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Abstract

Background: Identification of functional genes affecting milk production traits is very crucial for improving
breeding efficiency in dairy cattle. Many potential candidate genes have been identified through our previous
genome wide association study (GWAS). Of these, GPIHBPT is an important novel candidate gene for milk
production traits. However, the mRNA structure of the bovine GPIHBPT gene is not fully determined up to now.

Results: In this study, we identified a novel alternatively splice transcript variant (X5) which leads to a 31 bp
insertion in exon 3 and also confirmed the other four existed transcripts (X1, X2, X3 and X4) of the bovine GPIHBP1
gene. We showed that transcript X5 with a 31 bp insertion and transcript X1 with an 8 bp deletion might have
tremendous effect on the protein function and structure of GPIHBP1, respectively. With semi-quantitative PCR and
quantitative real-time RT-PCR, we found that the mRNA expression of GPIHBP1, GPIHBP1-X1 and GPIHBP1-X5 in
mammary gland of lactating cows were much higher than that in other tissues.

Conclusions: Our study reports a novel alternative splicing of GPIHBPT in bovine for the first time and provide
useful information for the further functional analyses of GPIHBP1 in dairy cattle.
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Background

Our previous genome-wide association study (GWAS) in
Chinese Holstein population revealed Glycosylphospha
tidylinositol-anchored HDL binding proteinl (GPIHBPI)
is a potential candidate functional gene for milk produc-
tion traits [1]. A SNP which is located 1,295 bp upstream
from the translation initiation site of GPIHBPI gene
showed strong association with milk yield trait, protein
yield and fat percentage with P values 1.02E-10, 1.55E-07
and 6.30E-20, respectively. To confirm the association be-
tween the GPIHBPI gene and milk production traits, we
selected a SNP within 5'UTR of GPIHBPI in another
Chinese Holstein population for further association study.
This SNP also showed very significant association with
milk yield trait, fat percent trait and protein yield trait (un-
published data). Therefore, GPIHBP1 was considered as a
novel promising candidate functional gene in dairy cattle.
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The GPIHBP1 protein is a glycosylphosphatidylinositol
(GPI)-anchored protein of the lymphocyte antigen 6
family. It contains an N-terminal signal peptide, an acidic
domain, a lymphocyte antigen 6 (Ly6) domain, and a
hydrophobic carboxyl-terminal motif [2]. In the endoplas-
mic reticulum, the signal peptide is removed and the
carboxyl-terminal hydrophobic sequence is replaced by a
GPI-anchor [3]. Thus, the acidic domain and Ly6 motif are
of great importance for mature GPIHBP1. Recent studies
showed that they play an important role in the capacity of
GPIHBP1 to bind lipoprotein lipase (LPL) [4]. It has been
demonstrated that some mutations, such as C65Y, C89F
and QI115P, in the most highly conserved portion of the
Ly6 domain lead to the abolishment of GPIHBP1 to bind
LPL [5-7], and a mutation in the C-terminal hydrophobic
domain, G175R, markedly reduces the ability of GPIHBP1
to reach the cell membrane and bind LPL [7].

GPIHBPI is responsible for actively transporting LPL
across endothelial cells [8]. Once inside capillaries, LPL
hydrolyzes the triglycerides in plasma lipoproteins and
provides the lipids from blood for production of milk
lipids [9,10]. Thus, GPIHBPI plays a critical role in the
lipolytic processing of triglyceride-rich lipoproteins. Rios
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et al. [11] found that in human a deletion of 17.5 Kb con-
taining the entire GPIHBPI gene resulted in extremely
high plasma triglyceride and cholesterol level. Beigneux
et al. [12] reported that glycosylation of Asn-76 within
the Ly6 domain of the mouse GPIHBP1 was critical for its
appearance on the cell surface. Beigneux et al [12]
showed the GPIHBPI-knockout (GPIHBPI-/-) mice dis-
played severe hypertriglyceridemia, with a plasma trigly-
ceride level of 1,000-6,000 mg/dL at 7-10 week of age. It
was reported that GPIHBPI was highly expressed in heart
and adipose tissue in mice [12,13] and its tissue expression
pattern was similar to that of LPL [13]. Recent studies
showed that GPIHBPI was the key element for transport
and localization of LPL [8,14,15] and might serve as a plat-
form for lipolysis on endothelial cells [3,16].

