
GTE

TTS
TTSg

g

m

= ,
 

where TTSg is total number of TFBS reads mapped in the 5-kb 
neighborhood of a gene g and TTSm is the mean TTS for all genes 
under investigation. To define RE-specific enrichment in the 
regulation of an individual gene, a relative value termed NGRE 
was introduced:

 NGRE = GRE /GTEg g g . 

Bigger NGRE value means bigger impact of RE-specific regu-
lation of certain gene, and vice versa.

Another set of values was introduced to estimate the relative 
RE-specific impact in the regulation of molecular pathways. We 
added a metric termed PGI (Pathway Gene-based TFBS Index) 
to assess the impact of total TFBS on the regulation of molecular 
pathways:

 
PGI

GTE
p

i

n

i

n
= =∑ 1 ,

 

where PGIp is the PGI score for a pathway p; GTEi is the GTE 
score for a gene I; and n is the number of genes in a pathway p.

In turn, the normalized PII called NPII determines enrich-
ment in RE-specific TFBS regulation of a molecular pathway:

 NPII PII /PGI .p p p=  
where PIIp is a Pathway RE-based Involvement Index for a 
pathway p and PGIp is the Pathway Gene-based TFBS Index for 
a pathway p.

At the level of individual genes, we observed statistically 
significant correlations between the GRE (based on RE-linked 
TFBS) and GTE (based on all TFBS) scores (Figure 3, Pearson 
correlation coefficient  =  0.47, p-value  <  0.001; Table S6 in 
Supplementary Material). The respective lists of top and bottom 
GO annotation terms were also highly interconnected featuring 
protein translation, chromatin remodeling and DNA replication 
as the most strongly regulated processes, whereas neurogenesis, 
GPCR signaling, and developmental programs were the most 
weakly regulated aspects. Taken together, these data evidence that 
the abundance of RE-linked TFBS roughly (correlation = 0.47) 
follows overall trend of all TFBS accumulation near gene pro-
moter regions.

genes and Pathways under strong 
regulation by the res
To assess the specific trends in RE-dependent regulation of 
gene expression, we analyzed distributions of the NGRE scores, 
which characterize the impact of RE-specific TFBS normalized 
on the regulation by all TFBS for the individual genes (Table 
S7 in Supplementary Material). The most strongly specifically 
regulated protein-coding genes were USP176L26, USP17L13, and 
USP17L12 for ubiquitin-specific peptidases. We next analyzed 
the lists of 6% top and bottom genes sorted according to NGRE 

(Table 2). The top GO features were linked with immunity and 
response to pathogens (64/295 terms, or 32%), 7% for organ 
development, 6% for negative regulation of gene transcription, 
6% for chromatin assembly, 6% for protein targeting to Golgi, 4% 
for ubiquitination and protein degradation, 4% for extracellular 
matrix organization, 4% for regulation of STAT signaling, 4% for 
perception organ development and functioning, 4% for negative 
regulation of macromolecule metabolism, 3% for peptide modifi-
cations, 3% for regulation of GTPase activity, 3% for reproductive 
systems development and functioning, 3% for negative regulation 
of cell differentiation and positive regulation of cell division, 2% 
for regulation of body fluids, and 9% was for the other processes 
(Table S8 in Supplementary Material).

For the group of the bottom 6% of genes, the least regulated 
features were linked to embryonic development and stem cell 
differentiation (44/98, or 45%), 16% for transcription and pro-
cessing of RNA, 16% for nuclear chromatin organization, 8% for 
ribosome functioning and protein translation, 2% for regulation 
of apoptosis, 2% for ubiquitin binding, 2% for steroid receptor 
signaling, 2% for regulation of cell proliferation, and 7% for the 
other activities (Table 3; Table S8 in Supplementary Material).

