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Abstract
In recent years, ischemic stroke (IS) has been one of the major causes of disability andmortality worldwide. The general mechanism of
IS is based on reduced blood supply to neuronal tissue, resulting in neuronal cell damage by various pathological reactions. One of the
main techniques for acute IS treatment entails advanced surgical approaches for restoration of cerebral blood supply but this is often
associated with secondary brain injury, also known as ischemic reperfusion injury (I/R injury). Many researches have come to
emphasize the significant role of long non-coding RNAs (lncRNAs) in IS, especially in I/R injury and their potential as therapeutic
approaches. LncRNAs are non-protein transcripts that are able to regulate cellular processes and gene expression. Further, lncRNAs
have been shown to be involved in neuronal signaling pathways. Several lncRNAs are recognized as key factors in the physiological
and pathological processes of IS. In this review, we discuss the role of lncRNAs in neuronal injury mechanisms and their association
with brain neuroprotection. Moreover, we identify the lncRNAs that show the greatest potential as novel therapeutic approaches in IS,
which therefore merit further investigation in preclinical research.
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Abbreviations
15-LOX1 15-Lipoxygenase 1
AIM2 Absent in melanoma 2

AQP4 Aquaporin 4
ATG7 Autophagy-related 7
Bcl-2 B cell lymphoma 2

Highlights
• Acute injuries to CNS, including ischemic stroke, significantly alter
long non-coding RNA expression and function.
• Long non-coding RNAs may have potential as novel therapeutics in
ischemic stroke.
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bFGF Basic fibroblast growth factor
BMECs Brain microvascular endothelial cells
BDNF Brain-derived neurotrophic factor
CASP3 Caspase 3
CaMKIIδ Calcium/calmodulin-dependent protein

kinase IIδ
CAMK2D Calcium/calmodulin-dependent protein

kinase II delta
CaMKII Calcium/calmodulin-dependent protein

kinase II
C2dat1 CAMK2D-associated transcript
CHRF Cardiac hypertrophy–related factor
ceRNA Competing endogenous RNA
DAPK1 Death-associated protein kinase 1
DNMT3B DNA methyltransferase 3B
DUSP5-ERK1/2 Dual-specificity phosphatase

5-extracellular signal-regulated kinase ½
EC Endothelial cells
FOXO3 Forkhead box O3
FOXO1 Forkhead box protein O1
GATA3 GATA binding protein 3
GAS5 Growth arrest-specific transcript 5
HBMECs Human brain microvascular endothelial

cells
HIF2α Hypoxia-inducible factor 2α
IL-1 Interleukin-1
IL-18 Interleukin-18
IL-1β Interleukin-1β
IL-6 Interleukin-6
IS Ischemic stroke
I/R Ischemic/reperfusion
LC3 Light chain 3 I (cytosol)
LC3 II Light chain 3 II (membrane)
lncRNAs Long non-coding RNAs
MALAT1 Metastasis-associated lung adenocarcino-

ma transcript 1
MEG3 Maternally expressed gene 3
MSCs Mesenchymal stem cells
miRNAs miRs MicroRNAs
MCAO Middle cerebral artery occlusion
MAP4K4 Mitogen-activated protein kinase kinase

kinase kinase 4
MCP-1 Monocyte chemoattractant protein-1
N2a Neuro2a
NMDA N-methyl-D-aspartate
NGF Nerve growth factor
NF-κB Nuclear factor kappa B
NR3C2 Nuclear receptor subfamily 3 group C

member 2
OGD/R Oxygen-glucose deprivation/reperfusion
PGC1α Peroxisome proliferator-activated recep-

tor gamma coactivator 1α
PDCD4 Programmed cell death protein 4

pSTAT3 Phosphorylation of signal transducer and
activator of transcription 3

KCNQ1OT1 Potassium voltage-gated channel subfam-
ily Q member1 opposite stand 1

Q PCR Quantitative polymerase chain reaction
ROS Reactive oxygen species
RMST Rhabdomyosarcoma 2-associa ted

transcript
Rock2 Rho-associated protein kinase 2
Rian RNA imprinted and accumulated in

nucleus
SIRT1 Sirtuin 1
siRNA Small interfering RNA
SOX2 Sex-determining region Y-box 2
SOX6 Sex-determining region Y-box 6
SNHG12 Small nucleolar RNA host gene 12
TNFα Tumor necrosis factor α
TRAF TNF receptor-associated factor
TUG1 Taurine-upregulated gene 1
ULK2 Unc-51 like autophagy activating

kinase 2
VEGFA Vascular endothelial growth factor-A
VEGF Vascular endothelial growth factor
Oprm1 μ-opioid receptor 1