Up to now, the genomic organization of GPIHBPI re-
mains undetermined yet. The mRNA structure of the
bovine GPIHBPI gene has been keeping on changing in
the NCBI database in the most recent years. In the
present study, we investigated a new splice variant of bo-
vine GPIHBPI. In order to layout the groundwork for its
biological function validation in dairy cattle, we also per-
formed quantitative analysis of the mRNA expression
patterns of GPIHBPI and its novel splice variant in dif-
ferent tissues. We aimed to establish which splice variant
is predominantly expressed in bovine tissues.

Methods

Animals and tissue sample collection

Three Chinese Holstein cows which were in the same
period of lactation were selected from Beijing Sanyuan
Dairy Farm Center. All of them were fed in a consistent
environmental condition. Eight tissues samples (heart, liver,
lung, kidney, mammary gland, ovary, uterus and muscle)
from each cow were collected within 30 min after slaugh-
ter and stored at liquid nitrogen. The whole procedure
for collection of the tissue samples of all animals was
carried out in strict accordance with the protocol approved
by the Animal Welfare Committee of China Agricultural
University (Permit number: DK996).

RNA extraction and reverse transcription

The total RNA was extracted from the eight tissues of
the three cows by using Trizol reagent (Invitrogen, CA,
USA). The quantity and quality of RNA were measured via
an ND-2000 spectrophotometer (Thermo, USA). Reverse
transcription (RT) was carried out in a solution of 20 pL,
containing 12 uL Mix (0.5 pL Primer (50 pmol/L) oligio
(dt), 0.5 pL. Random primer, 1 pL. dNTPs (10 mmol/L), 5 pg
total RNA and ddH,O up to 12 pL), 4 pL 5 x First-Strand
buffer, 2 pL. 0.1 mol/L dTT, 1 uL RNaseout (40U/uL), and
1 pL SuperScrip III RT (200U/pL) (Life, USA). The Mix was
heated at 65°C for 5 min and then incubated on ice for at
least 1 min. Tubes containing all contents were incubated at
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25°C for 5 min, 50°C for 60 min and 70°C for 15 min. To
ensure the quality of the first strand cDNA, 1 pL of cDNA
was used in a PCR reaction to amplify the glyceraldehyde
phosphate dehydrogenase (GAPDH) gene.

Polymerase chain reaction and clone sequencing

PCR reactions were performed to amplify the coding re-
gions of GPIHBPI. The primers (Primerl, Primer2 and
Primer3, Additional file 1: Table S1) were designed using
the Primer 3 web-tool (http://frodo.wimit.edu/primer3/)
and the Oligo 6.0 software. For each amplicon, 1 pL of
¢DNA (1,000 ng/uL), 2.0 uL of 10x PCR buffer, 250 umol/L
of each dNTP, 0.5 units of HotstarTaq polymerase (Takara
Biotechnology, Tokyo, Japan), and 0.5 umol/L of primer
(Life Technologies) were used in a total 20 pL reaction. The
reaction was denatured for 10 min at 95°C, then 35 cycles
of 94°C for 30 s, special annealing temperature for 30 s and
72°C for 30 s, and a final extension of 72°C for ten min.
The products were electrophoresed on 2% agarose gels and
stained with ethidium bromide.

The purified double-stranded DNA (Omega, USA) was
cloned in pMD18-T (Takara Biotechnology, Tokyo, Japan).
The products of the ligation reactions were transformed
into competent cells. Twenty colonies per sample were se-
lected randomly for sequencing. With the DNAMAN 7.0
software, we performed multiple sequences alignment
analysis.

Predicted structures of the GPIHBP1 protein

The T coffee website tool (http://tcoffee.vital-it.ch/apps/
tcoffee/do:regular) was used to align amino acid sequences
of the bovine and human GPIHBP1 proteins. We pre-
dicted the open reading frame of the bovine GPIHBPI
transcript X5 using ORF Finder (http://www.ncbi.nlm.nih.
gov/projects/gorf/). Secondary structures of the GPIHBP1
proteins were predicted using the PSIPRED v3.3 web-
site tool (http://bioinf.cs.ucl.ac.uk/psipred/). SignalP 4.1
(http://www.cbs.dtu.dk/services/SignalP/) [17] was used to
predict the presence and location of the signal peptide of
GPIHBP1. Big-PI Predictor (http://mendel.imp.ac.at/gpi/
gpi_server.html) [18] was utilized to predict GPI anchor
sites in protein sequence. The human CD59 (membrane-
bound glycoprotein) gene which also has the UPAR/Ly6
domain [19], was used as the reference for predicted bovine
GPIHBP1 tertiary structures using the SWISS MODEL
method (http://swissmodel.expasy.org/) [20]. The reported
human CD59 (membrane-bound glycoprotein) served as
the reference for predicted bovine GPIHBP1 tertiary struc-
tures using SWISS MODEL method (http://swissmodel.
expasy.org/) [20].