Similar tendencies were seen at the level of molecular pathways 
(Table 3; Table S9 in Supplementary Material). NPII scores were 
calculated that reflect the RE-specific impact on the regulation of 
molecular pathways normalized to the impact by all TFBS. The 
top 65 pathways sorted according to NPII score were linked with 
fatty acids metabolism (19%), immunity and pathogen recogni-
tion (15%), nuclear transport (9%), maturation of mRNA (6%), 
DNA repair and replication (6%), synuclein A signaling (5%), 
small RNA biogenesis and function (3%), protein ubiquitination 
(3%) protein trafficking to Golgi (3%), and other pathways.

The major bottom pathways were involved in the regulation 
of nerve growth and neuronal signaling (24%), cell adhesion 
(19%), cytokine networks (14%), other developmental programs 
(14%), IGF signaling, and regulation of glucose metabolism (9%) 
(Table 3; Table S9 in Supplementary Material).

We next compared the NGRE score distribution at the gene 
level and NPII score distribution at the pathway level for the 
fractions of all REs and evolutionary younger REs (young; 0–8% 
diverged from their consensus sequence).

In general, NPII and NGRE scores were statistically significantly 
correlated for the young and all REs, but the pathway-linked NPII 
scores showed bigger correlation (Figure 4A, Pearson correlation 
coefficient = 0.38, p-value < 0.001; Figure 4B, Pearson correla-
tion coefficient = 0.57, p-value < 0.001). These data are congruent 
with the previous findings that the data aggregation at the level of 
molecular pathways frequently provides more congruent results 
compared with the single-gene level of analysis (41), especially in 
the case of cancer (45) and neurodegenerative diseases (46, 47).

Although there was a 0.38–0.57 correlation (Figure 4), some 
regulatory features were different between the young and all REs. 
To analyze the differences in pathway regulation by all and young 
REs, we calculated ratio of all and young REs separately for the 
NGRE and the NPII scores. Bigger values here mean greater regu-
lation changes in a long-term rather than recent evolution; lower 
values mean greater changes in the recent evolution (Table  4; 
Tables S10 and S11 in Supplementary Material for all/young 
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FigUre 3 | Comparison of GRE scores (axis of ordinates) and GTE scores (abscissa axis) for known human genes. Color scale is given to show densities of 
incidences on the plot. Each dot represents a single gene. Pearson r—Pearson correlation coefficient; p—Pearson p-value.

TaBle 2 | Gene ontology (GO) functional annotation clusters in top and bottom 
6% of human genes sorted by their NGRE scores.

cluster, gO terms Percentage of 
clusters

Top 6% Bottom 6%

Immunity and response to pathogens 32 –
Organ development and embryogenesis 7 45
Gene transcription and negative regulation 6 –
Chromatin assembly 6 16
Protein targeting to Golgi 6 –
Ubiquitination and protein degradation 4 –
Extracellular matrix organization 4 –
Regulation of STAT signaling 4 –
Perception organ development 4 –
Negative regulation of metabolism 4 –
Peptide modifications 3 –
Regulation of GTPases 3 –
Reproductive system development 3 –
Regulation of differentiation and cell proliferation 3 2
Regulation of body fluids 2 –
Transcription and processing of RNA – 16
Ribosome assembly and protein translation regulation – 8
Regulation of apoptosis – 2
Proteasomal degradation – 2
Steroid receptor signaling – 2

TaBle 3 | Functional groups of top and bottom molecular pathways sorted by 
their NPII scores.

Functional group Percentage

Top  
6%

Bottom  
6%

Fatty acids metabolism 19 –
Immunity and response to pathogens 15 14
Nuclear transport 9 –
Maturation of RNA (mRNA and small RNAs) 9 –
DNA repair and replication 6 –
Alpha-synuclein signaling 5 –
Ubiquitination and protein degradation 3 –
Protein targeting to Golgi 3 –
Nerve growth and neuronal signaling – 24
Organ development, embryogenesis, and cell adhesion – 35
IGF1R signaling and regulation of glucose metabolism – 9
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ratio of NGRE and NPII, respectively). In the long-term (but not 
short-term) perspective, the top 65 pathways sorted according to 
NPII ratio were dealing mainly with cell adhesion, Notch, Wnt, 
and integrin signaling (20%), immunity and cytokine signaling 
(20%), neuronal development and sensing (17%), chondroitin 

http://www.frontiersin.org/Immunology/
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TaBle 4 | Functional groups of top and bottom molecular pathways sorted 
by the ratios of NPII scores for the all and young RE-linked transcription factor 
binding sites.

