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Introduction

Africa’s livestock accounts for one-third of  the global 
livestock population (AU-IBAR, 2016) and about 40% of 
agricultural GDP in Africa, ranging from 10% to 80% in indi-
vidual countries (Panel, 2020). Livestock will be increasingly 
important in the future in sub-Saharan Africa (SSA) because 

the demand for animal-source food (ASF) is projected to 
increase due to population growth, increased incomes, and 
urbanization. By 2050, consumers in low- and middle-
income countries will demand 107 million tons more meat 
and 5.5 million tons more milk than they did in 2005/2007 
(Alexandratos and Bruinsma, 2012). The current per capita 
annual consumption of  meat and milk of  about 14 kg and 
30 L, are projected to rise to 26 kg and 64 L, respectively, by 
2050 in SSA (AU-IBAR, 2016). However, African livestock 
also have significant impacts on the environment (Gerber 
et al., 2013). More than 70% of  agricultural GHG emission in 
Africa comes from the livestock sector dominated by enteric 
methane (CH4) emission (Tubiello et al., 2014). Greenhouse 
gas emission intensity (i.e., emissions per unit of  livestock 
product) in east Africa is four times greater than the global 
average (Pressman et  al., 2018), and estimates from other 
parts of  SSA are likely similarly high. The North American 
average milk yield of  9,000 kg/cow per year is much greater 
whereas the carbon footprint of  1.3  kg of  CO2-eq./kg of 
milk is much lower than the corresponding SSA estimates 
of  250  kg/cow per year and 7.6  kg of  CO2-eq./kg of  milk, 
respectively (Capper, 2011). Livestock production in SSA 
causes extensive land degradation, overgrazing, and associ-
ated loss of  biodiversity. For instance, UNEP (1992) reported 
that 58% of  all land degradation and soil erosion in SSA is 
caused by overgrazing. This is because as the human popu-
lation increases, more and more pastureland is used for food 
crop cultivation, increasing stocking rate, and grazing pres-
sure on remaining grazing lands. A study in central Ethiopian 
highlands (Mekuria et  al., 2018) showed that cropland in-
creased by 16% while grazing lands decreased by 52% from 
1984 to 2016. Free grazing livestock also hamper soil and 
water conservation in degraded areas (Giday et al., 2018). If  
agricultural knowledge, science, and technology do not im-
prove, a general decline in species abundance in Africa due to 
livestock grazing is predicted at least until 2030 (Alkemade 
et  al., 2013). Livestock grazing also causes encroachment 
on rangelands of  grazing-resistant and unpalatable bushes, 
severely reducing rangeland plant biodiversity (O’Connor 

Implications

•	 Livestock in African countries contribute to about 10% 
of enteric methane emissions from dairy cattle world-
wide despite producing only 3.9% of the world’s milk.

•	 Livestock in Sub-Saharan Africa also cause extensive 
land degradation with 48% of rangelands in SSA de-
graded due to overgrazing.

•	 Strategies for sustainable intensification of livestock 
such as improving quality of feed, range and grazing 
land rehabilitation, introduction of improved forages 
and silvopastoral systems, and improvement of herd 
genetics can reduce both total emission and emission 
intensity while improving productivity.

•	 Sustainable intensification strategies are not always 
readily adopted, therefore, smallholder farmers in Af-
rica require policy directives, financial and technical 
support.
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et  al., 2014). This review examines the state of  knowledge, 
policies, and practices on sustainability of  livestock produc-
tion in Africa and changes needed to drive improvements.

Sustainability of Livestock Production in Africa

In Africa, sustainable livestock production must address 
food security and climate change concerns simultaneously in 
addition to social and economic aspects. The need for and prin-
ciples of sustainable livestock production apply universally. 
Although many high-income countries focus on the environ-
mental impacts of livestock production, low-income countries 
are concerned with increasing livestock productivity to improve 
income and food supply and reduce high rates of childhood 
undernutrition and stunting (Tricarico et al., 2020). Currently, 
most countries in Africa rely on the Intergovernmental Panel 
on Climate Change (IPCC) tier 1 methodology to estimate 
their livestock-based emissions. However, detailed, and precise 
activity data are lacking, and accurate estimates of natural re-
source use and environmental impact by livestock in Africa, 
particularly SSA are scarce.

