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Summary
Background Currently, the diagnostic testing for the primary origin of liver metastases (LMs) can be laborious,
complicating clinical decision-making. Directly classifying the primary origin of LMs at computed tomography (CT)
images has proven to be challenging, despite its potential to streamline the entire diagnostic workflow.

MethodsWe developed ALMSS, an artificial intelligence (AI)-based LMs screening system, to provide automated liver
contrast-enhanced CT analysis for distinguishing LMs from hepatocellular carcinoma (HCC) and intrahepatic
cholangiocarcinoma (ICC), as well as subtyping primary origin of LMs as six organ systems. We processed a
CECT dataset between January 1, 2013 and June 30, 2022 (n = 3105: 840 HCC, 354 ICC, and 1911 LMs) for
training and internally testing ALMSS, and two additional cohorts (n = 622) for external validation of its
diagnostic performance. The performance of radiologists with and without the assistance of ALMSS in diagnosing
and subtyping LMs was assessed.

Findings ALMSS achieved average area under the curve (AUC) of 0.917 (95% confidence interval [CI]: 0.899–0.931)
and 0.923 (95% [CI]: 0.905–0.937) for differentiating LMs, HCC and ICC on both the internal testing set and external
testing set, outperformed that of two radiologists. Moreover, ALMSS yielded average AUC of 0.815 (95% [CI]:
0.794–0.836) and 0.818 (95% [CI]: 0.790–0.842) for predicting six primary origins on both two testing sets. Inter-
estingly, ALMSS assigned origin diagnoses for LMs with pathological phenotypes beyond the training categories with
average AUC of 0.761 (95% [CI]: 0.657–0.842), which verify the model’s diagnostic expandability.

Interpretation Our study established an AI-based diagnostic system that effectively identifies and characterizes LMs
directly from multiphasic CT images.
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Research in context

Evidence before this study
We searched PubMed up to March 30, 2023, for research
articles containing the terms of “(artificial intelligence)” OR
“(deep learning)” OR “(convolutional neural network)” AND
“(liver metastases)” OR “(liver cancer)” AND “(CT)”, without
any date or language restrictions. All the previous studies
focused on developing screening systems at CT scans for liver
lesion classification that restricted to differentiation between
benign and malignant lesions, or primary and metastatic
lesions. We found no screening system could directly output
the site of origin for liver metastases and apply to new
categories beyond training samples.

Added value of this study
Here, we present a deep learning system (ALMSS) that adopts
a fully-automated design and has the advantage of not
requiring annotations from radiologists, which could be
particularly important in a clinical setting where expertise in
liver tumor imaging is limited. To our knowledge, this system
is the first to predict the primary origin of liver metastases

based on conventional imaging approach (CECT). The two-
hierarchical design of this system addresses the uncertainty in
determining a liver tumor as either a new-emerging primary
liver cancer or a relapse of an antecedent malignancy for
individuals with a history of extrahepatic malignancies. On
the other hand, the entire pipeline can be activated to
streamline the origin diagnosis for complex cases where the
primary tumors’ site is not readily apparent, enabling
clinicians to focus their efforts on confirming the most likely
diagnostic sites rather than adopting a broad, scatter-shot
diagnostic approach.

Implications of all the available evidence
ALMSS could potentially assist less experienced radiologists,
including those in low resource areas and help determine the
subsequent site-specific examinations even before invasive
histology test results are available. This allows for the rapid
localization of the origin of metastatic tumors at low cost,
enabling timely referral of patients to specialized departments
for further vital diagnostic work-up and treatment planning.
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Introduction
The liver stands out as the organ most susceptible to
metastatic diseases due to its unique cellular and
architectural composition, which creates a favorable
environment for cancer cells.1 Liver metastases (LMs)
can originate from various primary tumor sites, with the
most common sources being solid tumors in the col-
orectum, pancreas, stomach, breast, or lung.2 LMs are a
leading cause of cancer-related mortality and pose sig-
nificant challenges for clinical intervention.3–5 As cur-
rent therapeutic options predominantly target the
primary tumor, a variety of tailored and site-specific
treatment approaches have been adopted to improve
clinical outcomes in patients with LMs, including target
drugs and immune checkpoint inhibitors.6 However, in
cases where the primary origin cannot be identified,
patients are often treated with empirical combination
chemotherapy, resulting in a low median overall survival
of 6–15 months.7–9

Liver cancers presenting as metastases with an un-
known primary tumor are not uncommon in clinical
practice. Due to the diverse localization and histology of
primary tumors, patients often undergo whole-body
positron emission tomography (PET) examinations
and repeated histology tests to identify the origin.10

However, the former can be expensive and may lack
clinical penetration in low-resource settings, while the
latter still involves invasive sampling and complex slides
preparation. Computed tomography (CT) imaging is
indeed a critical noninvasive technique in the initial
diagnostic pathway of LMs.11 Radiologists leverage
explicit features selected from CT images to differen-
tiate between benign and malignant liver lesions and to
determine whether a malignant hepatic tumor is pri-
mary or metastatic.12,13 However, these features, known
as semantic features, may indicate the presence of a
metastatic lesion, but they do not provide sufficient
diagnostic significance about the primary site from
which the cancer originated.

With recent advancements in integrating artificial
intelligence (AI) and medicine, there is the potential for
AI classifiers to address the unmet need in the con-
ventional imaging approach. Deep learning (DL), a core
technique of AI, has significantly enhanced the accuracy
and efficiency of segmentation and classification for
medical images, surpassing the human capabilities.14

Early but promising evidence suggests that machine
learning algorithms can effectively identify metastatic
cancer types by extracting computational features from
CT images, revealing local or global differences that may
be unperceived to the human observer.15 Based on these
findings, we hypothesized that CT scan empowered by
DL technology could unlock untapped potential for
developing an alternative diagnostic pattern. This
pattern would allow us to infer the primary origin of
LMs directly from CT images, enabling subsequent site-
specific examinations even before histological test re-
sults are available.