Functional group Percentage

Top 6% Bottom 6%

Cell adhesion, Notch, Wnt, and integrin signaling 20 –
Immunity and response to pathogens 20 17
Nerve growth and neuronal signaling 17 –
Metabolism of chondroitin sulfate and heparin 8 –
Metabolism of cAMP 6 –
Endocytosis 3 –
IGF1R signaling and regulation of glucose metabolism 3 –
Cell cycle progression and regulation of apoptosis – 21
PDGF, TGF beta, EGFR, and p38 signaling – 12
Histone deacetylation and DNA methylation – 10
Phospholipid metabolism – 9
Insulin and AMPK signaling – 6
Protein targeting to Golgi – 3
Estrogen signaling and oocyte maturation – 3

FigUre 4 | Comparison of normalized transcription factor binding site distributions between the young (0–8% divergence from the respective consensus sequence) 
and total fractions of REs. (a) Comparison of NGRE scores (gene level of regulation), each dot represents a single gene. (B) Comparison of NPII scores (pathway 
level of regulation), each dot represents a single molecular pathway. Pearson r—Pearson correlation coefficient; p—Pearson p-value.
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sulfate and heparin metabolism (8%), cAMP metabolism (6%), 
endocytosis (3%), and IGF1R signaling (3%).

The lower scoring pathways (most quickly evolving in the 
recent evolution) were linked mainly with the general cell cycle 
progression and apoptosis attenuation mechanisms (21%), 
immunity (17%), PDGF, TGF beta, EGFR, and p38 signaling 
(12%), histone deacetylation and DNA methylation interplay 
(10%), phospholipid metabolism (9%), insulin and AMPK sign-
aling (6%), retrograde Golgi-ER transport (3%), and estrogen 
signaling and oocyte maturation (3%).

Sorting according to NGRE ratio had no sense for the top 
individual genes because there were too many 0 values on the 
denominator for the NGRE scores calculated for the young REs. 
However, the list of the bottom 6% of genes was successfully 

generated presumably including the most quickly evolving genes 
in the recent human evolution (according to RE-linked TFBS 
acquisition). These genes were mostly involved in the catabolism 
and synthesis of heterocyclic nitrogen-containing molecules 
and phospholipids metabolism (50/163, or 31%), nuclear lumen 
structure (8%), mRNA splicing and processing (7%), ribosome 
assembly and translation (7%), DNA and histone methylation 
(4%), and DNA repair (2%).

MaTerials anD MeThODs

identification of re-specific TFBss
Complete genome binding profiles of 225 transcription factor pro-
teins were extracted from the ENCODE database2 for human cell 
line K562 according to the standard ENCODE ChIP-seq protocol 
(43). The reference human genome assembly 2009 (hg19) was 
indexed using Burrows–Wheeler algorithm using BWA software.3 
Concatenation of fastq files with single-end or pairwise reads, 
alignment to the reference genome, and filtering were done using 
BWA, Samtools, Picard, Bedtools, and Phantompeakqualtools 
software.4 The aligned TFBS were mapped on the RE sequences 
annotated by RepeatMasker5 and downloaded from the USCS 
Browser6 (RepeatMasker table). TFBS occurrence data were 
extracted from the bedGraph files.7 The fold change over control 
profiles for TFBS, as well as the profiles for p-value to reject the 

2 https://www.encodeproject.org/chip-seq/transcription_factor/.
3 https://www.encodeproject.org/pipelines/ENCPL220NBH/.
4 https://www.encodeproject.org.
5 http://www.repeatmasker.org.
6 https://genome.ucsc.edu/cgi-bin/hgTables.
7 https://genome.ucsc.edu/goldenpath/help/bedgraph.html.