Greenhouse Gas Emissions from African 
Livestock Systems

Global greenhouse gas emissions from livestock were es-
timated at 7.1 Gt CO2-eq./annum in 2013, which is 14.5% of 
human-induced GHG emissions (Gerber et al., 2013). Enteric 
fermentation from ruminants is only second to feed production 
in its contribution to overall GHG emissions from livestock. 
Gerber et al. (2013) reported that ruminants in SSA contribute 

a large share of global GHG emissions due to their high emis-
sion intensity. This is because of the low productivity levels of 
African livestock. For instance, the mean milk production in 
Africa ranged from 108 to 3,368 kg/cow per year (IPCC, 2019), 
with about half  of the countries producing below 500 kg milk/
cow per year (FAOSTAT, 2018). Consequently, African coun-
tries contribute to about 10% of enteric CH4 emissions from 
dairy cattle worldwide despite producing only 3.9% of the 
world’s milk (FAOSTAT, 2018). Therefore, the intensity of 
CH4 emissions (g/kg milk) is much larger in Africa compared 
to the rest of the world. For comparison, in the United States, 
the average CH4 intensity is about 13 g CH4/kg milk. Figure 1 
shows an analysis of the FAOSTAT (2018) database indicating 
that most African countries had intensity values of 50 to 100 g 
CH4/kg milk with nine countries over 300 g CH4/kg milk.

Regional analysis of CH4 intensity in Africa showed that the 
systems with the lowest values (most efficient) were in Northern 
Africa (mean = 46 ± 12 g CH4/kg milk). In these countries, the 
dairy production system relies mainly on irrigated forages and 
uses either high genetic merit or crossbred cows (Sraïri et al., 
2013). Northern African farmers use off-farm high-quality 
purchased feed resources which may represent up to 60% of 
the total energy intake (Kadi and Djellal, 2009). However, 
water is a major constraint to increasing forage production in 
this region. Sustainability of farms in the region relies on tech-
nologies that improve water use efficiency for feed production 
(Sraïri et al., 2013).

Southern Africa had the second lowest CH4 intensity 
(mean  =  102  g CH4/kg milk: SD  =  56  g CH4/kg milk). The 
CH4 intensity range in this region is greater compared to 
Northern Africa covering 25.5 (South Africa) to 226 g CH4/kg 
milk (Madagascar) partly because many of their dairy farms 

Figure 1. A histogram showing the number of African countries that have a CH4 intensity (g CH4/kg milk) factor within each class (based on FAOSTAT (2018) 
database).
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have more than 500 cows and use a total mixed ration (TMR) 
feeding system leading to annual milk production of over 
3,000 kg/cow (Dolecheck and Bewley, 2018). Whereas, in coun-
tries such as Madagascar and Zimbabwe, annual milk produc-
tion is <500 kg/cow leading to much greater CH4 intensity.

Western Africa had the third lowest CH4 intensity ranging 
from 54.3 g CH4/kg milk in the Republic of Congo to 610 g 
CH4/kg milk in Côte d’Ivoire (mean  =  194  g CH4/kg milk; 
SD  =  176  g CH4/kg milk). The wide range in CH4 intensity 
in the region reflects the various production systems and ef-
ficiency of milk production. About 50% of milk in Western 
Africa is produced by nomadic herders and agro-pastoralists 
(Seyoum, 1988) that use local breeds with low-quality feeds, 
causing greater CH4 intensity.

The greatest CH4 intensity was in Eastern Africa with an 
average of 233 g CH4/kg milk, but the intraregional variation 
was smaller compared to Western Africa (SD=110  g CH4/
kg milk). This region is characterized by mainly smallholder 
farmers, who experience various challenges including prob-
lems with overgrazing, a lack of infrastructure (very few milk 
collection locations and product manufacturers), little access 
to credit, and difficulty transferring technical knowledge and 
skills to farmers (Dolecheck and Bewley, 2021).

The CH4 intensity of beef production in Africa is also high, 
particularly in SSA. The enteric CH4 emissions values were 
based on IPCC (2019) tier 1 calculations because of lack of 
research that directly measures emissions. A recent study using 
respiration chambers showed that that tier 1 emission factors 
from IPCC overestimated both CH4 and nitrous oxide emis-
sions from cattle excreta in Kenya, given typical smallholder 
practices in Eastern Africa (Pelster et al., 2016). The Feed the 
Future Innovation Lab for Livestock Systems is addressing this 
problem by installing state-of-the-art CH4 measurement de-
vices (GreenFeed, C-Lock Inc., Rapid City, SD) for large and 
small ruminants in East and West Africa, respectively, to quan-
titatively measure CH4 emissions from tropical cattle. Data 
from this type of research will lead to better quantification and 
development of the tier 2 system that takes into account factors 
that affect emissions such as diet quality and feed intake.