Introduction

Ischemic stroke (IS), which constitutes more than 80% of
strokes, generally results from reduced blood supply to cere-
bral tissue resulting in a number of pathological reactions such
as oxidative stress, inflammation, and neuronal cell death [1].
Since IS is one of the major causes of disability worldwide,
and since pharmacological approaches have generally failed
in translation, there is a genuine requirement for novel thera-
peutic approaches. Previous researches have focused on
preventing IS among those at risk, reducing severity, and pro-
moting neurogenesis and neuronal recovery after IS. Early
restoration of cerebral blood perfusion in ischemic tissues
plays a pivotal role in IS treatment in order to minimize the
severity of brain injury and neurological impairment [2].
Nevertheless, IS often leads to a secondary brain injury called
ischemic/reperfusion (I/R) injury. The precise underlying
mechanism of this injury remains unknown; however, many
researchers have come to emphasize the role of inflammation,
autophagy, and apoptosis as important contributors [3].
Moreover, vascular neural networks, especially brain micro-
vascular endothelial cells (BMECs), are also prone to reper-
fusion damage. The I/R injury of BMECs leads to blood-brain
barrier disruption, furthers brain injury, and is associated with
poor prognosis in IS patients [4].

Long non-coding RNAs (lncRNAs) are a class of non-
protein transcripts which are greater than 200 nucleotides in
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length. LncRNAs play a crucial role in various cellular pro-
cesses, including differentiation, apoptosis, as well as regula-
tion of genes expression [2, 5]. LncRNA alterations are often
associated with a dysregulation of signaling pathways that
control multiple neuronal, physiological, and pathophysiolog-
ical processes. Additionally, lncRNAs can act as competing
endogenous RNAs (ceRNA) of microRNAs (miRNAs) by
binding to them, thereby reducing their regulatory effects on
mRNA.MiRNA-mRNA interactions play an important role in
the pathogenesis, diagnosis, and treatment of several diseases,
including cardiovascular diseases, diabetes, as well as IS [1,
6–10]. LncRNAs, due to their broad range of action, can be
targeted by various approaches either in the nucleus or in the
cytoplasm. Firstly, small interfering RNA (siRNA), which
activates the RNA-induced silencing complex, allows for post
transcriptional RNA degradation. A similar degradation effect
but with a different mechanism is achieved by antisense oli-
gonucleotides. Besides, steric blockage of the promoter as
well as techniques affecting the genome allows for lncRNAs
gene regulation. RNA binding small molecules or morpholino
oligonucleotides allow for RNA-protein interaction inhibition
[11]. Nevertheless, there are many limitations associated with
targeting lncRNAs as therapeutics in diseases, including
crossing cellular plasma membrane and immune system re-
sponse to foreign RNAs, resulting in a limited number of
studies in this area.

In this review, we focus on lncRNAs that are able to regulate
key factors involved in I/R injury such as calcium overload or
glutamate toxicity. We present the relationship between
lncRNAs and pathological processes that can contribute to is-
chemic injury exacerbations such as autophagy, inflammation,
and oxidative stress. Moreover, we discuss lncRNAs which are
involved in neuroprotection mechanisms and up-to-date
knowledge regarding lncRNAs as promising therapeutic ap-
proaches in IS (Fig. 2).