To test our hypothesis, we developed and validated
an AI-based LMs screening system (ALMSS), which
automatically identifies liver tumor as primary or met-
astatic and predicts the primary origin across different
types of LMs. This study is expected to streamline the
diagnostic process for complex cases with occult pri-
mary tumors by automating the analysis of multiphasic
CT images.
www.thelancet.com Vol 69 March, 2024
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Methods
Study design
The patient-level classification task focused on six extra-
hepatic organ systems: breast, intestine (duodenum,
jejunum, ileum, colon, or rectum), respiratory system
(nasopharynx or lung), esophagogastric system (esoph-
agus, gastroesophageal junction, or stomach), pan-
creatobiliary system (pancreas, common bile duct,
gallbladder, or Vater’s ampulla), and reproductive sys-
tem (ovary or uterus). These six classes were defined
based on several criteria, including the adjacency of the
organ systems, their common embryological origin, and
the utilization of shared pathways, such as the biliary
tract and pancreas. Importantly, these grouped organ
systems are often examined together in clinical practice
due to their proximity. As these six origin sites account
for over 90% of LMs diagnoses,2 our objective was to
demonstrate that this AI system (ALMSS) can effectively
handle the majority of LMs diagnoses.

Training and testing datasets generation
We retrospectively identified 3727 eligible cases with a
clinical diagnosis of either primary or metastatic liver
tumors [980 with hepatocellular carcinoma (HCC) and
474 with intrahepatic cholangiocarcinoma (ICC), and
2273 with LMs (2083 cases pathologically confirmed as
adenocarcinoma or squamous cell carcinoma for model
training and testing, 190 cases pathologically diagnosed
with other rare pathological types for model’s diagnostic
expandability testing)] from three independent centers
(Fig. 1). The training cohort comprised 2061 patients
who were consecutively diagnosed at Nanfang Hospital
of Southern Medical University (NFHSMU, Guangz-
hou, China) from January 1, 2013, to December 31,
2019, and the internal testing cohort comprised 884
patients who were consecutively diagnosed at the same
hospital from January 1, 2020, to June 30, 2022. Besides,
355 patients diagnosed at the Second Affiliated Hospital
of University of South China (SAHUSC, Hengyang,
China) and 237 patients at the Fifth Affiliated Hospital
of Sun Yat-sen University (FAHSYU, Zhuhai, China)
from July 1, 2020, to June 30, 2022 were used for
external testing. The inclusion criteria were as follows:
(1) being aged 18 years or older, (2) have a confirmed
pathological diagnosis of a liver tumor either through
surgery or biopsy, (3) underwent a liver CECT scan at
the initial diagnosis of liver lesions, and (4) have a def-
inite diagnosis of primary tumor site, determined by
biopsy and/or formal clinical follow-up. Exclusion
criteria were applied to ensure data quality, and
included: (1) CT scans with incomplete images or
inadequate image quality that could compromise accu-
rate analysis, and (2) cases where liver tumors were
undetectable in CT scan (referred to as CT-negative), but
were diagnosed using other imaging modalities. All
enrolled patients underwent four-phase abdominal
CECT scans. More information regarding the
www.thelancet.com Vol 69 March, 2024
acquisition and processing procedure of CT images can
be found in Supplementary Materials. An overview of
the study workflow is provided in Fig. 2. This study
followed the reporting guidelines prescribed by the
Standards for Reporting of Diagnostic Accuracy
(STARD) checklist.16

Ethics
This study was approved by the Ethics Committee of
Nanfang Hospital, Southern Medical University (NFEC-
2022-119). All procedures performed in this study were
accordance with the Declaration of Helsinki and its
amendments. Informed consent was exempted by the
Ethics Committee for the retrospective dataset.

Overview of ALMSS
As shown in Fig. 3, ALMSS comprises two modules: the
segmentation module and the classification module. Two
separate 3D U-Net models were trained for the automatic
segmentation of the region of interest (ROI) for liver and
tumor, using nnU-Net17 as the framework. And then, the
ROIs of the liver and tumor generated by the segmen-
tation module were fed into the classification module for
further diagnostic tasks. The core component of ALMSS
was built based on two sequential neural networks. When
a test sample is provided, the first neural network per-
forms a differential diagnosis of three major malignant
liver tumors: HCC, ICC, and LMs. If a metastatic lesion
is identified in the initial step, the second neural network
is activated to predict the site of origin. Both neural net-
works share a common structure consisting of three
essential components: a feature extraction module, a
feature fusion module, and a classifier. Initially, we
employed four 3D Residual Connected Network (3D-
ResNet) backbones to extract global features and local
features from the ROI of the liver and tumor, respec-
tively. Meanwhile, a Multi-Layer Perceptron (MLP) was
utilized to extract relevant clinical features. The clinical
information and image information from each phase
were then integrated through addition operation at the
feature level. Furthermore, the information from the four
phases was combined using a Long Short-Term Memory
(LSTM18) model for fusion purposes. Finally, a fully
connected layer, followed by a softmax function, served as
the classifier to generate the model’s predicted probabil-
ities for the corresponding task. Based on the trained
models, we selected the cut-off values that yields best F1
scores for each classification task. More information
regarding these networks and their training process are
provided in Supplementary Materials.