Technologies to Improve Sustainability of 
Livestock Production in Africa

Improving quality of feeds
Most ruminant feeds in Africa are low-quality crop residues 

and natural pasture making up 72% to 93% of total feed con-
sumed by livestock (FAO, 2014). Improving crop residue entails 
increasing the crude protein concentration and/or digestibility 
using physical, biological, or chemical treatment of  crop res-
idues, thus potentially increasing intake and digestibility and 
reducing enteric CH4 emission intensity. This approach is also 
more feasible than concentrate supplementation due to the 
lower cost. Ammonization and alkali treatment of  roughages 
reduces methane intensity (i.e., decrease methane produced/
unit of  output) by increasing animal productivity. However, 
urea treatment is more commonly used than alternatives and 

has the greatest uptake potential when the costs, hazards, 
and efficacy of  chemical treatments are considered (Woyengo 
et al., 2004). Using urea-treated crop residues in ruminant diets 
was compared with traditional diets (untreated straw) and re-
sulted in reduced GHG emissions by 1.02 Mt CO2-eq. annu-
ally (5.5%) in Ethiopia and 3.18 Mt CO2-eq. annually (8.8%) 
in Kenya (Pressman et al., 2018). The adoption of  crop residue 
improvement technologies in Africa, however, is limited by the 
lack of  technologies that fit the social, economic, and eco-
logical conditions. Research is, therefore, required to develop 
technologies that are fit to smallholder production systems 
(Owen et al., 2012).

Physical crop residue treatment techniques such as grinding, 
chaffing, and chopping of roughage or fibrous feeds also have 
reduced enteric CH4 emission by about 10% through improve-
ment of feed intake, digestibility, and improved microbial ac-
tivity or fermentation as a result of increased surface area of 
the substrate (Valli, 2020). Similarly, pelleting reduces feed 
waste by up to 5%, thus reducing emissions, while reduction 
in particle size from 1,000 to 600 microns increases dry matter 
and nitrogen digestibility by 5% to 12% and reduce nitrogen in 
manure by 20% to 24% (Carter et al., 2012).

Quality of  crop residues can also be improved through 
crop breeding particularly when aimed at improving the di-
gestibility of  dual-purpose crops. Crop residues or other 
fibrous feeds differ in their digestibility and, therefore, en-
teric methane emission (Giger-Reverdin and Sauvant, 2000). 
A cultivar-dependent difference in Invitro Dry matter digest-
ibility of  about 7.4%, which is considered very high in terms of 
its impact on animal productivity and enteric methane emis-
sion has been observed (Subudhi et al., 2020). Crop breeding 
for improving nutritional quality of  crop residues holds a 
potential for improving quality of  crop, animal productivity, 
and reducing emission intensity. However, is it important to 
make sure that crop breeding for improvement of crop residue 
quality simultaneously increases grain yield, or at least does 
not decrease it. Otherwise such interventions will not work 
with African smallholder farmers who prioritize food than 
feed production (Adesogan et al., 2020).

Improving nutritional status of animals
These strategies for improving nutritional status include ra-

tion balancing, supplementation with concentrates, and the use 
of additives to improve feed use efficiency and reduce enteric 
CH4 emissions.

Ration formulation.  In most small-scale production systems 
in Africa, animals are fed whatever is available to fill their 
rumen, without due consideration to the feed quality and 
animal requirement (Balehegn et al., 2020). Balancing the ra-
tion in dairy cows has been reported to reduce emission in-
tensity of  milk by 13.5%, and gross energy loss through CH4 
by 10.3% (Garg et al., 2013). Balancing protein requirements 
reduces excess nitrogen excretion, thereby reducing N2O emis-
sions through manure. Reducing crude protein in beef  cattle 
diets from 13% to 11.5% reduced nitrogen emissions by 19% 
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(Cole and Todd, 2009). However, reduction of  dietary protein 
for dairy cattle must be closely managed to avoid negatively 
affecting milk production. Proper use of  ration-formulation 
technology may require understanding and accurate quantifi-
cation of  the nutrient requirement of  local breeds. The most 
commonly used nutrient requirement has been derived from 
experiments using Western (Bos taurus) breeds such as the 
Holstein-Friesian (Sauvant et al., 2017). However, SSA cattle 
are dominantly Bos taurus taurus × Bos indicus which have dif-
ferent requirements than western breeds (lower requirement 
for NEL at maintenance (Oliveira, 2015). Therefore, there is a 
need for development of  reference systems for local and cross-
bred breeds.