Article Search Process

Electronic databases Pubmed and Scopus were searched be-
tween May 2020 and June 2020 and original studies were
reviewed to evaluate the role of circulating lncRNAs in IS.
Review articles and meta-analysis were incorporated in this as
well as their secondary references for possible inclusion.
Titles and abstracts were screened by two independent opera-
tors. The following search syntax was used: “Search (“long
non coding RNAs” [MeSH Terms] or “lncRNA” [MeSH
Terms] or “long non-coding RNA” [MeSH Terms] or “circu-
lating lncRNA” [MeSH Terms] or “circulating long non cod-
ing RNA” [MeSH Terms]) and (“treatment” [MeSH Terms]
or “therapeutic” [All Fields]) and (“ischemic stroke” [MeSH
Terms] or “ischemia” [MeSH Terms] or “stroke” [MeSH
Terms] or “ischaemic stroke” [MeSH Terms] or “ischaemia”
[All Fields])” (Fig. 1).

LncRNAs Regulating Glutamate Excitotoxicity
in I/R Injury as a Key Factor in IS Severity
and Neurological Impairment

The precise underlying mechanisms involved in the patho-
physiology of cerebral I/R injury remain relatively undiscov-
ered. Nevertheless, lncRNAs which are able to modulate re-
perfusion injury, associated with enhanced neuronal cell death
and hemorrhagic transformation, seem to play a significant
role in IS treatment [12]. Studies showed that ischemic injury
leads to excessive glutamate release which activates N-
methyl-D-aspartate (NMDA) receptors and causes an exces-
sive calcium influx in neurons. Overstimulation of NMDA
receptors by glutamate excitotoxicity is one of the trigger fac-
tors in initiating neuronal cell apoptosis [13].Moreover, cere-
bral blood reperfusion of ischemic areas leads to enhanced
calcium overload and further brain tissue damage. Excessive
calcium accumulation results in the activation of calcium/
calmodulin-dependent protein kinase II (CaMKII), a family
of multifunctional serine/threonine kinases involved in IS
pathogenesis [14].

LncRNA C2dat1

Previous studies showed that CaMKII can be regulated by
lncRNAs. One of the reports showed that the lncRNA
CAMK2D-associated transcript (C2dat1) is able to regulate
CaMKIIδ, a CaMKII isoform, by targeting CAMK2D [14].
The levels of lncRNA C2dat1 and CAMK2D were upregulat-
ed both in vivo and in vitro models of IS. Moreover, CaMKIIδ
was upregulated in the peri-infarct region, but was downreg-
ulated in the ischemic core. C2dat1 inhibition caused in-
creased neuronal death and decreased levels of both
CAMK2D and CaMIIδ. Prolonged inhibition of CaMII pro-
moted neuronal apoptosis by increasing the glutamate toxicity
vulnerability, whereas short-term inhibition protected against
glutamate toxicity. Importantly, C2dat1 promoted neuronal
survival via activation of nuclear factor kappa B (NF-κB)
signaling cascade, which may suggest C2dat1 is a promising
therapeutic approach for ischemia [14]. On the other hand,
another report showed that the inhibition of CaMKII can pre-
vent 30–70% of ischemia-induced neuronal death [15]. These
discrepancies are probably caused by the fact that chronic
inactivation of CaMKII increases the susceptibility of neurons
to glutamate toxicity, whereas acute inactivation protects
against glutamate, hypoxia, and hypoglycemia [16, 17].
Moreover, upregulation of CaMKIIδ in the peri-infarct region
and its downregulation in ischemic core could be explained by
the fact that CAMK2D is inactivated in a time- and location-
dependent manner and the neurological deficit correlates with
the rate of CAMK2D inactivation [14]. Consequently, early
treatment with lncRNA C2dat1 can reduce the severity of
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neurological impairment after IS and should be further inves-
tigated in preclinical research (Fig. 3a).