Comparison with benchmark models
To evaluate the advantage of our established framework,
the performance of ALMSS was compared with tradi-
tional models, including a classic Convolutional Neural
Network (CNN),13 a novel hierarchical CNN (H-CNN),19

and a SpatialExtractor-TemporalEncoder-Integration
3
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Fig. 1: The workflow of study enrollment.
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Classifier (STIC).20 All the models were constructed in
the training set and tested in the internal and external
test sets.

Evaluation on the auxiliary performance of ALMSS
in clinical scenario
A junior radiologist (JR) with 5 years of liver imaging
experience, and a senior radiologist (SR) with more than
10 years of liver imaging experience, were invited to
review the images on both the internal and external
testing sets. To ensure unbiased assessments, the radi-
ologists were blinded to the pathological results and
reviewed CT images encompassing the entire liver us-
ing ITK-SNAP software (version 4.0.0) (www.itksnap.
org). During their first assessment, the radiologists
were required to provide judgment on the classification
of HCC, ICC, and LMs. Once their initial decision was
made, it was recorded. Following a washout period of
www.thelancet.com Vol 69 March, 2024
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Fig. 2: The roadmap of overall study. (A) The study included subjects representing primary and metastatic liver tumors of known primary
origins with their assigned name acronyms (refer to Table 1). For model development and testing, we collected, in total, 3727 patient cases with
confirmed diagnosis and their corresponding CECT scans from three medical centers. (B) The screening system consisted of three parts: (1) the
segmentation network locating the liver and tumor, and segmenting the corresponding regions of interest; (2) the first screening network was
constructed to provide automatic referral for patients with LMs; (3) the second screening network predicting the primary sites of LMs and
making a final decision. (C) The auxiliary performance of the system was evaluated in a real-world scenario. LMs = liver metastases.

Articles
one month, they were invited to re-evaluate the tumor
diagnosis with the assistance of ALMSS. The dominant
predicted diagnosis generated by ALMSS were pre-
sented to them, giving them the option to either main-
tain their initial decision or adjust it. The performance
of ALMSS was compared with that of the radiologists.
The Chi-Squared test was used to assess the
www.thelancet.com Vol 69 March, 2024
performance between radiologists with and without the
assistance of ALMSS. The accuracy, sensitivity and
specificity were calculated for the evaluation.

Evaluation on challenging cases of liver metastases
We identified a subset of challenging LMs cases from
two test sets, including patients with liver tumors could
5
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Fig. 3: Overview pipeline of artificial intelligence-based liver metastases screening system (ALMSS). Two separate segmentation models
were specifically designed to perform liver and tumor segmentation of abdominal CT images in pre-contrast phase and three enhanced phases.
The segmentation results were input into the 3D ResNet backbone in the classification module to generate CT image features from each phase.
The gender and age of patient were input into a MLP to output relevant clinical features. The clinical features and image features from each
phase were then integrated using an addition operation at the feature level. The information from four phases was combined using an LSTM
model for fusion purposes and input into a fully connected layer followed by a softmax function to get respective predicted probabilities in the
screening system. CT = computed tomography. MLP = multi-layer perceptron. LSTM = long short-term memory. FC = fully connected layer.
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not be diagnosed definitely with conventional patho-
logical analysis. Owing to the difficulty of assessing
cases whose tumors were characterized as poorly
differentiated, pathologists often assign a spectrum of
potential primary origins in their pathology reports. For
these cases, further clinical correlation or PET confir-
mation is required. Two radiologists reviewed CT im-
ages in combination with electronic medical records
(EMR), comprising laboratory biochemical profiles,
family history, treatment history, and pathology reports
to make their preliminary judgment for primary origins.
Subsequently, under the guidance of ALMSS, they
revisited their judgments for a second evaluation.
Overall accuracy was used as the primary metric for the
evaluation.

Statistics
Continuous variables are presented as medians along
with their corresponding standard deviation (SD). Cat-
egorical variables are reported as counts (%). Statistical
significance was determined with a 2-tailed p-value of
less than 0.05.

For segmentation, the Dice metrics and Jaccard co-
efficient were used for model evaluation. For classifica-
tion, the receiver operating characteristic (ROC) curves
were plotted for each classification task, using the
true-positive rate (sensitivity) vs. the false-positive rate
(1-specificity). The 95% confidence interval (CI) for
these metrics was calculated for model evaluation. De-
tails regarding model evaluation are provided in
Supplementary Materials. Heat maps were produced
using gradient-weighted class activation mapping (Grad-
CAM) for model interpretability.21

Model development and computation of various
classification metrics were performed using Python
(version 3.7.7). Descriptive analysis was conducted in
SPSS (version 22.0, Chicago, IL, USA) and R software
(version 4.1.0).

Role of the funding source
The funder had no role in study design, data collection
and analysis, decision to publish, or preparation of the
manuscript.
Results
Participants’ characteristics
ALMSS was trained and validated on a processed liver
cancer dataset, consisting of 3727 patient cases repre-
senting with primary and metastatic liver tumors across
eight cancer groups. The sample size for each cancer
group and their corresponding demographic
www.thelancet.com Vol 69 March, 2024
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distribution, highlighting the potential diagnostic value
of age and gender, can be found in Fig. 4A and B. Each
type of LMs encompassed both common and rare
pathological types (Table 1 and Supplementary
Table S1). The training set consisted of 2061 cases,
with 642 (31.1%) being female. The mean age for this
set was 55.75 years, with a standard deviation (SD) of
11.48. Model evaluation was conducted on the internal
Fig. 4: Segmentation accuracy and diagnostic performance of artificial
and B) The sample size for each cancer group and their corresponding de
the segmentation model for the liver and tumor in the internal and ext
0.253, 0.030, 0.270, 0.027, 0.266, 0.036, and 0.282, respectively. (E) V
characteristic curves of ALMSS for identifying HCC, ICC, and LMs in the int
flow of the assessments of tumor types by ALMSS in the internal and ext
ALMSS are shown on the left and right sides of each diagram, respective