Supplementation.  The widespread low livestock productivity 
in SSA is largely due to the nutritional inadequacy of rations. 
This can be addressed by providing supplementary nutrients 
and energy through adding or substituting low-quality feed 
with others that are greater in quality. In Ethiopia, replacing 
crop residues with legumes such as Leucaena leucocephala 
(Lam.) de Wit, Moringa stenopetala (Bak.f.) Cuf., Sesbania 
sesban (L.) Merr., Cajanus cajan (L.) Millsp., Crotalaria juncea 
L., and Lablab purpureus L. (Sweet) reduced enteric CH4 pro-
duction by 8–26% (Berhanu et al., 2019). A simulation of corn 
replacing 20% roughage resulted in a 23% mean decrease in 
enteric CH4 emissions in three production systems in Ethiopia 
(Berhe et al., 2020). However, the reduction in CH4 emissions 
due to concentrate supplementation may be offset by increases 
in other non-enteric sources such as land conversion, pro-
cessing, and transportation, when more grains are fed (Guo 
and Gifford, 2002; Peters et al., 2012). The main challenge with 
supplementation is the high cost of energy or nutrient-dense in-
gredients due to importation or competition for use in human 
diets. Increased and efficient domestic production of such in-
gredients is critically needed to reduce production costs and 
affordability by smallholder farmers.

Adopting climate-smart livestock 
production systems

Climate-smart livestock interventions and strategies are 
applied to improve livestock productivity, especially, under 
resource-limited systems, while enhancing climate change 
adaptation, mitigation, and environmental resilience (Gaitán 
et al., 2016). Climate-smart farm-level integration of various 
components of the livestock system can reduce GHG emis-
sions and emission intensities, both enteric and from manure, 
and increase carbon sequestration, ultimately contributing  
to a system-wide negative carbon balance (Ortiz-Gonzalo 
et al., 2017).

Agroforestry systems.  Carbon neutral feed production sys-
tems, such as silvopastoral and other agroforestry systems, can 
contribute to a reduction in GHG emissions from livestock 
through improved feed quality and contribution to carbon se-
questration (Feliciano et al., 2018). For instance, incorporating 

crop fodder tree plantation increased topsoil carbon by 141% 
compared to continuous corn cropping (Mutuo et al., 2005).

Grazing and rangeland management.  Proper grazing man-
agement can increase biomass production and biodiversity 
(e.g., Savory and Butterfield, 1998). About 1.5 billion tons 
CO2 equivalent/year, an amount sufficient to offset  all the 
emissions from livestock production, can be sequestered 
by improving management of  grazing lands (IPCC, 2007). 
Furthermore, well-managed grasslands can store up to 260 
tons of  carbon per ha (FAO, 2007) as rangelands can store up 
to 30% of  the world’s soil carbon, over and above the substan-
tial amount of  aboveground carbon stored in trees, bushes, 
shrubs, and grasses (Grace et  al., 2006). Interventions like 
zero-grazing, moderate and rotational grazing can increase 
livestock productivity and carbon sequestration by grazing 
lands (Gebregergs et al., 2019). Additional research is needed 
to understand how to manage grasslands to promote carbon 
capture and which mechanisms can be used to encourage such 
management practices.

Improved forage-based systems.  Unlike feedlots, perennial, low-
input fodder systems can generally sequester a significant amount of 
carbon. Of the overall mitigation potential in agriculture, 50–80% 
is attributed to sown forages (Peters et al., 2012). Cultivated forages 
in low-income countries contribute about 4% of the overall global 
agricultural GHG mitigation potential (Thornton and Herrero, 
2010). The benefit of forage-based systems is pronounced with 
improved forages as they increase herbage biomass and livestock 
productivity (Paul et al., 2020). When forage technologies were in-
tegrated with food crops, soil loss was almost halved, soil organic 
carbon increased by 10%, and grain and stover yields by 60% and 
33%, respectively (Paul et al., 2020).

