
 

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

Discuss this article

 (0)Comments

REVIEW

Recent advances in cerebral oximetry. Assessment of cerebral
 autoregulation with near-infrared spectroscopy: myth or reality?

[version 1; referees: 2 approved]
Anneliese Moerman, Stefan De Hert
Department of Anesthesiology, Ghent University Hospital, Ghent, Belgium

Abstract
In recent years, the feasibility of near-infrared spectroscopy to continuously
assess cerebral autoregulation has gained increasing interest. By plotting
cerebral oxygen saturation over blood pressure, clinicians can generate an
index of autoregulation: the cerebral oximetry index (COx). Successful
integration of this monitoring ability in daily critical care may allow clinicians to
tailor blood pressure management to the individual patient’s need and might
prove to be a major step forward in terms of patient outcome.
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Near-infrared spectroscopy (NIRS) has been adopted in clinical 
practice for over three decades now. Based on a similar principle 
as pulse oximetry, it allows continuous, non-invasive, real-time  
monitoring of cerebral oxygen saturation (S

c
O

2
) in a small  

sample of the frontal cortex. It was initially promoted as a brain 
monitor in cardiac surgery and neonatal intensive care, but its  
use has been extended to various non-cardiac surgeries and  
critical care settings. Some recent reviews provide excellent  
detail on the principles of NIRS and its current clinical practice 
patterns1–3.

The present review focuses on an emerging aspect of monitor-
ing abilities with NIRS, which, when combined with continuous  
blood pressure monitoring, might prove to be a major step  
forward in critical care management: cerebral autoregulation  
monitoring.

You cannot manage what you do not measure
Currently, blood pressure targets during perioperative and  
critical care management are mostly empirically chosen and rather 
fixed in any individual patient. This practice finds its origin in the 
concept of cerebral autoregulation, which refers to a modulat-
ing mechanism that controls cerebral blood flow (CBF) during  
changes in cerebral perfusion pressure (CPP). The classic curve 
of cerebral autoregulation represents the autoregulation plateau  
and the lower and upper limit of autoregulation (LLA and ULA, 
respectively) (Figure 1).

Using data from 11 human studies, derived from young patients 
with few comorbidities, Lassen described an autoregulatory pla-
teau between mean arterial blood pressures (MAPs) of 50 and  
150 mm Hg, over which CBF remained constant by active myogenic 
control of small cerebral arteries and arterioles4. At the extremes 
of blood pressure (that is, below the LLA and above the ULA),  
myogenic vasoactivity capacity is no longer able to accommodate 
these changes, and CBF becomes pressure-passive; CBF decreases 
when MAP moves below the LLA and increases when MAP is 
above the ULA.

This description of cerebral autoregulation has been widely  
accepted and has been propagated in many textbooks, and, even 
today, most caregivers feel confident with a MAP within the 
presumed autoregulation range. However, already in 1997, the  
validity of this concept was criticized5. It is now accepted that  
CBF regulation is determined by many more factors than blood 
pressure alone. A variety of physiological and biochemical  
mechanisms may interact and lead to a complex entity of vascular 
reactivity in which the relative regulatory role of each compo-
nent remains largely unknown6,7. It has also been acknowledged  
that autoregulation may be altered in specific diseases (for  
example, prematurity, hypertension, diabetes, and stroke) and in 
specific conditions (for example, changes in carbon dioxide and 
pharmacologic interference)6–12. Figure 2 gives an example from 
one of our own studies13. In this study, we managed hyperten-
sion with one of three different vasodilating drugs: sevoflurane,  
sodium nitroprusside (SNP), or nitroglycerin. Figure 2 clearly 
shows that, with sevoflurane and SNP, changes in MAP are  
highly correlated with changes in S

c
O

2
, suggesting impairment of 

cerebral autoregulation.

In response to all of these confounders affecting cerebral vascu-
lar reactivity, the limits of autoregulation and the shape of the  
autoregulation curve may vary enormously and unpredictably  
(Figure 3)14,15. Therefore, the practice of applying a fixed blood 
pressure threshold in an individual patient is risky, and tighter  
pressure control is mandatory16.

Even with an impaired autoregulation curve, there might be 
an optimal blood pressure in the middle of the autoregula-
tion curve at which the autoregulatory function is most robust  
(Figure 3, indicated with a square). Identifying the range of  
optimal cerebral autoregulation offers the potential for individu-
alization of blood pressure targets, and integrating the ‘optimal  
MAP’ in daily critical care management might shift the current  
clinical paradigm of ‘one size fits all’ care to individualized,  
patient-specific, physiology-based blood pressure management.