Real time RT-PCR
Real-time PCR (RT-PCR) was performed on the eight
tissues of three cows. TagMan Real-time PCR assays
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were performed using 7500Fast (Life, USA). The PCR
amplification mix consisted of 2 puL 10x PCR Buffer,
1.2 uL Mg** (50 mmol/L), 0.5 puL dN'TPs (10 mmol/L),
0.5 pL of each primer (10 pmol/L, Additional file 1:
Table S2), 0.2 puL Tagman probe (GPI-Probe, X1-Probe
and X5-Probe, 10 pmol/L, Additional file 1: Table S2),
1 puL ¢cDNA, 0.2 pL Taq polymerase and 13.9 uL. ddH,O
in a final volume of 20 pL. The reaction was performed
with the conditions as follows: an initial 2 min hold at
95°C, 50 cycles of 95°C for 10 s, 60°C for 30 s. The as-
says were carried out in triplicate and the average Cr
values were obtained to calculate gene expression level. In
addition, parallel assays using the same cDNA were car-
ried out using the primers (Additional file 1: Table S2) and
probe (GPADH-Probe, Additional file 1: Table S2) to the
housekeeping gene GAPDH. The relative mRNA expres-
sion levels of GPIHBPI and two alternative splice variants
were normalized to the GAPDH gene by the 2744¢T
method [21].

Results

Identification of a novel mRNA spliced variant of GPIHBP1
Three primers (Additional file 1: Table S1) were used to
amplify the coding region of GPIHBPI in samples of
mammary gland. After PCR amplification with primer 1
and primer 3, we observed three (Figure 1A) and one
(Figure 1C) PCR bands, respectively. These 4 bands cor-
respond to the expected fragment size (Additional file 1:
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Table S1) derived from the bovine GPIHBPI sequence in
the NCBI database. With primer 2, two bands with frag-
ment lengths of 352 bp and 344 bp, respectively, would
be expected according to bovine GPIHBPI sequence.
However, the PCR products showed the two bands were
almost merged into one band (Figure 1B), since there is
only 8 bp difference in size between the two fragments.
Interestingly, we observed an additional band of 383 bp
which was present in all samples (Figure 1B, only two
samples are shown). To verify the results of primer 2, we
purified the PCR products and cloned them in Pmd18-T
(Takara Biotechnology, Tokyo, Japan). We then randomly
selected twenty colonies to sequence. It turned out that
17 of them were of 352 bp length, one of them showed a
deletion of 8 bp (5'-GGCCGCAG-3’, Chrl4:2550837-
Chr14:2550830) in exon 3 and was of length of
344 bp, and two of them showed an insertion of 31 bp
(5'-TGGAGGTTTACAGGTGTCCCTGCGCGGCCAG-
3’, Chr14:2551602-Chr14:2551572) in exon 3 and were of
length of 383 bp. Thus, both the two expected fragments
and the novel fragment were confirmed.

Currently, four transcript variants (X1, X2, X3 and X4)
of GPIHBPI are presented in NCBIL Transcript X1, which
leads to colonies with a deletion of 8 bp nucleotides, was
reported very recently. However, the colonies with an in-
sertion of 31 bp nucleotides suggest that there may exist a
novel transcript variant in the bovine GPIHBPI gene. This
novel transcript variant was named transcript variant X5

-

A

__603bp

«__289bp
«——192bp

<— 388bp

Figure 1 PCR analysis of the GPIHBP1 coding region in samples of mammary gland using three pairs of primers. (A) With primer 1,

383bp

—
—

352bp/344bp

transcript X2 (603 bp), transcript X3 (289 bp) and transcript X4 (192 bp) were observed as expected (according to the mRNA sequence of the

bovine GPIHBP1 gene in NCBI database). M1: DL2000, 2,000 bp, 1,000 bp, 750 bp, 500 bp, 250 bp, 100 bp. (B) With primer 2, in addition to the
expected PCR band (352 bp and 344 bp), a band of 383 bp was also observed in all samples. M2: 100 bp DNA Ladder from 1,500-100 bp.