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
https://www.encodeproject.org/chip-seq/transcription_factor/
https://www.encodeproject.org/pipelines/ENCPL220NBH/
https://www.encodeproject.org
http://www.repeatmasker.org
https://genome.ucsc.edu/cgi-bin/hgTables
https://genome.ucsc.edu/goldenpath/help/bedgraph.html


9

Nikitin et al. Human Pathways Affected by Retrotransposons

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 9 | Article 30

null hypothesis that the signal at that location, is present in the 
control were built using Macs software8 based on the alignment 
data. The list of transcription factors investigated and the raw data 
obtained from the ENCODE web site are shown on the Tables S12 
and S13 in Supplementary Material.

For every individual mapped RE, we calculated the TES 
according to the formula:

 
TES = ∑

=i
ib

1

225
,
 

where bi is the number of TFBS reads for transcription factor i 
mapped on the individual RE.

Measuring gene enrichment  
by the re-linked TFBs
The coordinates of human protein-coding genes were down-
loaded from the USCS Browser.9 For each gene, all individual 
REs overlapping with the 5-kb long neighborhood of its reference 
transcription start site were selected for further analysis. The 5-kb 
neighborhood covered an interval starting 5  kb upstream and 
ending 5 kb downstream the transcription start site. The selected 
REs were classified according to their structure (HERV/LR, 
LINE, and SINE) and divergence from the consensus sequence 
for the respective RE family. The REs with the divergence less that 
8% were considered “young” elements. We introduced an integral 
enrichment score to calculate the RE-linked TFBS enrichment 
specific to every individual gene (GRE score):

 

GRE
TES

TES
g

g

i
n

in

=
∑ =

1
1

,

 
where GREg is the GRE score for a gene g; TESg is the sum of TES 
values for all the RE types for the REs located in the 5-kb neigh-
borhood of a gene g; n is the number of all genes; and i is gene 
index and TESi is the sum of TES values for all the RE types for the 
REs located in the 5-kb neighborhood of a gene i. Alternatively, 
specific GRE values can be calculated for every specific type of 
the REs, when only the TFBS related to the respective RE type are 
taken into account, e.g., GRELR/ERV, GRELINE, and GRESINE.

To separately assess RE-linked TFBS for each of 225 different 
TF, we created a table for all human genes and all 225 TFs studied 
here (Table S2 in Supplementary Material). For each gene, i and 
TF j an entry with indices (i, j) is number of RE-linked TFBS of 
this TF in the neighborhood of this gene.

For every individual gene g, analogous value termed GTE 
(Gene TFBS Enrichment) was calculated according to the fol-
lowing formula:

 

GTE
TTS

TTS
g

g

i
n

in

=
∑ =

1
1

,

 
where TTSg is total number of TFBS reads mapped in the 5-kb 
neighborhood of a gene g; n is the number of all genes; i is gene 
index and TTSi is the sum of TFBS reads mapped in the 5-kb 
neighborhood of a gene i.

8 https://www.encodeproject.org/pipelines/ENCPL138KID/.
9 https://genome.ucsc.edu/cgi-bin/hgTables.

Alternatively, to assess the relative enrichment in RE-linked 
TFBS for a certain gene compared with the total number of 
TFBS for the same gene, the normalized value termed NGRE was 
introduced:
 NGRE GRE GTEg g g= / . 

Measuring Pathway enrichment  
by the re–linked TFBs
The gene structures of the human molecular pathways were 
extracted from the following databases: BioCarta,10 KEGG,11 
NCI,12 Reactome,13 and Pathway Central.14 For each pathway, the 
PII was calculated according to the formula:

 
PII

GRE
p

i

n

i

n
= =∑ 1 ,

 

where PIIp is the PII score for a pathway p; GREi is the GRE score 
for a gene i; and n is the number of genes in a pathway p. PIIp 
value is normalized on the number of genes in a pathway to avoid 
artificially higher values for larger pathways.

PGI (Pathway Gene-based TFBS involvement Index) is 
expressed by the formula:

 
PGI

GTE
p

i

n

i

n
= =∑ 1 ,

 

where PGIp is the PGI score for a pathway p, GTEi is the GTE 
score for a gene i, and n is the number of genes in a pathway p.