Can near-infrared spectroscopy be used to assess 
cerebral autoregulation?
To assess cerebral autoregulation, changes in CBF are plotted 
over a wide range of blood pressures. From a practical point of 
view, this requires a continuous measurement of arterial blood  
pressure (ABP) and a real-time estimate of CBF. Although  
theoretically CPP should be plotted, this requires invasive  
monitoring of intracranial pressure (ICP) (CPP = MAP − ICP). 
Therefore, without access to ICP monitoring and without an 
increased ICP, ABP is considered a valid substitute for CPP.

For the assessment of CBF, no convenient means of measuring  
CBF currently exist, so surrogates of CBF are being used. 
Recently, the various indices of autoregulatory function were 
extensively examined in adults with traumatic brain injury  
(TBI)17.

NIRS-measured S
c
O

2
 is considered a reliable surrogate of CBF. 

When S
c
O

2
 is correlated with MAP, an index of autoregulatory 

Figure 1. Classic depiction of cerebral autoregulation, with 
autoregulation plateau, lower limit of autoregulation (LLA), and 
upper limit of autoregulation (ULA). CBF, cerebral blood flow; 
MAP, mean arterial blood pressure.

Page 3 of 9

F1000Research 2017, 6(F1000 Faculty Rev):1615 Last updated: 31 AUG 2017



Figure 2. Correlation of changes in mean arterial pressure (MAP) with changes in cerebral oxygen saturation (ScO2) with administration 
of three different vasodilating drugs. The drugs are sevoflurane (Sevo), sodium nitroprusside (SNP), and nitroglycerin (NTG). Own data, 
not published.

Figure 3. The autoregulation curve may vary from the 
classic depiction of autoregulation, with unknown limits of 
autoregulation (question marks), and an optimal mean arterial 
blood pressure (square). CBF, cerebral blood flow; MAP, mean 
arterial blood pressure.

Figure 4. Near-infrared spectroscopy (NIRS)-derived oxygen 
saturation versus cerebral perfusion pressure (CPP), depicting 
the cerebral autoregulation curve. The correlations generate the 
cerebral oximetry index (COx). Adapted from Brady et al. .

vasoreactivity, the cerebral oximetry index (COx), is generated. 
Blood pressure in the autoregulation range is indicated by a COx 
that approaches zero; that is, there is no correlation between 
S

c
O

2
 and MAP. A COx approaching one indicates a strong  

correlation between the two signals and has to be interpreted  

either as impaired autoregulation or as MAP being beyond the  
limits of autoregulation (Figure 4). The COx has been validated  
and had good agreement with transcranial Doppler-derived  
measurements of pressure autoregulation in piglets18 and in adult 
patients19–21.

18
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Current clinical applications of cerebral autoregulation 
monitoring with near-infrared spectroscopy
Studies which evaluate cerebral autoregulation with the use of 
NIRS have been expanding over the past few years. Owing to 
the high incidence of brain injury in these domains, research on  
this topic has been established mainly in the areas of neonatology, 
cardiac surgery, and neurocritical care.

NIRS was originally introduced in clinical practice in 1985 for 
the assessment of cerebral oxygenation in preterm infants22.  
Organ immaturity makes neonates vulnerable to physiological  
disturbances, and especially the brain may be at greater risk 
because of the incompletely developed cerebral autoregulation 
mechanism23,24. The need for firm hemodynamic boundaries has 
challenged continuous research in this area. We refer the interested 
reader to some recent reviews on this topic9,25,26.

In cardiac surgery patients, an ABP of 50–60 mmHg is widely  
considered to be an acceptable perfusion pressure during cardiop-
ulmonary bypass (CPB). However, this practice was challenged 
by data showing a lower incidence of cardiac and neurologic 
complications when targeting a higher MAP (>80 mmHg) during  
CPB27. Impaired cerebral autoregulation has been demonstrated  
in 35% of cardiac surgery patients12, with a wide variability of  
the MAP at the LLA from 40 to 90 mmHg14. Consequently, in 
the case of empirically chosen MAP targets, patients may spend  
varying portions of time with MAP below the LLA during CPB.