www.thelancet.com Vol 69 March, 2024
test set, which included 884 cases (33.2% female) with a
mean (SD) age of 56.02 (11.80) years. Additionally, the
pooled external test set comprised 592 cases (35.3% fe-
male) with a mean (SD) age of 56.10 (11.27) years.
Lastly, the expandability test set consisted of 190 cases
(24.7% female) with a mean (SD) age of 57.22 (12.59)
years. Detailed information of sample distribution
within each dataset is also shown in Table 2.
intelligence-based liver metastases screening system (ALMSS). (A
mographics distribution. (C and D) Dice metric, Jaccard coefficient of
ernal test sets. The error bars indicate standard deviation of 0.023,
isualization of segmentation results. (F and G) Receiver operating
ernal and external test sets. (H and I) Sankey diagrams depicting the
ernal test sets. The proportions of the diagnoses by pathologists and
ly.
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Taxonomy Organ system Tumor type Abbreviation Total cases

PLC Liver Hepatocellular carcinoma HCC 980

Liver Intrahepatic cholangiocarcinoma ICC 474

ICLMs Colon Colon adenocarcinoma COAD 494

Rectum Rectal adenocarcinoma READ 219

Small Intestine Small bowel adenocarcinomaa SBA 16

PCLMs Pancreas Pancreatic ductal adenocarcinoma PDAC 224

Vater’s Ampulla Periampullary adenocarcinomab PAAC 35

Common Bile Duct Cholangiocarcinoma CHOL 23

Gallbladder Gallbladder adenocarcinoma GBAD 29

ECLMs Stomach Stomach adenocarcinoma STAD 309

Gastroesophageal Junction Gastroesophageal adenocarcinoma GEAD 15

Esophagus Esophageal squamous cell carcinoma ESCC 59

GCLMs Ovary Ovarian serous cystadenocarcinoma OV 39

Uterus Cervical squamous cell carcinoma CSCC 15

Uterus Uterine endometrial adenocarcinoma UEAD 13

RCLMs Lung Lung adenocarcinoma LUAD 280

Lung Lung squamous cell carcinoma LUSC 36

Nasopharynx Nasopharyngeal squamous cell carcinoma NSCC 55

BCLMs Breast Breast adenocarcinoma BRAD 222

PLC = primary liver cancer. ICLMs = intestinal cancer liver metastases. PCLMs = pancreatobiliary cancer liver metastases. ECLMs = esophagogastric cancer liver metastases.
GCLMs = gynecologic cancer liver metastases. RCLMs = respiratory system cancer liver metastases. BCLMs = breast cancer liver metastases. aSBA are composed of duodenal
(excluding papilla), jejunal, ileal, and appendiceal adenocarcinoma. bPAAC arise from the duodenal papilla, distal common bile and pancreatic duct or the structures of the
ampullary complex.

Table 1: Distribution of tumor types in training and testing sets.
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Performance evaluation of the sub-network in
ALMSS
The segmentation network demonstrated high accuracy in
locating the volumes of the liver and tumor in two inde-
pendent test sets (Fig. 4C and D), with average Dice
metrics of 0.827 (SD 0.253) and 0.821 (SD 0.266), Jaccard
coefficients of 0.763 (SD 0.270) and 0.759 (SD 0.282) for
tumor segmentation. The corresponding values for the
liver segmentation were average Dice metrics of 0.989
(0.023) and 0.989 (0.027), Jaccard coefficients of 0.980
(0.030) and 0.979 (0.036). The visualization representation
of the four-phase segmentation results based on an
example, demonstrating the superior performance of the
sub-network in ALMSS, is shown in Fig. 4E. Furthermore,
exploratory studies were conducted to investigate the
benefit of using gender and age at metastasis for identi-
fying LMs and predicting its primary origin, as well as the
effect of adding global information as an input covariate.
The findings are discussed in Supplementary Fig. S1,
Supplementary Tables S4, and S5. ALMSS exhibited the
best performance in terms of AUC, accuracy, F1 score,
sensitivity, specificity, and Brier score when utilizing a
combination of global information (liver), local informa-
tion (tumor), age, and gender as input data.

Application of ALMSS on identifying and subtyping
metastatic tumors
On the internal test set, ALMSS achieved an average AUC,
average accuracy, F1 score, sensitivity, specificity, and
Brier score of 0.917 (95% [CI]: 0.892–0.935), 0.852, 0.732,
0.838, 0.853, and 0.107 for differentiating HCC, ICC, and
LMs. The AUC for diagnosing HCC, ICC, and LMs were
0.920 (95% [CI]: 0.899–0.937), 0.897 (95% [CI]:
0.864–0.923), and 0.932 (95% [CI]: 0.914–0.946), respec-
tively (Fig. 4F). Further analysis on the external testing set
revealed an average AUC of 0.923 (95% [CI]: 0.900–0.942),
average accuracy of 0.858, and F1 score, sensitivity, spec-
ificity, and Brier score of 0.761, 0.836, 0.861, and 0.103,
respectively. ALMSS yielded AUC of 0.936 (95% [CI]:
0.914–0.953), 0.886 (95% [CI]: 0.853–0.912), and 0.949
(95% [CI]: 0.930–0.963) in HCC, ICC, and LMs, respec-
tively (Fig. 4G). Detailed description and explanation of the
discrepant results observed are provided in Fig. 4H and I.
The summary of per-cancer type assessment can be found
in Supplementary Table S6.