The normalized enrichment in RE-linked TFBS for regulation 
of a certain molecular pathway termed NPII was calculated as 
follows:

 NPII PII PGIg g g= / . 

gO enrichment analysis
Gene ontology analysis of the top and the bottom 6% of the genes 
by GRE scores profiled for all REs was performed using DAVID 
software.15 The p-values specifying the significance of observed 
GO terms and Annotation Clusters enrichment were calculated 
using a modified Fisher’s exact test (38). The cutoff for p-values 
was set to be equal to 0.05. The enrichment values of GO terms 
and Annotation Clusters were calculated as fold changes of their 
occurrence in the sample versus their occurrence in the human 
genome (38).

Testing the significance of the Observed 
correlations
The statistical significance of correlations was computed as 
Pearson correlation coefficient with p-value using the Seaborn 
package.16

10 https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways.
11 http://www.genome.jp/kegg/.
12 https://cactus.nci.nih.gov/ncicadd/about.html.
13 http://reactome.org.
14 http://www.sabiosciences.com/pathwaycentral.php.
15 https://david.ncifcrf.gov/.
16 http://seaborn.pydata.org/.
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DiscUssiOn

Our data strongly evidence that the evolutionary changes in 
transcriptional regulation of gene expression by REs are tightly 
associated with the gene functions. From the ENCODE database, 
we extracted TFBS information for the human leukemia cell line 
K562. For our analysis, we took the TFBS located in the 5-kb 
neighborhood of the transcription start sites of known protein-
coding genes (Figure 5). Approximately 13 millions TFBS reads 
were identified meeting these criteria. Among them, ~17% over-
lapped with the RE sequences and were referred as the RE-specific 
fraction of TFBS. They were formed by the three major RE classes: 
~44% of them were attributed to SINEs; ~33%—to LINEs, and 
23%—to LR/ERVs. Some REs are known to be transpositionally 
competent in the human genome and theoretically could generate 
a cell line-specific population of the RE inserts. However, they only 
form a negligible proportion of the RE content and could only 
exert a minor influence on an overall figure of RE-linked TFBS.

Most of the REs hosting TFBS were highly diverged repeats, and 
for the evolutionary younger elements (0–8% diverged from their 
consensus sequence), we identified only ~7% of all RE-specific 
TFBS. Among them, SINEs covered ~68%, LINEs ~15%, and LR/
ERVs ~17% of TFBS (Figure 1). This suggests that in the recent 
evolutionary horizon SINEs were approximately four times more 
active than LINEs and LR/ERVs in providing functional TFBS. 
For the same gene neighborhood, the young REs provided func-
tional TFBS generally ~14 times less frequently than the group of 
all REs. These data are congruent with the previously published 
hypothesis that upon insertion into the host DNA, the newly 
integrated REs are heavily suppressed. This block is held until 
they accumulate sufficient number of mutations (48). We show 
here that the extent of this suppression is different for different 
RE types varying from ~9-fold for SINEs till ~32-fold for LINEs, 
with the median level for LR/ERVs. The absolute concentrations 
for the REs were also different, varying from ~0.1 for LR/ERVs 
and LINEs till 0.4 for SINEs.

Moreover, LINEs-linked TFBS are more numerous than the 
SINEs-linked ones outside the gene neighborhoods, whereas the 
reverse situation ids observed near the genes (Figure 1). Taken 
together, these data are also supportive toward another hypoth-
esis that the recent genomic inserts of LINEs and LR/ERVs are 
significantly more deleterious for the human genome than for the 
SINEs (49, 50).