Preserving natural ecosystems.  In terms of soil carbon sequestra-
tion potential, pasturelands had better soil carbon content than 
croplands and even forests by a factor of 59% and 10%, respect-
ively (Guo and Gifford, 2002), though changes are dependent on 
biophysical factors and geography (Powers et al., 2011). Avoidance 
of grazing, cultivation and other disturbances of degraded grass-
lands in northern Ethiopia resulted in an increase of carbon stock 
by 187% compared to a freely grazed area (Balehegn et al., 2019). 
Zero grazing and using enclosures on degraded grazing lands 
have greatly improved soil and aboveground carbon sequestration 
potential in many areas of northern Ethiopia (Gebregergs et al., 
2019). However, despite its potential, the contribution of pastoral 
ecosystems such as those in SSA in offsetting atmospheric green-
house gases through carbon storage is seldom appreciated.

Other interventions.  Other interventions that can help min-
imize the environmental impacts of livestock in SSA include 
manure management, housing, improved water use efficiency, 
animal health, and genetics (Knapp et al., 2014). In Ethiopia, 
a simulation where 20% of manure burnt for fuel or deposited 
on rangelands was managed as solid manure reduced CH4 and 
N2O emission from manure by 18–36% depending on the type 
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of livestock production systems (Berhe et al., 2020). Herd man-
agement strategies such as improving herd efficiency and health 
and genetics; heat abatement, fertility management, and fa-
cility design; reducing herd sizes to retain only productive and 
efficient animals; ensuring attainment of market size or weight 
earlier can reduce total GHG emission from livestock by up 
to 30% (Gerber et al., 2013). Culling large number of unpro-
ductive animals and replacing them with fewer but more pro-
ductive animals would result in reduced GHG emissions and 
other negative environmental impacts of livestock in Africa. 
However, the technique is particularly opposed to the object-
ives of farmers in Africa who prefer to keep larger numbers 
of animals for noneconomic purposes (Forabosco et al., 2017).

Socioeconomic sustainability of livestock
Greenhouse gas emissions are often used as a proxy for live-

stock contributions to climate change, but this is just a single in-
dicator of sustainability. The contribution of livestock to GHG 
emissions has been overestimated (Steinfeld et al., 2006) leading 
to recommendations of reduced consumption of ASF for en-
vironmental and other reasons (Willet et al., 2019). Additional 
critically important indicators of sustainability include social, 
nutritional, and economic factors and livestock play vital roles 
in in all these areas in low- and middle-income countries, par-
ticularly in Africa. For instance, ASF consumption is vital for 
ameliorating the high stunting rates that prevail across the SSA, 
because the World Health Organization (2014) noted that ASF 
are the best nutrient-rich foods for infants aged 6–23 mo, and 
UNICEF (2019) noted that about 59% of children in the world 
do not get the nutrients they need from ASF. In fact, World 
Bank researchers noted that the GDP can be reduced by 9–10% 
on average in African and Asian countries in which the work-
force is made up of people who experienced childhood stunting 
(Galasso et  al., 2016). Consumption of ASF is therefore vital 
for physical and cognitive development in such countries be-
cause the poor, particularly in rural areas, lack access or cannot 
afford other nutrient-dense foods. Livestock provide draught 
power to a third of farmers in developing countries (Bruinsma, 
2003). Manure is used as organic fertilizer in half of the world’s 
croplands and mostly in developing countries, as well as for 
fuel and for building (Bruinsma, 2003). Livestock are symbols 
of status, a means of income and insurance, and are vital for 
resilience and livelihoods of numerous people. For instance, in 
Niger and Burkina Faso, approximately 80% of the popula-
tion is involved in livestock production (Molina-Flores et  al., 
2020) and on average, livestock contribute 40% to the agricul-
tural GDP of developing countries. Further, livestock are often 
an important and only source of income for landless female 
farmers in developing countries, making it a critical component 
of achieving economic gender equality (Bravo-Baumann, 2000). 
Consequently, several of the UN sustainable development goals 
on zero hunger, education, gender equality, poverty alleviation, 
environmental health, etc., cannot be achieved without livestock 
and livestock products (Adesogan et al., 2020). Further, more 
than 70% of feed utilized by livestock in Africa is crop residues 

that would otherwise be burned and contribute to more emis-
sions (FAO, 2014), making livestock indispensable for economic 
and environmental sustainability.