(C) With primer 3, only the expected band (388 bp) was observed in all samples. M3: DL500, 500 bp, 400 bp, 300 bp, 200 bp, 150 bp, 100 bp

and 50 bp.
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[GenBank accession number: KJ502292]. To further con-
firm that the 8 bp deletion and the 31 bp insertion were
not a cloning artifact, we designed two pairs of primers
(Additional file 1: Table S3) specifically for the 8 bp dele-
tion and the 31 bp insertion sequences, respectively, and
performed PCR amplification. As a result, we obtained a
fragment of 207 bp for transcript X1 and a fragment of
101 bp for transcript X5. The existence of transcript vari-
ants X1 and X5 were thus confirmed again. The structures
of different splice forms of GPIHBPI were shown in
Figure 2. And there were notable differences in 5 un-
translated region (UTR) of different GPIHBPI transcripts.
Out of five different splice forms, three (X2,X3 and X4)
have the same translation initiation site.

Characteristics of the GPIHBP1 splice variants

Transcript variants X2, X3 and X4 have the same open
reading frame (ORF) and encode a 171-amino acid pro-
tein that was named bovine GPIHBP1 P2. In contrast,
the transcript variant X1 contains a different ORF and
encodes a 142-amino acid protein, which named bovine
GPIHBP1 P1. However, the ORF of transcript X5 was
still not known clearly up to now. The ORF Finder soft-
ware (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) was
used to predict all possible ORF of transcript variants
X5. As a result, five potential ORF were predicted which
had initiation codon and termination codon. The amino
acid sequences corresponding to the five ORF were ob-
tained using the DNAMAN 7.0 software and named bo-
vine GPIHBP1 P5.1, P5.2, P5.3, P5.4, and P5.5, respectively
(Additional file 1: Table S4).

Predicted structures of the GPIHBP1 protein
The predicted secondary structures of the bovine GPIHBP1
amino acid sequences were compared with that of the
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human GPIHBP1 protein. The a-Helix and S-sheet struc-
tures of bovine GPIHBP1 P1 and P2 were similar to the
human GPIHBP1 protein secondary structure (Figure 3A).
By using SignalP 4.1 [17], we found that only human
GPIHBP1, bovine GPIHBP1 P2 and bovine GPIHBP1
P5.5 had N-terminal signal peptide which contained a
predicted helical structure (Figure 3A, B). The GPI-
modification sites of the human GPIHBP1 protein, bovine
GPIHBP1 P1 and bovine GPIHBP1 P2 were also predicted
(P <0.01) using Big-PI Predictor [18,22] (Additional file 1:
Table S5). We found that bovine GPIHBP1 P1 and P2 and
the human GPIHBP1 protein had similar position for
alternative GPI-modification site. The predicted tertiary
structures of the bovine GPIHBP1 P1, bovine GPIHBP1
P2 and human GPIHBP1 sequences are shown in Figure 4.
It can be seen that these tertiary structures were similar
to the reported UPAR-LY6 domain of the human CD59
protein [19]. Their modeling ranges of residues were
62-138aa, 28-104aa and 58-133aa, respectively, which
contained four or five S-sheet structures. However, due
to the low alignment quality between target and specified
template, the tertiary structures of the predicted bovine
GPIHBP1 P5.1, P5.2, P5.3, P54, and P5.5 could not be
constructed.

Tissue mRNA expression pattern of three splice variants
of GPIHBP1

It can be seen from Figure 2 that the difference in 5" un-
translated region (UTR) of GPIHBPI transcripts X2, X3
and X4 did not affect the structure of protein. In contrast,
the 8 bp deletion of transcript X1 and 31 bp insertion of
transcript X5 had tremendous effect on the structure
and function of protein. Thus, semi-quantitative PCR and
TagMan Real-time PCR were employed with specific primers
for the 8 bp deletion of transcript X1, 31 bp insertion of

TIS! lsbp deletion
GPIHBP1-X1 ] {1
GPIHBP1-X2 {1 {1
GPIHBP1-X3 ‘ {1 {1
i
i
GPIHBP1-X4 Eu - O———
131 bp insertion
GPIHBP1-X5 1 {3 {1 1
5 UTR [] exon — intron
Figure 2 Schematic representation of the GPIHBP1 alternative splice variants. Transcripts X1 (XM_002692563.2), X2 (XM_005215283.1), X3
(XM_005215284.1) and X4 (XM_005215285.1) were obtained from NCBI. Transcript X5 was observed by RNA-seq (unpublished data). Transcript X1
contained a 8 bp deletion in exon 3. Transcript X5 contained a 31 bp insertion in exon 3. Although transcript X2, X3 and X4 had different
5’ untranslated region, they had the same translation initiation site (TIS).
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Human-GPIHBP1
Bovine-P1l
Bovine-P2
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Human-GPIHBP1
Bovine-Pl
Bovine-P2