LncRNA AK038897

Another lncRNA that may influence calcium homeostasis in
IS is AK038897. AK038897 acts like a sponge by binding to
miR-26a-5p and thus interfering with its target interactions.
DAPK1, a serine/threonine kinase, was determined as a target
gene of miR-26a-5p. DAPK1 can be regulated by calcium/
calmodulin and is associated with excessive calcium influx
through glutamate release, leading to mitochondrial dysfunc-
tion and neuronal membrane folding. AK038897 silencing
could diminish DAPK1 levels via miR-26a-5p upregulation,
contributing to protection against I/R injury. This observation
was confirmed in vivo, as AK038897 knockdown resulted in
reduced infarcted area and neurological impairment [18, 19].
As previous studies reported that DAPK1 deletion prevents
calcium overload and protects against ischemic neuronal
death in IS [20], downregulation of DAPK1 by AK038897
can potentially protect against I/R injury. Additionally, the
transfection of DAPK1 caused more severe cerebral tissue
damage in the IS mice model compared to the sham group
[13, 18]. Thus, these findings indicate that lncRNAs are able
to regulate DAPK1 and can be promising therapeutic ap-
proaches in IS.

Collectively, mentioned studies emphasized the role of mi-
tochondrial dysfunction, excessive glutamate, and calcium ac-
cumulation in neuronal injury, indicating that lncRNAs which
are capable of protecting mitochondrial membranes and con-
trolling glutamate receptors and calcium channels can be
promising therapeutic approaches in IS (Table 1).

LncRNAs Involved in Signaling Pathways
Responsible for Neuronal Cell Death

Rising evidence confirms the crucial role of lncRNAs which
acts as a sponge by binding to miRNAs and thus they are able
to target multiple neural pathways. Hence, the main objective
is to identify and understand those axes and find a proper way
to alter its pathological effects in ischemic tissue.

LncRNA GAS5

The role of lncRNA GAS5 and its relationship withMAP4K4
gene was investigated by several experimental strategies.
Overexpression of MAP4K4 reduced the apoptotic rate of
oxygen-glucose deprivation/reperfusion (OGD/R, an in vitro
model of IS)-induced neurons. In silico analysis predicted that
lncRNA GAS5 interacts withMAP4K4. Moreover, DNMT3B
was identified as a direct target gene of GAS5. LncRNA

Fig. 1 Article selection
flowchart. The figure
schematically depicts the article
selection process, from literature
search, through the screening, up
to the final assessment of
eligibility
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GAS5 administration downregulated MAP4K4 expression
through DNMT3B recruitment in mice primary cortical neu-
rons. Furthermore, overexpression of lncRNA GAS5 in-
creased the neuronal apoptosis rate. Additionally, lncRNA
GAS5 administration resulted in a larger area of cerebral in-
farction and exacerbated neurological test results in animal
models. Consequently, this study indicated that the inhibition
of GAS5 in IS could potentially reduce neuronal apoptosis,
reduce infarct size and improve neurological functioning via
the MAP4K4/DNMT3B axis [40] (Fig. 3b).

LncRNA N1LR

Genome-wide lncRNA expression analysis revealed that
lncRNA N1LR is significantly altered during I/R injury. The
expression of N1LR was increased after mild ischemic injury,
but reduced after more severe ischemic injury. Additionally,
N1LR was mainly located in the cytoplasm in undamaged
tissue, however after I/R injury N1LR was mostly accumulat-
ed in the nucleus. Overexpression of lncRNA N1LR acceler-
ated cell cycle progression, promoted proliferation, and
inhibited apoptosis after OGD/R injury (in vitro model).
Moreover, overexpression of N1LR resulted in reduced in-
farct volume and neurological deficits, while silencing caused

the opposite effect in the animal model. Furthermore, N1LR
administration significantly reduced neuronal apoptosis.
Importantly, N1LR inhibited phosphorylation of the p53 pro-
tein, suggesting that the protective effect of lncRNA N1LR
against I/R injury may be due to the blockage of p53 phos-
phorylation [35].

Overall, more and more lncRNAs are being characterized
functionally in a different neuronal cell context. Previous stud-
ies have shown that lncRNAs, as a part of complex signaling
pathways, are able to regulate neuronal apoptosis, inflamma-
tion, and IS severity. Notably, the complexity of those axes
allows for their modification at various stages. Further studies
are needed on the cellular effects that might be caused by
targeting lncRNAs as a part of the multifunctional signaling
pathways involved in IS (Table 1).

