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Abstract: We demonstrated a 1.1-µm band extended wideband wavelength-swept laser (WSL) that
combined two semiconductor optical amplifiers (SOAs) based on a polygonal scanning wavelength
filter. The center wavelengths of the two SOAs were 1020 nm and 1140 nm, respectively. Two SOAs
were connected in parallel in the form of a Mach-Zehnder interferometer. At a scanning speed of
1.8 kHz, the 10-dB bandwidth of the spectral output and the average power were approximately
228 nm and 16.88 mW, respectively. Owing to the nonlinear effect of the SOA, a decrease was
observed in the bandwidth according to the scanning speed. Moreover, the intensity of the WSL
decreased because the oscillation time was smaller than the buildup time. In addition, a cholesteric
liquid crystal (CLC) cell was fabricated as an application of WSL, and the dynamic change of the
first-order reflection of the CLC cell in the 1-µm band was observed using the WSL. The pitch
jumps of the reflection band occurred according to the electric field applied to the CLC cell, and
instantaneous changes were observed.

Keywords: wavelength-swept laser; fiber lasers; semiconductor optical amplifier; dynamic measure-
ment; dynamic optical fiber sensors

1. Introduction

A wavelength-swept laser (WSL) is a light source that can continuously change its
narrow linewidth wavelength over a wide wavelength range at high speed [1–19]. Owing
to its wide wavelength band and fast wavelength scanning speed, it is primarily used
as a light source for optical coherence tomography (OCT) systems in biophotonics [2–12].
In addition, the output of the WSL has a one-to-one correspondence in the spectral and
temporal domains; thus, it has been widely applied as a light source for dynamic fiber optic
sensors that measure dynamic changes in wavelength [13–18]. WSLs can be implemented
using a variety of methods. Among them, the polygonal scanning wavelength filter-
based WSL [2–4,17–20] and the Fabry-Perot tunable filter (FFP-TF)-based WSL [5–13,21–23]
have been studied most actively. In addition, an electro-optical tunable filter (EOTF) [24]
and acousto-optic tunable filter (AOTF) [25,26] have been researched. FFP-TF has the
advantage of optical alignment, which can be easily implemented because all elements
comprise a pigtailed optical fiber; however, the center wavelength of the filter is unstable,
owing to thermal instability. Because a sinusoidal function is applied to the filter, the
signal is nonlinear and requires complex signal processing [10,11]. An EOTF is not limited
by a mechanical drive and fast reaction speed, and it operates linearly [24]. Therefore,
the scanning bandwidth is small and the linewidth is relatively wider than that of other
methods. An AOTF also has the advantage of no mechanical drive; however, the bandwidth
of the maximum gain is not sufficiently wide and the scanning speed is slow [25,26].
Although the polygonal scanning wavelength filter is relatively bulky and is limited
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by mechanical driving, it is possible to easily change the scanning speed and scanning
wavelength range by adjusting the rotation speed, diffraction grating angle, and the
magnification of the telescope [2–4,17–20].

Most WSLs have been implemented for biophotonics imaging applications in the
1300-nm band [2–5,8–12]. In addition, many studies have utilized various wavelength
bands, such as 850- [24,27–29], 1000- [30–32], 1500- [6,13,17,21,22,25,33–35], and 1700–
2000-nm [36–38] bands, as light sources for OCT imaging, including optical fiber sensors.
Research on WSLs typically focuses on obtaining a fast scanning speed [15,39–44] and
scanning in a wide wavelength band [8,9,12,37] to improve imaging quality or the sensing
dynamic range. MEMS-based WSL [45,46], dispersion tuned WSL [15,47–49], very short
cavity WSL using FFP-TF [9], and Fourier domain mode locked WSL [5,6,11–13,16,22] were
implemented to achieve a fast scanning speed. Methods to implement a wide scanning
wavelength band include connecting two gain media in parallel and using a semiconductor
optical amplifier (SOA) with a wide gain area [4,8,12]. If a wide scanning wavelength band
in a WSL is implemented in the 1-µm band, high resolution can be realized as an OCT
light source or the dynamic measurement range can be increased in the optical fiber sensor
system.

In this study, we successfully demonstrated, for the first time to our knowledge,
a >228-nm wideband WSL around 1.1-µm band based on a polygonal scanning wave-
length filter using two SOAs. Two SOAs were combined in parallel as a Mach-Zehnder
interferometer in the laser cavity. This enabled a wider wavelength scanning band by
combining the adjacent wavelength bands of the two SOAs. In addition, the characteris-
tics of the scanning bandwidth and average power were investigated with respect to the
scanning speed of the WSL. As an application of the dynamic measurement of WSL, the
phenomenon of the pitch jump was observed according to the intensity of the electric field
applied to a cholesteric liquid crystal (CLC) cell and the observation of the instantaneous
movement of the first-order reflection band on the oscilloscope was reported.