We further validated the capabilities ofALMSS to predict
the six predominant origins of metastatic tumors. Our
model achieved an average AUC of 0.815 (95% [CI]:
0.763–0.857), with an average accuracy, F1 score, sensitivity,
specificity, andBrier score on the internal test setmeasuring
0.771, 0.529, 0.712, 0.771, and 0.112, respectively. The
diagnostic performance for each individual primary origin,
with AUC ranging from 0.720 (95% [CI]: 0.673–0.765) to
0.955 (95% [CI]: 0.900–0.986) is displayed in Fig. 5A.
Notably, gynecologic cancer exhibited the highest perfor-
mance. On the external test set, the model attained an
average AUC of 0.818 (95% [CI]: 0.753–0.867), alongside
average accuracy, F1 score, sensitivity, specificity, and Brier
www.thelancet.com Vol 69 March, 2024
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Characteristics Training dataset Internal test dataset External test dataset Expandability test dataset

Total. Number of Individuals 2061 884 592 190

Age (years, Mean ± SD) 55.75 ± 11.48 56.02 ± 11.80 56.10 ± 11.27 57.22 ± 12.59

Number of Female (%) 642 (31.1%) 294 (33.2%) 209 (35.3%) 47 (24.7%)

Subtype

HCC 588 252 140 0

Age (years, Mean ± SD) 53.36 ± 11.30 54.11 ± 11.42 52.74 ± 10.66 NA

Number of Female (%) 61 (10.4%) 32 (12.7%) 15 (10.7%) NA

ICC 248 106 120 0

Age (years, Mean ± SD) 57.08 ± 10.69 59.00 ± 11.36 59.05 ± 10.08 NA

Number of Female (%) 89 (24.6%) 45 (42.5%) 49 (40.8%) NA

ICLMs 419 180 130 29

Age (years, Mean ± SD) 56.81 ± 11.73 56.68 ± 12.30 57.06 ± 12.62 55.17 ± 16.51

Number of Female (%) 138 (32.9%) 63 (35.0%) 45 (34.6%) 10 (34.5%)

PCLMs 197 84 30 25

Age (years, Mean ± SD) 57.56 ± 11.62 57.12 ± 11.14 56.83 ± 11.86 51.60 ± 13.07

Number of Female (%) 79 (40.1%) 30 (35.7%) 13 (43.3%) 11 (44.0%)

ECLMs 233 100 50 39

Age (years, Mean ± SD) 59.91 ± 9.95 59.37 ± 10.52 57.14 ± 11.28 57.00 ± 12.23

Number of Female (%) 45 (19.3%) 26 (26.0%) 13 (26.0%) 10 (25.6%)

GCLMs 38 17 12 7

Age (years, Mean ± SD) 52.89 ± 9.35 49.53 ± 12.25 52.92 ± 9.56 51.43 ± 5.00

Number of Female (%) 38 (100%) 17 (100%) 12 (100%) 7 (100%)

RCLMs 204 87 80 90

Age (years, Mean ± SD) 57.05 ± 11.66 56.71 ± 12.96 57.71 ± 10.09 59.98 ± 10.89

Number of Female (%) 58 (28.4%) 23 (26.4%) 32 (40.0%) 9 (10.0%)

BCLMs 134 58 30 0

Age (years, Mean ± SD) 49.43 ± 10.79 50.34 ± 9.89 50.33 ± 8.03 NA

Number of Female (%) 134 (100%) 58 (100%) 30 (100%) NA

ICLMs = intestinal cancer liver metastases. PCLMs = pancreatobiliary cancer liver metastases. SD = standard deviation. NA = not available. HCC = hepatocellular carcinoma.
ECLMs = esophagogastric cancer liver metastases. GCLMs = gynecologic cancer liver metastases. ICC = intrahepatic cholangiocarcinoma. RCLMs = respiratory system cancer
liver metastases. BCLMs = breast cancer liver metastases.

Table 2: The datasets for training and testing of ALMSS.

Articles
score measuring 0.768, 0.518, 0.713, 0.774, and 0.114,
respectively, for the same multi-classification task. Individ-
ual performance for eachprimary origin,withAUCranging
from 0.685 (95% [CI]: 0.613–0.750) to 0.967 (95% [CI]:
0.929–0.988), is shown in Fig. 5B. In addition, a total of 190
LMs cases with 13 pathological types that were not incor-
porated into model training phase (Supplementary
Table S1), comprising 29 small intestine cancers, 90 lung
cancers, 39 gastric cancers, 25 pancreatobiliary cancers and
7 gynecologic cancers, were included to evaluate the diag-
nostic expandability of ALMSS for primary origin (Breast
cancer cases were not included, as there was only breast
adenocarcinoma in our dataset). The results showed that
ALMSS exhibited reliable ability in assigning origin di-
agnoses for LMs with pathological types beyond adenocar-
cinoma and squamous cell carcinoma, with an average
AUC of 0.761 (95% [CI]: 0.657–0.842). Model predictions
for each individual primary origin, with AUC ranging from
0.618 (95% [CI]: 0.512–0.715) to 0.945 (95% [CI]:
0.846–0.997), are illustrated in Fig. 5C, and the consistent
results further supported our model’s strongest perfor-
mance in identifying gynecologic cancer. Detailed
www.thelancet.com Vol 69 March, 2024
description and explanation of these discrepant results are
provided in Fig. 5D–F. The summary of performance
metrics in three test sets is shown in Table 3.