We calculated the absolute RE-linked TESs for the individual 
genes and for the molecular pathways. The most strongly affected 
genes and pathways were implicated in the major processes such 
as cell stress and immune response, ribosome biogenesis and 
translation, chromatin remodeling and DNA replication, and 
organization of mitotic spindle and cell cycle progression. On the 
other hand, the most weakly regulated genes and pathways were 
mostly dealing with the embryonic development and neurogenesis 
(Tables S3 and S4 in Supplementary Material). We next showed 
that the distribution of RE-linked TFBS generally followed the 
same trend as the total distribution of all TFBS (Figure 3, Pearson 
correlation coefficient =  0.47, p-value <  0.001). The respective 
lists of top and bottom implicated processes were also highly 
interconnected for RE-linked and all TFBS, featuring most 

strongly regulated protein translation, chromatin remodeling and 
DNA replication versus most weakly regulated embryonic devel-
opment and neurogenesis (Table S3 in Supplementary Material). 
It should be noted that TFBS abundance most likely depends on 
the importance of a given gene/pathway for the cell type under 
investigation. For example, for the intensively proliferating 
leukemia K562 cells investigated here, the programs of embry-
onic development and neurogenesis can be of an especially low 
priority, in contrast to DNA replication, protein translation and 
cell cycle progression (top processes). However, the correlations 
between all TFBS and RE-linked TFBS features were statistically 
significant yet not very high (Figure 3). This means that there are 
many fields where the RE-mediated TFBS regulation is different 
from the general TFBS distribution rule.

The processes specifically enriched in RE-linked TFBS 
regulation may be thought the most quickly evolving because 
RE-linked TFBS are generally not conservative among the dif-
ferent species, unlike those located on the unique segments of 
DNA (51–53). We next attempted to identify the RE-specific 
trends in the regulation of gene expression and pathway activa-
tion. To this end, we analyzed the relative values of RE-specific 
TFBS profiles normalized on all TFBS profiles for the same genes 
(Table S7 in Supplementary Material). Of note, the most strongly 
specifically RE-regulated protein-coding genes were three differ-
ent genes for the ubiquitin-specific peptidases, which underline 
relatively faster evolution of the enclosing molecular processes. 
The top RE-regulated features were strongly connected with the 
immunity and response to pathogens, and also with the nega-
tive regulation of gene transcription, protein targeting to Golgi, 
ubiquitination and protein degradation, extracellular matrix 
organization, regulation of STAT signaling, development and 
functioning of perception organs and reproductive system, fatty 
acids metabolism, regulation of GTPase activity, negative regula-
tion of cell differentiation and positive regulation of cell division, 
and with regulation of body fluids (Tables 3 and 4).

By contrast, the processes most weakly regulated by the REs 
were linked mostly with the embryonic development, stem cell 
differentiation, nerve growth and neuronal signaling, cytokine 
signaling networks, transcription and processing of RNA, nuclear 
chromatin organization, ribosome assembly and protein transla-
tion, IGF1R signaling, and regulation of glucose metabolism 
(Tables 3 and 4).

Moreover, the RE-specific TESs can be calculated for the 
different fractions of the REs. Here, we analyzed their distribu-
tions for the evolutionary young fraction of the REs (diverged 
less than 8%), and for all REs. The regulation features in the all 
RE fraction demonstrate long-term tendencies in RE-specific 
accumulation of TFBS, whereas the young fraction may serve as 
the marker for the relatively recent trends in the human genome 
evolution, starting roughly since the radiation of Old World 
monkeys (7, 54). Both gene- and pathway-specific scores statisti-
cally significantly correlated for the young and all RE-linked TFBS 
(Figure  4). This suggests that the major evolutional trends in 
RE-linked TFBS regulation are largely conserved. Interestingly, 
the pathway-specific score was correlated stronger than the gene-
specific score (Figure 4A, Pearson correlation coefficient = 0.38, 
p-value < 0.001; Figure 4B, Pearson correlation coefficient = 0.57, 
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FigUre 5 | Model of gene expression regulation by RE-linked transcription factor binding site (TFBS). (a) Schematic representation of TFBS (arrows) that may 
overlap with the REs (black boxes) close to transcription start sites of known human genes (shown as “TSS”). (B) Outline of RE-linked TFBS regulation at the 
long-term and recent evolutional perspectives. This figure aggregates data for both single gene and molecular pathway analysis.
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p-value < 0.001), which is in line with the previous findings that 
the data aggregation at the level of molecular pathways provides 
more stable results and may enhance correlations compared with 
the single-gene level of analysis (41).