2. Experiments

The WSL is a wavelength-tunable laser that continuously and rapidly varies with
time in a wide wavelength bandwidth. In the wavelength-tunable filter inserted into the
laser cavity, only the maximum gain corresponding to the filter condition is fed back to the
resonator when an amplified spontaneous emission (ASE) beam with a wide bandwidth is
incident on the filter. By continuously changing these conditions, the WSL continuously
oscillates over a wide bandwidth.

Figure 1 shows a schematic diagram of the experimental setup, in which two SOAs
were connected in parallel in the form of a Mach-Zehnder interferometer to construct a
single polygonal scanning wavelength filter-based WSL. This obtained a wider wavelength
scanning band by combining the adjacent wavelength bands of the two SOAs [4,8,12].
When two SOAs are connected in series, a wide scanning band cannot be obtained because
the gain of one SOA is absorbed by the other [4]. The broadband WSL consisted of two
SOAs, two polarization controllers in front and behind each SOA, two 50:50 fiber couplers,
an optical circulator, and a polygonal scanning wavelength filter; the last is indicated by
the dotted box in Figure 1. The polygonal scanning wavelength filter contained a brazed
diffraction grating, a telescope with two lenses, and a 36-facet polygonal scanning mirror.
The telescope was comprised of two achromatic doublet lenses with a grating at the front
focal plane of the first lens and a polygonal scanning axis on the back focal plane of the
second lens. The parallel beam from the collimator was incident on a brazing diffraction
grating and underwent diffraction of the first order, which was incident on the telescope
and aligned along the optical axis. The diffracted wavelength components had different
angles of convergence on the polygonal scanning mirror facet. Therefore, the polygonal
scanning mirror only reflected the spectral components within a narrow resolution band
that were vertically incident. The reflected wavelength component was fed back into the
laser cavity. Because the polygonal scanning mirror rotated at a high speed, the lasing
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wavelength continuously varied within the gain band. If the polygonal scanning mirror
was rotated in the direction of increasing wavelength, the energy was transmitted in a
long wavelength, owing to the nonlinear effect of the SOA. Therefore, a higher output and
narrower line width was obtained, compared with the opposite case. A 600-lines/mm
diffraction grating was used, the angle of incidence was 47◦, the angle of reflection was
3.5◦, and the focal lengths of the two lenses were each 5 cm. The output from the WSL
was monitored on an oscilloscope using a photodetector and an optical spectrum analyzer
(OSA).
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Figure 1. Schematic diagram of an experimental setup, in which two SOAs were connected in parallel
in the form of a Mach-Zehnder interferometer.

In the experiment, a 1064 ± 100-nm broadband optical fiber coupler and a broadband
circulator operating at 950–1100 nm were used to minimize the optical loss across the wide
wavelength band. The center wavelengths of the ASE of SOA 1 and SOA 2 were 1020 nm
and 1140 nm, respectively, and the 10-dB bandwidths were 114 nm and 57 nm, respectively,
as shown in Figure 2.

Figure 2. ASE spectra of two SOAs.
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Figure 3a shows the optical spectrum of the WSL when only SOA 1 was connected in
the Mach-Zehnder interferometer. The 10-dB bandwidth and average output power were
132 nm (from 959 nm to 1091 nm) and 11.46 mW, respectively. Figure 3b shows the optical
spectrum of the WSL when only SOA 2 was connected in the Mach-Zehnder interferometer.
The 10-dB bandwidth and average output power were 108 nm (from 1079 nm to 1187 nm)
and 4.73 mW, respectively. Figure 3c shows the optical spectra output from the fabricated
WSL by combining the two SOAs in parallel at a scanning speed of 1.8 kHz. The red and
blue lines denote the optical spectrum when only SOA 1 or SOA 2 were connected to
the Mach-Zehnder interferometer of the laser cavity, respectively. The optical spectrum
of the WSL, obtained by connecting the two SOAs together, is represented as a black
line. The 10-dB bandwidth and the average output power of the WSL with two SOAs
were ~228 nm (from 959 nm to 1187 nm) and ~16.88 mW, respectively. The wavelength
scanning resolution measured by OSA was 2 nm, but the same scanning bandwidth of
228 nm or more was obtained with 0.2-nm resolution. This is a significantly wider scanning
bandwidth compared with that of the ASE with two SOAs, and the output spectrum of
the WSL achieved a relatively uniform amplitude. This can be achieved by controlling
the pump current of each SOA and controlling the polarization appropriately using the
polarization controllers in the laser cavity. The instantaneous linewidth was determined
to be 0.11 nm in this laser cavity. Figure 3d shows the output of the WSL measured using
the oscilloscope. This corresponds to the optical spectrum of the WSL, shown in Figure 3c.
In the oscilloscope, the time interval for a scanning bandwidth pulse was measured by
440 µs, and a period was measured as 560 µs. The period corresponds to free spectral range
(FSR) of the wavelength filter. By inversely converting the wavelength scanning range of
228 nm corresponding to the time interval of 440 µs of the scanning bandwidth pulse, the
wavelength range corresponding to 560 µs was inversely estimated. The obtained FSR
was approximately 290 nm. The measurement error was ~2.5% due to the resolution of
the oscilloscope. The FSR of the wavelength filter can be calculated using the following
equation [2,50]:

(∆λ)FSR = p (cos β0)
F2

F1
θ0 , (1)

where p is the grating pitch, θ0 = 2π/36 is the facet-to-facet polar angle of the polygonal
scanner mirror, β0 is the angle between the optical axis of the telescope and the grating
normal, and F1 and F2 are the focal lengths of the two lenses in the telescope. Using
Equation (1), the calculated FSR of the wavelength filter is 290 nm. The FSR measured
on the oscilloscope was approximately 290 nm, which is similar to the theoretical value.
The measured 10-dB wavelength scanning range of the WSL was ~228 nm; therefore, the
duty cycle was approximately 78.6%. In order to obtain the desired FSR and to operate
normally, it is necessary to appropriately adjust various variables shown in Equation (1).
However, in order to obtain sufficient wavelength scanning, the FSR must be greater than
the wavelength scanning band of the light source.
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Figure 3. (a) Optical spectrum of the WSL when only SOA 1 was connected in the Mach-Zehnder interferometer; (b) optical
spectrum of the WSL when only SOA 2 was connected in the Mach-Zehnder interferometer; (c) optical spectra output and
(d) corresponding temporal output from the WSL by combining two SOAs in parallel in the Mach-Zehnder interferometer.

Figure 4a,b shows the optical spectra of WSL with a linear scale when only SOA 1
or SOA 2 were independently connected, and Figure 4c shows the optical spectrum of
the WSL with a linear scale when SOA1 and SOA2 were combined in a Mach-Zehnder
interferometer configuration. If the output spectra of the two SOAs overlapped, the
interference between the two laser outputs can cause intensity noise. However, in the case
of a parallel configuration, beating noise may occur if the resonator lengths have exactly
matched each other, but it can be eliminated by introducing an offset of the length between
the two arms within the Mach-Zehnder interferometer [4,12]. Additionally, Figure 4d–f
shows the output pulses in the temporal domain corresponding to Figure 4a–c. They show
a one-to-one correspondence between the shape of the pulse signal in the temporal domain
and the wavelength band in the spectral domain. Therefore, the dynamic optical properties
of a material can be inferred from a wavelength signal by measuring the output pulse in
the temporal domain using the WSL.
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Figure 4. Optical spectrum of WSL with a linear scale (a) when only SOA 1 was connected, (b) when only SOA 2 was
connected, and (c) when SOA1 and SOA2 were combined in a Mach-Zehnder interferometer configuration. (d–f) Output
pulses in the temporal domain corresponding to (a–c).

To investigate the characteristics of the WSL, the change in the scanning bandwidth
was measured while increasing the scanning speed. Figure 5a shows the variation in
the spectra according to the scanning speed of the WSL. Up to 2 kHz, a 10-dB scanning
bandwidth of the WSL achieved over ~228 nm. As the scanning speed increased, the scan-
ning bandwidth gradually decreased. At approximately 8 kHz, the scanning bandwidth
was reduced to ~220 nm, as shown in Figure 5b. Similarly, as shown in Figure 5c, as the
scanning speed increased, the average optical output power gradually decreased. This
occurred because the gain was not sufficiently obtained at an oscillation time smaller than
the buildup time of the WSL.
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Figure 5. (a) Optical spectra, (b) 10-dB bandwidth, and (c) average optical power with respect to the WSL scanning speed.

As mentioned above, the output of WSL has a one-to-one correspondence in the
spectral and temporal domain; therefore, it has been widely applied as a light source to
measure dynamic changes in wavelength [13–18]. As a simple application, the dynamic
variation of the first-order reflection spectrum from a CLC cell is measured by applying an
electric field to the CLC cell in the 1-µm band. In the experiments, a nematic liquid crystal
E7 and chiral dopant (R811) were mixed to produce a right-handed CLC. The chiral dopant
concentration of the CLC cell was 13.92 wt%, and the calculated pitch was 678 nm. Figure 6
shows a photograph of the output signal of the WSL on an oscilloscope. The scanning
speed was 1.8 kHz and the duty cycle was ~78.6%. The time intervals of 440 µs and 560 µs
on the oscilloscope correspond to a 228-nm scanning bandwidth and a 290-nm FSR in the
spectral domain, respectively.
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Figure 6. Photograph of the output signal of the WSL on an oscilloscope.