Comparison with benchmark models
On the internal test set and external test set, the average
accuracy of ALMSS (0.852 and 0.858) were higher than
that of CNN (0.740 and 0.728), HCNN (0.803 and 0.794),
and STIC (0.816 and 0.809) for differentiating HCC, ICC
and LMs. In terms of predicting origin on metastatic tu-
mors, ALMSS also showed better performance than other
models with average accuracy of 0.771 and 0.768, 0.615
and 0.625, 0.656 and 0.658, 0.664 and 0.667 for ALMSS,
CNN, HCNN, and STIC on both two test sets, respectively,
which approved the capability of our DL framework. The
summary of performance metrics of four models in two
diagnostic tasks is presented in Table 4.

Radiologists’ performance with the assistance of
ALMSS
As shown in Supplementary Table S7, ALMSS exhibited
greater performance compared to JR and SR, with
9
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Fig. 5: The performance of predicting primary origins on liver metastases. (A–C) Receiver operating characteristic curves of artificial
intelligence-based liver metastases screening system (ALMSS) for predicting the primary origins of liver metastases, including intestinal cancer
(ICLMs), respiratory system cancer (RCLMs), breast cancer (BCLMs), esophagogastric cancer (ECLMs), pancreatobiliary cancer (PCLMs), and
gynecologic cancer (GCLMs) in the internal, external, and expandability test sets. (D–F) Sankey diagrams depicting the flow of the assessments
of primary origins by ALMSS in the internal, external, and expandability test sets. The proportions of the diagnoses by pathologists and ALMSS
are shown on the left and right sides of each diagram, respectively.
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average accuracy of 0.852 (95% [CI]: 0.827–0.873), 0.723
(95% [CI]: 0.692–0.751) and 0.817 (95% [CI]:
0.789–0.841), sensitivity of 0.838 (95% [CI]:
0.782–0.884), 0.517 (95% [CI]: 0.454–0.583) and 0.693
(95% [CI]: 0.629–0.752), specificity of 0.853 (95% [CI]:
0.822–0.881), 0.793 (95% [CI]: 0.758–0.826) and 0.859
(95% [CI]: 0.828–0.887) for identifying LMs, HCC, and
ICC on the internal test set. In the external test set,
ALMSS also reached higher accuracy than JR (0.887 vs.
0.697, p = 0.0022) and SR (0.887 vs. 0.777, p < 0.0001)
for identifying LMs. However, the findings indicated
that the accuracy of SR was comparable to that of JR in
diagnosing LMs and ICC, which highlights the difficulty
in clinically diagnosing these two types of liver tumors
via reviewing CT images, often necessitating further
confirmation through pathological analysis. The sensi-
tivity and specificity points of two radiologists for LMs,
HCC, and ICC in the two test sets are drawn on the
same ROC curve in Fig. 6A–C and Supplementary
Fig. S4. The diagnostic performance of JR was signifi-
cantly improved with the assistance of ALMSS,
achieving an increase of 9.4% in accuracy, 12.2% in
sensitivity, and 8.5% in specificity for diagnosing LMs
on the internal test set. The performance of SR for
identifying LMs also exhibited improvement under the
guidance of ALMSS, with an increase of 6.9% in accu-
racy, 3.4% in sensitivity, and 12.1% in specificity.
Similar results were observed in the external test set.
Subsequently, we focused on six cases where prediction
errors occurred in the first round of reading by radiol-
ogists (two cases pathologically confirmed as LMs, two
ICC cases, and two HCC cases), as presented in Fig. 6D.
When provided with the results from ALMSS, radiolo-
gists maintained their initial judgments for LMs case 1
and ICC case 2, which were incorrectly identified as
HCC. Importantly, the predicted probability for each
tumor type output by ALMSS effectively assisted radi-
ologists in reconsidering their initial judgments and
making a correct diagnosis for the remaining four cases.

Finally, we analyzed the model’s auxiliary performance
on a subset of challenging LMs cases (n = 76), in which
68.4% (52/76) tumors’ primary origins were predicted
correctly by ALMSS. For each case, two radiologists
reviewed CT images in combination with the laboratory
www.thelancet.com Vol 69 March, 2024
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Origin Dataset AUC (95% CI) Cut-off value ACC (95% CI) F1 score (95% CI) Sensitivity (95% CI) Specificity (95% CI) Brier score (95% CI)