LncRNA Oprm1

The role of lncRNA Oprm1 in cerebral I/R injury was studied
both in vitro and in vivo models of IS. Following the reperfu-
sion time, the lncRNA Oprm1 expression was decreased
in vitro. The overexpression of Oprm1 decreased the apopto-
sis rate as well as reduced the infarct size and improved the
neurological functioning of I/R model experimental animals.

F ig . 2 The ro le of lncRNAs in the pa thophys io logy of
neurodegeneration. Abbreviations: BDNF, brain-derived neurotrophic
factor; bFGF, basic fibroblast growth factor; C2dat1, CAMK2D-
associated transcript; CHRF, cardiac hypertrophy–related factor; GAS5,
growth arrest-specific transcript 5; IL-1β, interleukin-1β; IL-6,
interleukin-6; KCNQ1OT1, potassium voltage-gated channel subfamily
Q member1 opposite stand 1; MALAT1, metastasis-associated lung

adenocarcinoma transcript 1; MEG3, maternally expressed gene 3; M0/
M1, microglia non-activated/pro-inflammatory; NGF, nerve growth fac-
tor; Rian, RNA imprinted and accumulated in nucleus; SNHG12, small
nucleolar RNA host gene 12; TNFα, TNF receptor-associated factor;
TrK, tropomyosin receptor kinase; TUG1, taurine-upregulated gene 1;
VEGF, vascular endothelial growth factor
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As Oprm1 can directly target miR-155, whereas miR-155 can
directly target GATA3, Oprm1 demonstrated a protective role
by sponging miR-155, thus regulating GATA3 expression.
GATA3 is involved in neuronal differentiation and survival
of sympathetic progenitors and neurons in embryonic chro-
maffin cells in in vitro analysis [41]. Collectively, this study
suggests the importance of the Oprm1/miR-155/GATA3 axis
in neuronal cell death [6]. Importantly, not only Oprm1 treat-
ment but also miR-155 alone treatment decreased the infarct
size; moreover it also reduced the volume of hemorrhagic
transformation of IS, suggesting that Oprm1/miR-155 axis
can exert more potent protective effect than miR-155 alone
treatment [30] (Fig. 3c).

LncRNA Rian

Similarly, the role of lncRNA Rian and its relation with miR-
144-3p levels and GATA3 were studied in IS experimental
models. Rian, as well as GATA3, were downregulated in both
in vitro and in vivo models, whereas miR-144-3p was upreg-
ulated. Overexpression of Rian reversed miR-144-3p-induced
cerebral ischemic injury in mice. Moreover, overexpression of
lncRNA Rian reduced the neuronal apoptosis and infarct size
and improved the neurological score. GATA3 was identified
as a target gene of miR-144-3p and was involved in the miR-
144-3p-mediated injury mechanism. Importantly, lncRNA
Rian also regulates GATA3 and overturns the miR-144-3p-

Fig. 3 The mechanisms by which lncRNAs contribute to the neuronal
cell death process in ischemic stroke. Abbreviations: Oprm1, μ-opioid
receptor 1; GATA3, GATA binding protein 3; Rian, RNA imprinted and
accumulated in nucleus; CHRF; cardiac hypertrophy–related factor;
SOX6, sex-determining region Y-box 6; NR3C2, nuclear receptor sub-
family 3 group C member 2; GAS5, growth arrest-specific transcript 5;
DNMT3B, DNA methyltransferase 3B; MAP4K4, mitogen-activated

protein kinase kinase kinase kinase 4; MEG3, maternally expressed gene
3; PDCD4, programmed cell death 4; KCNQ1OT1, potassium voltage-
gated channel subfamily Qmember1 opposite stand 1; FOXO3, forkhead
box O3; ATG7, autophagy-related 7; C2dat1, CAMK2D-associated tran-
script; CAMK2D, calcium/calmodulin-dependent protein kinase II;
CaMIIδ, calcium/calmodulin-dependent protein kinase IIδ; NF-κB, nu-
clear factor kappa B; TUG1, taurine-upregulated gene 1
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induced suppression of GATA3. Collectively, lncRNA Rian
can potentially suppress miR-144-3p-mediated neuronal loss
via Rian/miR-144-3p/GATA3 axis. Therefore, it can be treated
as an important therapeutic approach and should be further
investigated in preclinical research [21] (Fig. 3d).