PTGKGAGGPRGSSETVGAALLLNLLAGLGAMGARRP 184
PQGRGAGGPQGSPATVAATVLLSLLASLQEMG---L 142
PQGRGAGGPQGSPATVAATVLLSLLASLQEMG---L 171

B Bovine-p5.1 MVCRHMSSHQODGGRISDDHILLPVQPVOHPTLARPPGEGGRRPPGEPCDCGRHR

PAQPPGQPSGDGALSGALPPRAQHGLHPGWPALCPLSPVPSPRPWRINWKHL
Bovine-p5.2 MVWGRGQETADRVLASQGAGHAGREEGAPHSEPHLLKAGQEAEQDGGGHSRRAP
GAACPPPLGVLPGWGVAQAGLAAGYGRQRSVHRPADGLTCVCTPSRVGGLGT
Bovine-p5.3 MCLHTIPSRWSGDLTQCSRRRRWLCMSRGARSSAPARSSPPCAGTGTCSTAALSP
CCPQARRPPLPPRPHRRSLRAQRPGRHPRPPAPALSLAAQGHL
Bovine-p5.4 MTTRTLGAKATTMRTRRKRRPACLRAAGTQGRSATRASPCTRGRAASRCRAACS
PGHAKPSSPPGTLSQVPRPPTRDGVQTHVKPSAGRWTD

Bovine-p5.5 MKALAAVLLALLWCRLQVEVYRCPCAARERAGAGGRG

Figure 3 Predicted secondary structures of bovine and human GPIHBP1. Residues involved in the N-signal peptide formation are indicated
by underline, a-helices are in red, B-sheets are in green, GPI-modification site is in blue, alternative GPl-modification site is in purple. (A) Amino
acid sequence alignments of bovine and human GPIHBP1. The predicted secondary structures for bovine-p1 (XP_002692609.2) and bovine-p2
(XP_005215340.1, XP_005215341.1 and XP_005215342.1) are similar for several regions with that of human GPIHBP1. (B) The predicted secondary
structures for bovine-p5.1, bovine-p5.2, bovine-p5.3, bovine-p5.4 and bovine-p5.5 of transcript X5.

transcript X5 and overall GPIHBP1 transcripts in eight tis-
sues of three cows.

TagMan Real-time PCR analysis was conducted to fur-
ther identify the tissue mRNA expression pattern of bovine
GPIHBPI. After normalization with the corresponding
mRNA expression level of the housekeeping gene GAPDH,
analysis of variance (ANOVA) and multiple comparisons
were conducted with R software. We found that mRNA
expression level of GPIHBP1, GPIHBP1-X1 and GPIHBPI-
X5 all were significantly different among eight tissues

(P <0.05), in which the mRNA expression levels were
significantly higher in mammary gland than other tis-
sues (P < 0.05). And all of GPIHBP1-X1, GPIHBPI1-X5 and
overall GPIHBP1 had much lower expression level in liver,
kidney and muscle (Figure 5).

Discussion

Tissue-specific mRNA expression patterns are important
for revealing functional candidate genes associated with
milk production traits [23]. The specifically high expression

Bovine-P1

7°
—-.;j, /

Bovine-P2

Figure 4 Predicted tertiary structures of bovine and human GPIHBP1. The reported human CD59 was used as the reference to obtain
predicted GPIHBP1 tertiary structures by the SWISS MODEL method. The rainbow color code describes the tertiary structures from the N-termini
(blue) to C-termini (red) for GPIHBP1 UPAR/Ly6 domains. Arrows indicate the directions for 3-sheets.