ICLMs Internal test 0.720 0.20 0.646 0.585 0.728 0.604 0.221

0.672–0.765 0.605–0.684 0.529–0.638 0.659–0.790 0.553–0.655 0.200–0.245

External test 0.744 0.693 0.636 0.685 0.698 0.240

0.685–0.797 0.639–0.738 0.567–0.698 0.600–0.760 0.631–0.759 0.212–0.271

Expandability test 0.721 0.711 0.409 0.655 0.721 0.122

0.598–0.816 0.637–0.768 0.282–0.538 0.455–0.815 0.648–0.786 0.099–0.152

RCLMs Internal test 0.750 0.24 0.709 0.423 0.644 0.722 0.121

0.683–0.807 0.667–0.745 0.348–0.698 0.538–0.738 0.678–0.762 0.105–0.139

External test 0.685 0.615 0.439 0.625 0.611 0.168

0.613–0.750 0.557–0.663 0.357–0.519 0.513–0.726 0.550–0.668 0.144–0.196

Expandability test 0.771 0.700 0.708 0.767 0.640 0.256

0.700–0.832 0.626–0.758 0.631–0.777 0.667–0.845 0.537–0.729 0.223–0.291

BCLMs Internal test 0.929 0.25 0.863 0.571 0.828 0.868 0.066

0.903–0.950 0.829–0.888 0.480–0.659 0.709–0.911 0.834–0.896 0.054–0.079

External test 0.930 0.849 0.500 0.833 0.851 0.056

0.888–0.958 0.804–0.883 0.370–0.614 0.651–0.936 0.808–0.888 0.045–0.071

Expandability test NA NA NA NA NA NA

ECLMs Internal test 0.758 0.26 0.736 0.479 0.640 0.758 0.133

0.700–0.808 0.694–0.770 0.405–0.554 0.543–0.734 0.714–0.796 0.117–0.152

External test 0.807 0.765 0.480 0.720 0.773 0.109

0.735–0.860 0.714–0.804 0.379–0.575 0.578–0.830 0.720–0.818 0.092–0.129

Expandability test 0.618 0.632 0.386 0.564 0.649 0.159

0.512–0.715 0.558–0.695 0.275–0.504 0.400–0.717 0.571–0.723 0.129–0.194

PCLMs Internal test 0.780 0.24 0.690 0.428 0.726 0.683 0.117

0.721–0.828 0.648–0.728 0.357–0.502 0.620–0.815 0.638–0.726 0.103–0.133

External test 0.775 0.730 0.418 0.667 0.738 0.088

0.669–0.848 0.672–0.768 0.304–0.535 0.462–0.808 0.686–0.752 0.073–0.106

Expandability test 0.752 0.695 0.356 0.640 0.703 0.105

0.629–0.850 0.621–0.753 0.233–0.489 0.429–0.818 0.631–0.762 0.084–0.133

GCLMs Internal test 0.955 0.40 0.979 0.686 0.706 0.988 0.017

0.900–0.985 0.962–0.987 0.476–0.842 0.444–0.900 0.975–0.996 0.012–0.027

External test 0.967 0.961 0.640 0.750 0.972 0.025

0.929–0.988 0.931–0.976 0.375–0.833 0.375–0.929 0.947–0.985 0.016–0.040

Expandability test 0.945 0.937 0.455 0.714 0.945 0.019

0.846–0.997 0.889–0.963 0.182–0.714 0.167–1.000 0.903–0.972 0.008–0.043

ICLMs = intestinal cancer liver metastases. PCLMs = pancreatobiliary cancer liver metastases. BCLMs = breast cancer liver metastases. ECLMs = esophagogastric cancer liver metastases. GCLMs = gynecologic
cancer liver metastases. RCLMs = respiratory system cancer liver metastases. NA = not available. CI = confidence interval. AUC = area under the receiver operating characteristic curve. ACC = accuracy.

Table 3: Diagnostic performance of ALMSS for each origin on liver metastases.

Articles
biochemical results, and pathology reports. In the first
round of assessment, the primary origins of 30.3% (23/
76) cases were assigned correctly by the radiologists’
consensus. When provided with predicted results and the
heat maps of ALMSS (Supplementary Fig. S5), we found
that the primary origins in 56 out of 76 cases (73.7%) were
correctly predicted by the ALMSS-assisted radiologists’
consensus (Supplementary Table S8).
Discussion
Currently, available clinical approaches to ascertain the
origin of metastatic tumor can be laborious and typically
rely on histopathological characteristics or metabolic
patterns observed in PET scans. With the rapid
www.thelancet.com Vol 69 March, 2024
integration of machine learning in medical research,
several computational algorithms have been developed to
evaluate the possible tissue of origin for metastatic tu-
mors, such as CUPLR,22 OncoNPC,23 and CUP-AI-Dx.24

These algorithms represent a paradigm shift in the
diagnosis of the origin of cancer. Despite their promising
capabilities, it remains uncertain whether these compu-
tational methods based on pan-cancer analysis can be
effectively applied and fine-tuned for habitat-specific
metastatic tumors. More importantly, access to these
advanced diagnostic tests (genome or transcriptome
analysis) remains uneven, particularly for patients in low-
resource settings.

In this study, we presented a ‘proof-of-concept’
strategy that combined computer vision with
11
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conventional imaging approach to evaluate the possible
origin of LMs. Our model can be particularly valuable in
multidisciplinary management settings, as it provides
information and helps formulate a targeted search
pattern. For example, clinicians may perform an upper
endoscopy to evaluate the foregut, including the
esophagus, stomach, and duodenum. Additionally, a
bronchoscopy can be utilized to inspect the distant parts
of the lung, while a pelvic magnetic resonance imaging
(MRI) can aid in identifying the primary tumors in the
reproductive system. Such an AI assistance system may
pose opportunity for applying site-specific therapies and
bring survival benefits to patients with difficult-to-
diagnose LMs as clinical responses to certain treat-
ments exhibit variability based on patients’ tumor types.
Notably, patients with LMs originating from lung cancer
demonstrate a more favorable response to immune
checkpoint inhibitors, while LMs derived from primary
tumors in the digestive tract have been established as
insensitive to such treatment.5,6,25 Additionally, a sub-
stantial subset of LMs arising from colorectal cancer
may benefit from surgical resection to mitigate hepatic
tumor burden, whereas LMs from other sources are
considered unsuitable for surgical intervention, neces-
sitating the implementation of molecular-targeted ther-
apies, such as HER-2 targeting in breast cancer.26 On the
other hand, distinguishing newly-emerging HCC or
ICC from metastases of an antecedent malignancy is of
paramount importance. For small isolated lesions, local
therapeutic interventions, such as thermal ablation, may
be recommended for HCC or ICC, but not applicable to
LMs.27 Furthermore, precise diagnosis of ICC can also
guide the judicious selection of portal lymphadenec-
tomy, which is not advocated in HCC during surgery.27

The American College of Radiology has introduced LI-
RADS in the past few years, to standardize the report-
ing process of CT imaging, primarily for the diagnosis
of HCC without pathological confirmation.28 While LI-
RADS designated an LR-M category for observations
that are definitely malignant (except HCC), it falls short
in specifically differentiating ICC and LMs, which re-
stricts its clinical applicability. The integration of
ALMSS into LI-RADS workflow can be particularly
valuable for the noninvasive subtyping of liver cancer.