LncRNA CHRF

LncRNA CHRF was found to play an important role in the
processes of cardiac dysfunction and in the regulation of
myocardiocyte death after reperfusion [42]. Besides, the im-
portance of CHRF on I/R injury in IS was also determined.
LncRNA CHRF was found to be upregulated after I/R injury
and could directly bind to miR-126, whereas miR-126 was
downregulated in I/R injury. Moreover, CHRF can directly
target SOX6which is associated with diverse apoptosis mech-
anisms and thus can modulate ischemic cell apoptosis.
Knockdown of CHRF significantly increased miR-126 and
decreased SOX6 expression. Thus, inhibition of CHRF can
reduce neuronal damage and neurological impairment by
targeting the miR-126/SOX6 cascade [43]. It is important to
note that miR-126 was intensively studied in the context of
platelet function in patients with hyper platelet activity and
growing evidence showed that miR-126 can be a promising

biomarker in platelet activation [8, 9, 44]. Platelet activation
and aggregation are critical in the pathogenesis of IS. Patients
with IS exhibit hyper-reactive platelets compared to healthy
individuals [45]. Therefore, future analysis should aim to an-
alyze the importance of CHRF/miR-126 sponging regarding
platelet activation in patients with IS (Fig. 3e).

LncRNA Gm11974

The function of another lncRNA Gm11974 was evaluated in
the context of neuronal cell death in an IS in vitro model.
Knockdown of Gm11974 caused a significant decrease in cell
death rate and apoptosis as well as increased cell viability and
protected mitochondrial membrane potential. Furthermore,
the inhibition of Gm11974 increased the expression of miR-
766-3p in vitro, demonstrating that Gm11974 could potential-
ly negatively regulate miR-766-3p. Moreover, NR3C2 was
negatively regulated by miR-766-3p. Knockdown of
lncRNA Gm11974 decreased cell apoptosis through miR-
766-3p upregulation, which antagonized NR3C2, demonstrat-
ing the role of Gm11974/miR-766-3p/NR3C2 axis in I/R in-
jury. Consequently, these results indicate that silencing of
Gm11974 may protect against cerebral reperfusion injury;

Fig. 4 The mechanism of lncRNAs MALAT1, H19, and SNHG12 in
ischemic stroke pathogenesis. Abbreviations: MALAT1, metastasis-
associated lung adenocarcinoma transcript 1; ULK2, Unc-51-like autoph-
agy activating kinase 2; 15-LOX1, 15-lipoxygenase 1; VEGF, vascular
endothelial growth factor; MCP-1, monocyte chemoattractant protein-1;
IL-6, interleukin-6; DUSP5-ERK1/2, dual-specificity phosphatase 5-

extracellular signal-regulated kinase ½; Rock2, Rho-associated protein
kinase 2; SIRT1, sirtuin 1; SNHG12, small nucleolar RNA host gene
12; AMPK, AMP-activated protein kinase; PI3K, phosphoinositide 3-
kinase; AKT, protein kinase B; mTOR, the mammalian target of
rapamycin
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thus this lncRNA should be further investigated for clinical
application as a therapeutic approach in IS [46] (Fig. 3f).

LncRNA MALAT1

LncRNAMALAT1 and its association with AQP4 in cerebral
I/R injury was determined inOGD/R astrocyte cell andmiddle
cerebral artery occlusion (MCAO) mouse models. MALAT1
expression was upregulated in both models. Knockdown of
MALAT1 increased the survival of astrocytes and decreased
the apoptotic rate. Additionally, knockdown of AQP4, a trans-
membrane protein associated with brain edema and apoptosis,
caused a decrease in cytotoxicity and reduced apoptosis of
astrocytes. Moreover, cell damage was alleviated after the
AQP4 knockdown. As it was determined that MALAT1 can
act as ceRNA for miR-145, MALAT1 positively regulated
AQP4 via miR-145 downregulation. Altogether, the study
validated that MALAT1 silencing protects against cerebral I/
R injury by regulating the miR-145/AQP4 axis [3].