In some recent studies, it has been demonstrated that MAP vari-
ations outside the autoregulatory range, not the absolute MAP 
values, were associated with adverse outcomes28–31. The time 
and magnitude that MAP spent below the LLA were higher for  
patients who developed acute kidney injury compared with  
patients without acute kidney injury, although absolute blood  
pressure values were equal between the two groups28. A signifi-
cant association was also found between blood pressure excur-
sions below the LLA and major morbidity (for example, renal  
failure, duration of mechanical lung ventilation, and low cardiac 
output syndrome)29. A recent study demonstrated that a blood 
pressure below the optimal MAP based on COx monitoring was  
associated with an increase in postoperative plasma GFAP  
(glial fibrillary acidic protein), which is a brain-specific injury 
biomarker30. However, on the other hand, simply raising blood 
pressure might result in a MAP above the ULA, which also  
predisposes to cerebral injury. Hori et al. demonstrated that the  
sum of the product of the magnitude and duration of MAP above 
the ULA was associated with increased risk for delirium in  
cardiac surgery patients31.

Patients with brain injuries constitute another population at high 
risk of impaired autoregulation. A consensus statement from 
the Neurocritical Care Society and the European Society of  
Intensive Care Medicine suggested that continuous monitoring 
of cerebral autoregulation might help guide ABP and CPP tar-
gets to ‘optimal’ levels in patients with TBI and might contribute 
to prognostication32. Management at or close to the optimal CPP 
has been shown to be associated with better outcomes in patients  
with TBI33,34. Since an in-depth discussion of cerebrovascular 

autoregulation monitoring in neurocritical care is beyond the scope 
of this article, we refer the interested reader to some excellent 
reviews6,35–39.

One methodological aspect of autoregulation monitoring with  
NIRS in the setting of neurosurgery and neurointensive care 
requires close attention. NIRS technology is based on sending  
near-infrared light through the tissues, where it is attenuated  
because of a combination of absorption and scattering. It is a  
prerequisite that the quantity of light scattering remains constant 
during the measurements and that changes in attenuation result 
solely from changes in absorption40. However, in conditions of 
brain injury, tissue composition may vary substantially (contusions, 
hemorrhages, and brain swelling), resulting in changes in light 
absorption and scattering. Accurate quantification of S

c
O

2
 and data 

quality could be questioned in this setting41.

Barriers to assessing cerebral autoregulation with 
near-infrared spectroscopy
While at first view defining COx might seem simple and easy to 
perform at the bedside, some major barriers have to be faced.

Barrier 1: is cerebral oxygen saturation a reliable surrogate 
of cerebral blood flow?
The use of NIRS for quantifying cerebral autoregulation is  
based on some assumptions, and this continues to be a major 
point of discussion. S

c
O

2
 is determined by arterial blood oxygen  

content, cerebral oxygen consumption, oxygen-tissue diffusivity, 
and CBF. It has been assumed that, if all other parameters which 
influence S

c
O

2
 are kept constant, changes in S

c
O

2
 are due to  

changes in CBF and therefore that those two parameters can be 
interchanged. Although one might question this approach, the  
problem remains that to date there is no continuous real-time  
methodology to quantify CBF.

Barrier 2: autoregulation data analysis
In most studies, COx is determined by using ICM+® software  
(Cambridge Enterprise Ltd, Cambridge, UK, http://www.neuro-
surg.cam.ac.uk/icmplus). The S

c
O

2
 signal and the MAP signal are 

captured longitudinally (time-domain analysis). Filtering of both 
signals is performed to limit analysis to the frequency of slow 
waves (0.05–0.003 Hz), which are relevant to autoregulation and 
exclude confounding wave components such as respiratory and 
pulse frequencies. A sliding analysis window of a 300-second 
period updated every 10 seconds runs across the signals, and the 
S

c
O

2
 and MAP data within these windows are plotted against each 

other, incorporating 30 data points for each calculation. The linear 
regression line for these data is computed, and the Pearson cor-
relation coefficient is obtained. The process repeats as the analysis 
window scans over the signals in incremental steps, resulting in a 
continuous COx measurement.

To calculate the optimal MAP, the COx values are binned in  
5 mmHg blood pressure increments. The first and last MAP bins, 
as well as bins which contain less than 2% of data points, are dis-
carded. ICM+® then fits a U-shaped curve through the COx values 
plotted versus MAP. The optimal MAP can be identified at the point 
with the lowest COx.
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However, owing to the granular nature imposed on the bin- 
aggregated data, binning makes it difficult to produce a robust  
automated algorithm to assess autoregulation42. The binned data 
are generally noisy in a clinical environment, which may be  
device-specific (for example, arterial line flushing or poor NIRS 
signal) or physiological in nature (for example, caused by admin-
istration of drugs or positional changes). This becomes even 
more important when very few bins contain data points, such as  
early in a procedure when the complete picture of the COx plot 
has not yet built up, or when blood pressure is relatively stable.  
Montgomery et al. demonstrated that the data in their raw  
format (that is, unbinned) are feasible for monitoring cerebral 
autoregulation, and they hypothesized that their method might  
be particularly useful in noisy environments42.