ALMSS incorporated multi-scale features to accu-
rately predict the origin of distinct liver tumors. Local
features derived from tumors themselves, like
morphology or vascular enhancement pattern, are
traditionally associated with their respective origins.
Beyond that, doctors typically review liver tumors within
their broader context, recognizing that certain global
features can offer valuable insights. For instance, liver
cirrhosis of various etiologies stands as the primary risk
factor for HCC development, whereas biliary duct cysts,
hepatolithiasis, and parasitic biliary infection are prev-
alent in ICC.29,30 In this study, we emphasize the
importance of considering global features that provide
www.thelancet.com Vol 69 March, 2024
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Fig. 6: The auxiliary performance of artificial intelligence-based liver metastases screening system (ALMSS) in real-world scenario. (A–C)
The sensitivity and specificity of the radiologists with and without the assistance of ALMSS in identifying LMs, HCC, and ICC in the internal test
set. (D) The case illustration of six typical samples misdiagnosed by radiologists. In LMs case 1 and ICC case 2, the enhancement patterns
observed were typical for HCC samples, which involved non-rim-like hyper-enhancement in the arterial phase and wash-out in the portal-venous
phase. LMs case 2, exhibited central enhancement in the delayed phase. ICC case 1 presented with multi-focal liver lesions with rim hyper-
enhancement in the arterial phase. Additionally, the patient had concurrent suspected lung cancer findings reported in a chest CT examina-
tion. HCC case 1, who was undergoing pancreatic cancer treatments at the medical center, displayed abnormal nodular enhancement in the
portal-venous phase. In HCC case 2, which exhibited a liver lesion with an infiltrative appearance and had a homogeneous and progressive
enhancement pattern. Simultaneously, there was a dilation of intrahepatic bile ducts. JR = junior radiologist. SR = senior radiologist.
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information about intrahepatic spatial distribution be-
tween lesions and the pathological changes of the whole
liver. Notably, the age at which LMs are diagnosed can
provide some indication of the primary origin. Data-
driven analysis has shown that breast cancer is the
most common primary origin for LMs in young women
aged 20–50 years, while colon cancer is more prevalent
in young men.31 Building upon these findings, ALMSS
leverages global information, gender and age at diag-
nosis as learnable features in addition to local infor-
mation, resulting in improved performance.

Regarding the potential global information that could
explain the source of various LMs, we speculated that
the intrahepatic spatial distribution pattern of metastatic
tumors may serve as an indicator. Although our results
are not sufficient to fully support this assumption, we
have gathered some indirect evidence from several as-
pects. Firstly, when metastatic tumors from different
primary sites within the body arise in the liver, they may
share similar morphology but possess distinct and
identifiable spatial distribution patterns.11 This distinc-
tion arises from the fact that cancer cells metastasize to
the liver through specific pathways, including direct
invasion, blood spread, lymphatic metastasis, and peri-
toneal dissemination. For instance, ovarian cancer
commonly metastasizes to the liver through peritoneal
dissemination, often presenting as perihepatic metas-
tases on CT imaging.32 Moreover, several studies had
explored the possibility that intrahepatic metastatic le-
sions have heterogeneous spatial distribution patterns
influenced by the streamline flow in the portal vein.33,34

One of the key limitations of ALMSS is its lack of
interpretability. While we tried to visualize the region of
interest in model prediction, it was hard to confirm
whether the highlighted region was a true clue or an
occasional error. Our model still does not provide
explicit information about the factors that contribute to
its decision-making process. Selection bias is another
important limitation in this study. The entire study was
conducted on retrospective data and restricted to the
population in the southern areas of China. Thus, large-
scale prospective studies involving diverse populations
should be implemented in the future. Additionally, it
should be noted that our model primarily focused on
CT-positive liver tumors. This means that its applica-
bility to CT-negative cases, which are confirmed by other
modalities such as MRI, may be limited. In this work,
we excluded samples with any missing or defective data,
which could potentially contribute to selection bias. We
aim to address the issue of missing data in enrolled
cases in future prospective studies. There is also a lack
of subjects with LMs from rare origins that do not
preferentially metastasize to the liver but rather to the
lung, such as glioblastoma, osteosarcoma, and mela-
noma. Such cases should be taken into consideration in
further investigation to provide a more comprehensive
origin network and improve the model’s applicability
across different metastatic sites. Finally, it is imperative
to acknowledge the potential impact of the multiplicity
issue on the results obtained in this exploratory study,
particularly when dealing with multiple comparisons.
More appropriate multiplicity adjustments in statistical
analyses should be incorporated into future validation
studies to ensure the robustness and reliability of our
findings.

In conclusion, our study presents the first proof-of-
concept of using a deep-learning framework to differ-
entiate LMs from primary liver cancer and accurately
classify their primary origins directly in liver CECT
images. The results highlight the potential of AI systems
in augmenting conventional diagnostic methods, miti-
gating the shortage of clinical experts to provide timely
referral of patients to the appropriate clinical care.
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