To sum up, lncRNAOprm1 and lncRNARian demonstrate
protective properties against I/R injury through GATA3 mod-
ulation. Besides, lncRNA CHRF, MALAT1, and Gm11974
also present positive effects on pathological processes in I/R

injury. Consequently, all the mentioned lncRNAs show great
potential as novel therapeutic approaches in IS and therefore
merit further investigation in preclinical research (Table 1).

Ischemia/Reperfusion Injury Exacerbating
Factors as Therapeutic Approaches

Following cerebrovascular thrombosis, reperfusion of tissues
by the restoration of adequate oxygen supply may cause fur-
ther damage to brain tissue and should be distinct from the
injury that is caused by ischemia. Changes that occur in brain
tissue under deprivation of oxygen and other nutrients cause
oxidative and inflammatory damage of neuronal cells [47].
This oxidative stress is likely to contribute to autophagy acti-
vation, which determines subsequent processes in the I/R in-
jury region [48]. The significance of autophagy in IS will be
broadly described in this section, as the final effect on neurons
is highly dependent on the phase of reperfusion. Previous
evidence suggests that autophagy, angiogenesis, as well as
oxidative stress have a critical effect on I/R injury and can
be moderated by lncRNAs [49]. Exploring lncRNAs in the
abovementioned processes may help to understand the

Fig. 5 Summary network graph showing information gained from studies investigating lncRNAs as potential novel therapeutic approaches in ischemic
stroke
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pathomechanisms involved in IS and thus recovery networks
induced after ischemia.

Autophagy

Autophagy, as a lysosomal degradation pathway, is responsi-
ble for the recycling of damaged and aged cellular compo-
nents and is crucial for neuronal hemostasis [50]. As described
byWang et al., the activation of the autophagy pathway in the
brain upon ischemic stimuli can be a double-edged sword for
neural survival after IS. To date, some studies have demon-
strated a protective role of autophagy in IS while others have
shown damaging effects [51]. Importantly, several authors
have underlined that autophagy can be neuroprotective during
early stages of ischemia; however, prolonged ischemia leads
to neurotoxic autophagy [52]. Besides, it was also hypothe-
sized that autophagy can show protective effects during ische-
mia, whereas it can be detrimental during reperfusion period
[22]. Autophagy activity might be measured using autophagy-
related gene expression assessment such as Beclin-1, LC3 I,
and LC3 II [39]. The role of lncRNAs in the regulation of
autophagy has been extensively investigated in previous
years; however, the majority of research concentrated onmyo-
cardial infarction and its reperfusion injury [29, 31, 53]. The
association of lncRNAs and autophagy-related genes in IS
remains unclear and should be further investigated.

LncRNA SNHG12

The expression of lncRNA SNHG12 was shown to be upreg-
ulated in cerebral I/R injury and associated with enhanced
autophagy activation and increased neuronal cell survival both
in in vitro and in vivo analysis [22, 54]. Additionally, the role
of SNHG12 as a regulator of mesenchymal stem cell (MSC)
function in I/R injury was also determined. Downregulation of
SNHG12 was found to potentiate the ability of MSCs to re-
duce autophagy via PI3K/AKT/mTOR axis. In I/R injury
treated with SNHG12-modified MSCs, autophagy, apoptosis,
and infarcted regions were reduced [55]. Collectively,
lncRNA SNHG12 might be an important regulator of autoph-
agy in IS and possesses therapeutic potential in I/R injury.
Nevertheless, as previous studies demonstrated, the neuropro-
tective role of lncRNA SNHG12 in IS can be achieved by
both reduction and enhancement of autophagy (Fig. 4a).

LncRNA H19

LncRNA H19 was found to play an important role in stimu-
lating autophagy in cerebral I/R injury, as significant overex-
pression of lncRNAH19 and autophagy activation in cerebral
tissue were observed in previous experiments. Further analy-
sis showed that lncRNA H19 decreases cell viability via au-
tophagy promotion through inhibition of the DUSP5-ERK1/2

pathway. LncRNAH19 inhibition resulted in reduced autoph-
agy and neuronal cell apoptosis in in vitro analysis.
Furthermore, the study revealed that H19 gene variations are
associated with increased risk of IS. Consequently, lncRNA
H19 seems to play an important role in I/R injury via autoph-
agy activation and its inhibition may have therapeutic effect
on cerebral tissue in IS [56] (Fig. 4b).