To analyze differences in gene and pathway regulation by 
all and young REs, we calculated ratios of the above gene- and 
pathway-specific scores for all and young REs. Bigger values 
here mean greater regulation changes in a long-term rather than 
recent evolution, lower values—by contrast, greater changes in 
the recent rather than long-term evolution (Table 4; Tables S10 
and S11 in Supplementary Material). In the long-term, but not 
short-term perspective, the top evolving pathways were linked 
mainly with the immunity and cytokine signaling, cell adhesion, 
Notch, Wnt, and integrin signaling, neuronal development and 
sensing, chondroitin sulfate and heparin metabolism, cAMP 
metabolism, endocytosis, and IGF1R signaling.

By contrast, the most quickly recently evolving processes 
were linked mainly with the immunity, cell cycle progression 
and apoptosis attenuation, PDGF, TGF beta, EGFR, and p38 
signaling, histone deacetylation and DNA methylation interplay, 
structure of nuclear lumen, metabolism (primarily catabolism) of 
phospholipids and heterocyclic nitrogen-containing molecules, 
insulin and AMPK signaling, retrograde Golgi-ER transport, 
estrogen signaling, and oocyte maturation (Figure  5). The 
immunity-linked pathways were highly represented in both 
categories (recently and long-term evolving), but their functional 
characteristics were different and did not overlap (Table 5). These 
pathways are mostly connected with inflammation, pathogen 
recognition of innate immunity and cytokine signaling. Our 
findings concerning the RE impact of the both long-term and 
short-term evolution of human immune system are in accord 
with recent experimental findings that HERV have dispersed 
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TaBle 5 | Top and bottom immunity-linked molecular pathways sorted by the ratios of NPII scores for the all and young RE-linked transcription factor binding site.

Pathway name all nPii Young nPii ratio (a/Y)

Top ratio pathways

NCI downstream signaling in naive CD8 T cells pathway (pathway regulation of survival gene product expression via IL2RG) 1.02 0.18 5.59
NCI downstream signaling in naive CD8 T cells main pathway 0.93 0.43 2.16
Reactome toll like receptor 4 TLR4 cascade main pathway 1.19 0.32 3.72
Reactome interleukin receptor SHC signaling main pathway 0.85 0.24 3.51
Cytokine network pathway 1.04 0.32 3.24
NCI CXCR3 mediated signaling events pathway (cell adhesion) 1.06 0.39 2.76
NCI CXCR3 mediated signaling events pathway (actin polymerization or depolymerization) 1.02 0.40 2.57
NCI LPA receptor mediated events pathway (cAMP biosynthetic process) 0.87 0.35 2.46
Biocarta lck and fyn tyrosine kinases in initiation of tcr activation main pathway 0.98 0.42 2.36
NCI IL2 mediated signaling events pathway (T cell proliferation) 1.00 0.46 2.19
NCI BCR signaling pathway (reentry into mitotic cell cycle) 0.88 0.42 2.12
NCI IL4-mediated signaling events main pathway 0.96 0.46 2.08
KEGG inflammatory bowel disease IBD main pathway 1.01 0.49 2.06

lower ratio pathways

Reactome IRAK2 mediated activation of TAK1 complex main pathway 1.17 1.40 0.84
Reactome IRAK2 mediated activation of TAK1 complex upon TLR7 8 or 9 stimulation main pathway 1.17 1.40 0.84
KEGG Fanconi anemia main pathway 0.98 1.17 0.83
Reactome Fanconi anemia main pathway 0.89 1.08 0.82
Reactome CD28 dependent Vav1 main pathway 1.13 1.37 0.83
Reactome thromboxane signaling through TP receptor main pathway 0.94 1.15 0.82
NCI Thromboxane A2 receptor signaling pathway (JNK cascade) 0.95 1.20 0.79
NCI Fc epsilon receptor I signaling in mast cells pathway (regulation of mast cell degranulation) 0.82 1.03 0.79
IL-10 pathway IL-10 responsive genes transcription of BCLXL cyclin-D1 D2 D3 Pim1 c-myc and P19 (INK4D) via STAT3 0.99 1.31 0.76
IL-10 pathway inflammatory cytokine genes expression via STAT3 0.99 1.31 0.76
Reactome membrane binding and targeting of GAG proteins main pathway 0.94 1.25 0.75
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numerous IFN-inducible enhancers regulating essential innate 
immune functions (10, 11).