For the reasons described above, achieving socioeconomic sus-
tainability in the livestock sector in the developing countries must 
require a proper understanding of the roles and challenges with 
livestock production in developing countries (Adesogan et  al., 
2020). A combination of various sustainable livestock intensifica-
tion strategies such as herd management strategies, adoption of 
feed improvement technologies, grazing management strategies, 
and more environmentally resilient and carbon-neutral produc-
tion systems such as silvopasture can help prevent or reduce nega-
tive environmental impacts of livestock, while at the same time 
enhancing their social, economic, and nutritional roles.

Policies to Address Greenhouse Gas Emissions 
and Other Sustainability Issues

The policy environment for managing the environmental 
footprint of livestock in Africa is underdeveloped relative to 
the United States or Europe, with few countries implementing 
any deliberate policies. This is not surprising given that across 
Africa, the livestock sector has not been well supported by 
policy initiatives in general (AU-IBAR, 2016). We look at two 
areas: reducing total GHG production and intensity from live-
stock, and land governance as it affects livestock production.

Greenhouse gas emissions from livestock
Policies to reduce GHG emissions from livestock produc-

tion in Africa are largely aspirational goals. These goals are 
stated in Nationally Determined Contributions (NDCs) that 
nearly every African country committed to after the 2015 
Paris Agreement. Many countries in Africa include agricul-
ture as a sector for achieving reductions in GHG emissions 
intensities (Richards et al., 2015), and within agriculture, the 
livestock sector is usually the largest emitter. Consequently, 
the livestock sector is often targeted as means of  achieving 
NDCs. Ethiopia estimates that it could reduce GHG emis-
sions from livestock production by 49 Mt CO2e by 2030 as 
part of  its widely heralded Climate Resilient Green Economy 
strategy (Federal Democratic Republic of  Ethiopia (FDRE), 
2011). However, in most cases, countries have set targets 
with little to no concrete strategies to achieve these targets. 
Ethiopia is one of  the few exceptions, but even there, a lot of 
work remains (Kristjanson, 2020).

Implementation of strategies to achieve the targets remains 
a challenge because African countries need several kinds of re-
sources. First, they need data and an institutional structure to 
establish a GHG inventory for livestock so that they can con-
vincingly monitor progress. Reliable data for livestock are often 
missing. Kenya, for example, has not updated its livestock 
census in over a decade. Furthermore, agencies struggle to 
share data or to understand what is needed to establish a GHG 
inventory that meets international reporting standards (T.A.C., 
personal observation). In addition to data, countries need val-
idated Monitoring, Reporting and Verification (MRV) systems 



52 Animal Frontiers

in place where data can be integrated. To date progress for the 
livestock sector has been slow (Wilkes et  al., 2020), though 
Kenya has recently released an inventory of GHG emission for 
the dairy sector between 1995 and 2017 (GoK, 2020)

Second, countries need investments to finance the interven-
tions proposed to achieve their mitigation targets. Attracting 
this is also difficult. For example, in Kenya, a Nationally 
Appropriate Mitigation Action for the dairy sector was drafted 
several years ago, but the proposal has yet to find investment 
support (NAMA Investment Proposal, 2014). Rapid progress 
in low emissions development is expensive: governments need 
interventions to stimulate millions of farmers to implement 
specific practices to achieve their ambitious targets. Farmers, in 
turn, need access to information along with financial and other 
resource incentives to make the investments profitable if  they 
are to adopt them (Ericksen and Crane, 2018).

Because achieving national mitigation targets implies 
substantial changes in producers’ practices, successful low-
emission development needs to find the space where produ-
cers’ needs for profitability overlap with national GHG targets. 
However, simultaneously meeting GHG targets and producers’ 
livelihood needs requires low-emission development initiatives 
to anticipate and engage with questions of producers’ variable 
priorities and capacities, as well sectoral political economies. 
For example, recent research from southern Tanzania shows 
that heterogeneity in milk-producing households’ economic 
organization, priorities, and capacities has significant implica-
tions for their ability and motivation to adopt dairy intensifi-
cation technologies (Kihoro et al., 2021). Within households, 
shifts toward dairy intensification can add to women’s labor 
burden and disenfranchise them from profits. This dynamic, 
which emerges from cultural norms relating to market engage-
ment and household headship, leads to women resisting some 
low emission development  (LED) practices (Tavenner and 
Crane, 2018).