The current methodology for analysis of cerebral autoregulation 
includes either a time-domain or a frequency-based approach.  
The most common method is to calculate the correlation coeffi-
cient between S

c
O

2
 and MAP (time-domain approach). However,  

it could be argued that cerebral autoregulation is a complex  
physiological system and that simple correlation analysis does not 
cope with the complex interplay and the time-varying aspects of 
the different physiological mechanisms43. Coherence and transfer  
function analyses have also been used to quantify cerebral  
autoregulation44,45. Caicedo et al. analyzed four different measure-
ment models used for cerebral autoregulation assessment (cor-
relation, coherence, modified coherence, and transfer function). 
Although Caicedo et al. proposed transfer function gain as the  
most robust method when used for cerebral autoregulation  
studies, correlation was also considered a robust method, despite 
some restrictions related to time delay46.

Barrier 3: autoregulation data interpretation
Varying definitions to decide between intact and impaired  
autoregulation are found in the literature. Generally, a COx of less 
than 0.3 is considered consistent with intact autoregulation and 
the MAP with the lowest COx is considered the optimal MAP.  
However, noise on the data may impede the identification of  
intact and impaired regions. A further complication for the  
assessment of autoregulation is that, owing to interpatient vari-
ability, no specific threshold will apply to everyone. Moreover,  
it has been postulated that the flat part of the autoregulation curve 
is never really horizontal, but slightly tilted47. So autoregula-
tion is not an on–off phenomenon, in which correlations between  
CBF and MAP jump from zero (intact autoregulation) to one 
(impaired autoregulation), and this makes the interpretation of 
autoregulation data rather cumbersome.

Barrier 4: assessment of the autoregulation phenomenon
One approach to assess cerebral autoregulation is to monitor 
the S

c
O

2
 response to natural slow variations in blood pressure.  

However, the natural blood pressure variations may not be strong 
enough to challenge CBF. An alternative approach is to induce 
blood pressure variations (for example, by vasoactive drugs12, 
change in body position48, or release of a thigh cuff49) and meas-
ure the concomitant response of S

c
O

2
. However, it has been  

demonstrated that CBF dynamics are driven by the rate of  
change in blood pressure rather than absolute pressure per se;  
therefore, the precipitous change in pressure might elicit autoreg-
ulatory reactions that would not be seen with gradual changes in 
pressure12,50.

Clinical relevance of cerebral autoregulation monitoring
Despite the emerging availability of bedside physiology moni-
tors, blood pressure targets remain mostly empirically chosen  
during critical care management. Efforts at preventing cerebral 
injury have emphasized the importance of maintaining a ‘nor-
mal blood pressure’ to ensure adequate perfusion of the brain. 
Hence, often medications are given to increase blood pressure in 
order to restore cerebral perfusion. However, as discussed before, 
the position and the shape of the autoregulation curve may have  
shifted away, with LLAs and ULAs which vary greatly and  
unpredictably14 and an autoregulation plateau which may be 
very narrow15. The clinical implication is that CBF might fluctu-
ate as blood pressure fluctuates, exposing the patient to the risk 
of decreased cerebral flow and potential ischemia when blood  
pressure is relatively too low and conversely to the risk of 
increased cerebral flow and increased ICP when blood pressure is  
relatively too high. Since the individual limits of autoregulation  
are unknown, it is likely that empiric blood pressure manage-
ment will result in patients having a MAP outside the autoregu-
latory range for at least part of the surgery or stay in intensive  
care. If autoregulation monitoring can individualize blood  
pressure targets, it could provide a more effective means for  
preventing ischemia–reperfusion injury than the current standard 
of care.

Perspectives
With the sophistication of signal processing and online analy-
sis software, the challenge lies in the successful integration of  
‘optimal MAP’ and autoregulation monitoring into daily critical 
care management.The next steps will be to study the autoregu-
lation in different clinical situations and to clarify whether  
incorporation into therapeutic management protocols leads to an 
improved cerebral outcome.

Conclusions
Progress in perioperative and critical care will depend on  
moving away from broad assumptions and ‘one size fits all’  
physiological targets. In the near future, real-time cerebral autoreg-
ulation monitoring may provide clinicians with the opportunity  
to individualize blood pressure targets and might direct critical  
care management to the individual patient’s need.
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