/

Human-GPIHBP1
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expression among eight tissues at P <0.01.
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Figure 5 The mRNA expression patterns of GPIHBP1, GPIHBP1-X1 and GPIHBP1-X5 revealed by RT-PCR. The histograms represent the
mMRNA expression level of GPIHBP1, GPIHBP1-X1 and GPIHBPI-X5 in eight tissues of three cows. mRNA expression levels in mammary gland of
GPIHBP1, GPIHBP1-X1 and GPIHBP1-X5 all were highest among 8 tissues. The different capital letters indicated significant differences in the
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of GPIHBPI in mammary gland suggests that it may play
an important role in milk production traits or mammo-
genesis. It has been reported that GPIHBPI was highly
expressed in mammary fat and heart tissues in mice
[12,13]. Previous studies [24-26] showed that the lipopro-
tein lipase-mediated processing of lipoproteins within
mammary gland is important for providing the lipid nutri-
ents to produce milk fat. And the lipoprotein lipase (LPL)
expression pattern in bovine mammary gland at different
stages of lactation was quite similar to the lactation curve,
which suggest that LPL is important for maintenance of
milk synthesis [27]. Meanwhile, some studies on hyperlip-
idemia showed that GPIHBPI served as the transporter
and the platform for the lipoprotein lipase-mediated lip-
olysis processing [28]. Therefore, GPIHBP]I is essential for
LPL to realize its biological function and play an import-
ant role in the process of producing milk fat and mainten-
ance of milk synthesis.

Commonly, alternative splicing may change the struc-
ture of transcripts of a gene and the protein encoded by
the gene, leading to profound functional alternation. It
has been demonstrated that alternative splicing could
affect the binding properties, intracellular localization, en-
zymatic activity, protein stability and post-translational
modifications of a large number of proteins [29]. The ef-
fects of alternative splicing range from complete loss of
function or gain of a new function to very subtle modula-
tions that are difficult to detect [30]. Changes in alterna-
tive splicing of a gene can modulate its mRNA expression
levels by subjecting mRNAs to nonsense-mediated decay
(NMD) and alter the structure of protein [30]. Alternative
splicing is regulated by splicing codes, including exonic
splicing enhancers (ESEs), exonic splicing silencers (ESSs),
intronic splicing enhancers (ISEs) and intronic splicing si-
lencers (ISSs) [31]. Tissue-specific mRNA expression

pattern could be associated with absence or presence of
splicing codes in various tissues.

In this study, we identified that there were five tran-
scripts (X1, X2, X3, X4 and X5) of the bovine GPIHBP1
gene. The proteins of transcripts X2, X3 and X4 have
the classical structure of the GPIHBP1 protein consist-
ing of the N-terminal signal peptide, UPAR-Ly6 domain
and C-terminal GPI-Modification Site. The protein P1
encoded by transcript X1 has the UPAR-Ly6 domain and
the C-terminal GPI-Modification Site, but it lacks the sig-
nal peptide and acidic domain. It is not clear if this protein
would be ever produced and secreted because of lacking
the signal peptide. However, even if it is at all secreted as
normal, it is also a non-functional GPIHBP1 because it
lacks acidic domain, which makes it unable to bind to LPL
[32]. The splicing resulting in the transcript X5 has a tre-
mendous effect on the protein structure. The predicted
secondary structures of bovine GPIHBP1 P5.1, P5.2, P5.3,
P5.4 and P5.5 are quite different from that of bovine
GPIHBP1 P1, P2 and human GPIHBP1 (Figure 3B). They
do not have the UPAR-LY6 domain, which is considered
as a very important functional region of GPIHBP1 [32].
Therefore, this novel splicing variant may regulate the
transcript abundance of GPIHBPI in mammary gland of
dairy cattle by nonsense-mediated decay and thus affect
milk production traits indirectly.

Conclusions

This study is the first report on alternative splicing of bo-
vine GPIHBPI gene. We identified a novel alternatively
spliced transcript variant of GPIHBPI gene (GPIHBP1-X5)
with 31 bp insertion in the exon and also confirmed other
four existed transcripts (X1, X2, X3 and X4) of the
GPIHBPI in Chinese Holstein cow. And we found that
the 8 bp deletion of transcript X1 and 31 bp insertion of
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transcript X5 have tremendous effect on protein func-
tion and structure, respectively. Based on the results of
Tag-Man RT-PCR, we found that GPIHBP1-X1, GPIHBPI-
X5 and GPIHBPI expressed in higher level in mammary
gland than in other tissues of lactating dairy cow. In conclu-
sions, our findings provided more information for the fur-
ther functional analyses of GPIHBPI in dairy cattle.

Additional file

Additional file 1: Table S1. Sequences of forward (F) and reverse (R)
primers for PCR amplification of the coding region of GPIHBP1.
Table S2. Sequences of forward (F) and reverse (R) primers and probes
used for TagMan real time PCR. Table S3. Specific primers for confirming
the existence of 8 bp deletion and 31 bp insertion. Table S4. The amino
acid sequences of five potential open reading frames of GPIHBP1 X5.
Table S5. Predicted GPI-modification sites for amino acid sequence of
GPIHBP1 splice variants.
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