These initial findings indicate risks that rural development 
goals relating to equitable economic opportunity can be at 
odds with environmental goals associated with low-emission 
development interventions, though research on the social dis-
tributional dimensions of low-emission development is vastly 
underdeveloped compared to environmental research. With 
low-emission development emerging as a paradigm for invest-
ment in African livestock sectors, there is an urgent need for 
more research that analyzes the synergies and tensions between 
producers’ diverse livelihood needs and national governments 
environmental commitments, keeping in mind the variability 
in cultural norms relating to livestock keeping and market en-
gagement across Africa (see Weiler et al., 2014).

The tension between mitigation and adaptation priorities 
is another important issue in African climate change invest-
ments. While African development priorities overwhelm-
ingly emphasize the adaptation and food security aspects of 
climate-smart agriculture, the international donor commu-
nity has emphasized climate mitigation through reduction 
of  GHG emission intensities in the livestock sector without 
paying concomitant attention to adaptation. Countries’ 

emphasis on adaptation and food security is driven by a 
combination of  factors. First, across much of  Africa agri-
culture is highly vulnerable to the impacts of  climate change 
and a large percentage of  Africans still have agrarian liveli-
hoods that rely to some degree on livestock (Descheemaeker 
et  al., 2016). Second, a significant degree of  food and nu-
tritional insecurity still exists across Africa (FAO, 2017). 
Between the high vulnerability of  agricultural livelihoods 
and nutritional deficits, reducing GHG emissions intensities 
from livestock is simply not a central principle for guiding 
rural development policy. However, within the dairy sector, 
on-farm practices that reduce GHG emissions intensities are 
highly overlapping with practices that constitute intensifica-
tion, though it is important to note that intensification prac-
tices should not be assumed to improve producers’ profits 
(Ericksen and Crane, 2018). All the same, dairy intensifica-
tion is slowly occurring in many countries, driven primarily 
by commercial interests, but it is not necessarily being moni-
tored for or motivated by the reduction of  GHG emissions 
intensities.

Land management
Land management is an extensive topic covering it in detail is 

beyond the scope of this paper. Although most land management 
policies do not directly aim at the “sustainability” of livestock 
systems (Ashley, 2019), they influence related practices. For ex-
ample, rangelands in East Africa are central to extensive livestock 
production, but a policy environment that has failed to control 
the processes driving fragmentation of these landscapes has re-
sulted in the deterioration of the rangelands along with the live-
stock and wildlife that depend upon that vegetation (Galvin et al., 
2008). Re-establishing land use planning with community man-
agement is crucial to restoring the viability of these rangelands 
(N’ganga and Robinson, 2018). Such efforts are key to using 
these vast rangeland areas to sequester more carbon, a concept 
that has gained international attention (Milne et al., 2016).

Conclusions

Livestock are vital sources of livelihoods and nutrition to 
millions of smallholder livestock producers in Africa. Currently 
making up a third of the global livestock population, live-
stock in Africa are growing both in numbers and in demand. 
Urbanization and income growth are driving increased invest-
ment in livestock. However, the growing livestock population in 
Africa also poses environmental problems such as overgrazing, 
land degradation, increased GHG emissions or production, 
bush encroachment, and desertification. Even at current num-
bers, livestock in Africa are important contributors to global 
agricultural GHG. With African livestock numbers poised to 
increase in the future, GHG emissions as well as other negative 
environmental impacts of herding will increase. Current tech-
nologies and strategies, however, provide opportunities to focus 
attention on increasing productivity per animal rather than live-
stock numbers thus reducing negative environmental impacts. 
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Such interventions include improving feed quality by upgrading 
crop residues, concentrate supplementation, that effectively 
reduce enteric CH4 production and emission intensity while 
improving feed conversion efficiency and miscellaneous sus-
tainable livestock intensification strategies that improve prod-
uctivity while minimizing the negative environmental impact of 
livestock. Such strategies include manure management, animal 
breeding, grazing practices, and sustainable forage production 
or pastureland management practices such as intercropping, 
silvopastoral practices, etc. Perhaps more than the need for new 
research is that for awareness creation about best bet technolo-
gies and approaches for improving livestock production and 
sustainability and for sustained extension support to enhance 
the adoption and use of available technologies and approaches. 
Given that African countries are already critically affected by 
climate change as manifested by extreme weather variability 
and recurrent drought, strategies that provide synergetic oppor-
tunities for climate adaptation and mitigation are needed for 
resource-limited smallholder farmers. Implementation of suc-
cessful adaptation and mitigation schemes, however, is costly to 
smallholder farmers, and therefore policy support towards pro-
viding financial and technical incentives is required.
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