The beam from the WSL was incident on the CLC cell, and the transmission spectra
for the first-order reflection with respect to the intensity of the electric field applied to the
CLC cell is observed. Figure 7a–c shows the optical spectra of the reflection band when the
applied electric field is 2.70, 3.42, and 3.77 Vrms/µm, respectively. The wavelength of the
arrow indicated in the figures is the wavelength of the short-band edge of the reflection
band. When an electric field of 2.70 Vrms/µm or more was applied to the CLC cell, the
short edge of the reflection band shifted to 1044 nm from 1022 nm. When the electric
field applied to the CLC cell increased, the reflection band moved to longer wavelength
discontinuously, owing to the pitch jump, which occurred instantaneously [19]. When
an electric field of 3.42 Vrms/µm or more was applied, the short edge shifted to 1071 nm,
as shown in Figure 7b. Because the OSA’s response to the wavelength change was slow,
it was not easy to observe the abrupt change in the reflection band spectrum, owing to
the instantaneous pitch jump. However, when the dynamic variations of the WSL were
observed in the temporal domain, using an oscilloscope and high-speed photodetector,
the process of changing the wavelength of the reflection band owing to the instantaneous
pitch jump could be observed. Figure 7d–f shows the oscilloscope displays of the first-
order reflection band when the applied electric field was 2.70, 3.42, and 3.77 Vrms/µm,
respectively. These correspond to Figure 7a–c, respectively. On the oscilloscope, if the
electric field applied to the CLC cell was continuously increased, it could be observed in
real time that the short-band edge of the reflection band was instantaneously moved by the
pitch jump at any moment. As an example, when the electric field increased from 3.42 to
3.77 Vrms/µm, the pitch jump occurred in the CLC cell. Supplementary Material Videos
S1 and S2 show videos of the in situ variation of the first-order reflection band spectrum,
owing to the dynamic pitch jump of the CLC cell, on the oscilloscope. Supplementary
Material Video S1 shows a video in which the reflection band changes when the electric
field applied to the CLC cell increases from 3.42 to 3.77 Vrms/µm and Supplementary
Material Video S2 shows the electric field applied to the CLC cell is increased from 3.77 to
4.13 Vrms/µm.
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Figure 7. Optical spectra of the first-order reflection band from the CLC cell when the electric field was (a) 2.70, (b) 3.42,
and (c) 3.77 Vrms/µm, and (d–f) the oscilloscope displays of the first-order reflection band corresponding to the applied
electric fields in (a–c), respectively [Supplementary Videos S1 and S2].

Figure 8 shows the wavelength shift of the short-band edge on the OSA and oscil-
loscope when a pitch jump occurred with respect to the electric field applied to the CLC
cell. In the figure, the error bar represents the error owing to the thickness of the line
when measured using the oscilloscope. It can be observed that the wavelength shifts
obtained by converting the time interval measured on the oscilloscope into a wavelength
are notably consistent within the measurement error compared with that measured by the
OSA. Therefore, if a WSL is used to measure the dynamic wavelength change, it can also
easily determine the wavelength change in the OSA by measuring the waveform change
using the oscilloscope and converting it into a wavelength.
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Figure 8. Wavelength shift of the short-band edge on the OSA and oscilloscope when a pitch jump
occurs according to the electric field applied to the CLC cell.

3. Conclusions

We successfully demonstrated a wide-bandwidth WSL based on a polygonal scanning
wavelength filter using two SOAs. By combining two SOAs in parallel in the form of a
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Mach-Zehnder interferometer, we achieved a 10-dB bandwidth of ~228 nm (from 959 to
1187 nm). We also investigated the changes in the scanning bandwidth and average output
power with respect to the scanning speed of the WSL. The bandwidth and average power
of the WSL decreased because the oscillation time was smaller than the buildup time of
the SOA. A CLC cell was fabricated to investigate the first-order reflection band, owing
to the dynamic pitch jump, with respect to the electric field applied to the CLC cell in
the 1100-nm band region. The instantaneous change in the reflection band of the CLC
cell was due to the instantaneous pitch jump of the CLC. Moreover, the dynamic change
in the reflection band of the CLC cell was confirmed by converting the instantaneous
change of the waveform on the oscilloscope into the corresponding wavelength change.
The wide scanning wavelength band in the 1.1-µm band of WSL is expected to be used as a
high-resolution OCT light source or to increase the dynamic measurement range in a fiber
optic sensor system.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21093053/s1. Video S1: A video in which the reflection band changes when the electric
field applied to the CLC cell increased from 3.42 Vrms/µm to 3.77 Vrms/µm. Video S2: A video in
which the reflection band changes when the electric field applied to the CLC cell increased from
3.77 Vrms/µm to 4.13 Vrms/µm.
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