Patterns of genes mostly impacted by transposons are gener-
ally consistent with universals of genome evolution (55). Our 
findings of RE-impacted changes in human molecular pathways 
are also generally in line with both ancient and recent trends in 
the evolution of human lineage. Retrotransposon insertion is an 
abrupt event that can drastically affect expression of neighboring 
genes by regulatory innovation and direct mutation (9). A general 
hypothesis was proposed that genes that are highly expressed in 
all tissues (mostly cytoplasmic and housekeeping) cannot toler-
ate regulatory and mutational pressure imposed by transposons 
without fitness loss (56, 57) because the toxic effects of protein 
misfolding and stoichiometric imbalance of subunits are thought 
to be most severe for highly abundant proteins (58). Here, we 
show that human RE impact mainly the pathways linked with 
immunity, signal transduction, proliferation, cell interaction and 
communication both on the recent and the long-term time scales, 
whereas cytoplasmic and housekeeping molecular pathways are 
weaker affected.

Moreover, evolutionary history of human lineage most likely 
includes series of time-periods with the accelerated evolution 
of some particular molecular systems, i.e., due to evolutionary 
arms race (59), run-away processes of sexual selection (60), 
and classical positive selection, e.g., selection for the ability to 
accept new types of food (61). Interestingly, regulatory innova-
tions were probably the major source of changes throughout 
the recent human evolution (62). First, evolutionary arms-race 
between human ancestors and various pathogens has driven the 
changes of adaptive immune response (63) and is still shaping 

human immunity nowadays (64). Here, we show that such 
shaping is mediated also through RE insertions and exaptation 
of their TFBS to regulate expression of immunity-linked genes. 
Interestingly, long-term and short-term evolutionary pressures 
onto the human immune system sometimes appear disjoined, 
e.g., because of encountering new pathogens, reflected by the 
fact that different modules of immunity were affected by REs 
on different time scales (Table 5). Second, evolution of human 
brain was largely affected by sexual selection under a trend 
toward monogamy, lowering male competition, and increas-
ing female choice (65). Our study suggests that REs had been 
affecting human nerve system for a long time (Table  4) that 
may accounts for multiple events in the evolution of mam-
malian brain. Third, recent human evolution after divergence 
with chimpanzee imposed several dietary transitions, such as 
increased meat-eating that occurred ~2  mya simultaneously 
with massive usage of stone and fire (61). Therefore, recent 
changes in the catabolism of heterocyclic molecules and phos-
pholipid catabolism can be at least partly connected with this 
kind of food speciation of great apes and hominids. Fourth, 
rapid recent RE-affected evolution of histone deacetylation and 
DNA methylation interplay can be at least partly connected with 
gradual diversification of transposon-repressing KRAB zinc 
finger TFs (66), reflecting intragenome evolutionary arms race 
between REs and host genes.

In this study, we analyzed in depth RE-linked TFBS signatures 
for a unique human cell line where the high-throughput TFBS 
profile is currently available. Further accumulation of high-
throughput data on TFBS distribution will make it possible to 
build a more robust model of RE influence on human molecular 
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pathways based on thorough analysis of many objects including 
various cell lines and hopefully intact and pathological human 
tissues.

Finally, given that REs make up >40% of genomic sequence 
and that >80% of the REs are located outside promoter-
neighboring regions, it remains of a great interest to further 
investigate if this larger subset of REs may have significant 
role in the evolution of human molecular pathways that can 
be mediated via chromatin remodeling or regulation of non-
coding RNAs. This will be a matter of further investigation in 
our consortium.
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