LncRNA KCNQ1OT1

Another lncRNAKCNQ1OT1was upregulated in IS patients’
plasma and was correlated with IS severity. Administration of
KCNQ1OT1 inhibitor in mice decreased ATG7 (autophagy-
related gene) expression, which resulted in reduced infarct
volume, neurological impairment, and inhibited autophagy.
Similar results associated with autophagy were observed
in vitro, but importantly, activated autophagy promoted neu-
ronal apoptosis and could be inhibited byKCNQ1OT1 knock-
down, suggesting its protective role. MiR-200a was detected
as a direct target of KCNQ1OT1. MiR-200a can regulate
FOXO3 expression, which is able to regulate ATG7, and thus
autophagy. Knockdown of KCNQ1OT1 increased miR-200a
and decreased FOXO3 expression. Collectively, inhibition of
KCNQ1OT1 is associated with reduced autophagy and there-
fore neuronal dysfunction through the miR-200a/FOXO3/
ATG7 axis [57] (Fig. 3g).

As above mentioned, the role of autophagy in IS is unclear.
There are more than 300 studies considering the role of au-
tophagy in IS, some demonstrating autophagy inhibitors to
induce a neuroprotective effect and reduce infarct size and
apoptosis rate [38, 51, 58], while others reported autophagy
inhibition to result in increased neuronal cell apoptosis and
neurological deficits [38, 51, 58, 59]. Based on these reports,
it can be hypothesized that lncRNAs enhance autophagy dur-
ing early stages of ischemia, while reducing autophagy in
prolonged ischemia and I/R injury. Therefore lncRNAs
should be a target of future research investigating autophagy
effects on ischemia.

LncRNA MALAT1

The role of lncRNA MALAT1 is broadly emphasized in var-
ious processes following IS, including autophagy regulation
in the I/R injured brain area. To date, there are three studies
that have investigated the relationship of MALAT1 and au-
tophagy in IS. Overexpression of MALAT1 was able to en-
hance autophagy and improve the neuronal survival in an
in vitro model of IS. The study revealed that MALAT1 acted
as an endogenous sponge of miR-26b and downregulated its
expression. Prediction analysis showed that ULK2,
autophagy-related gene, is a direct target gene of miR-26b.
Overexpression of MALAT1 upregulated ULK2 via down-
regulation of miR-26b and increased autophagy rate and
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neuronal survival. Overall, the results suggest that MALAT1/
miR-26b/ULK2 axis promotes autophagy and survival [4].
Similarly, another study showed that MALAT1 was upregu-
lated in the IS in vitro model and its overexpression was as-
sociated with enhanced autophagy and increased cell survival.
Furthermore, MALAT1 reduced the expression of miR-200c-
3p. MALAT1 directly binds to miR-200c-3p and cells that
were treated with MALAT1 presented reduced apoptosis.
Importantly, MALAT1 induces SIRT1 (an autophagy activa-
tor and neuroprotector factor) by blocking miR-200c-3p ex-
pression [32, 37] (Fig. 4c). Contrary to previous studies, Guo
et al. reported that downregulation of MALAT1 reduced au-
tophagy and thus promoted neuronal cell survival after IS both
in in vitro and in vivo models. The study showed that silenc-
ing of MALAT1 upregulated miR-30a. Beclin-1, an autopha-
gy biomarker, was a target gene of miR-30 and was negatively
regulated bymiR-30. Thus, silencing ofMALAT1 suppressed
Beclin-1-dependent autophagy via Beclin-1 downregulation
[36]. As mentioned previously, the contrary results can be
explained by the unclear role of autophagy in IS, as it might
have either positive or negative effects on neuronal cells.
Collectively, lncRNA MALAT1 regulation of autophagy in
I/R injury can promote both neuroprotection and neuronal
death. Thus, further studies are needed in this topic to clarify
the underlying mechanisms.

Angiogenesis

Neuronal angiogenesis is a multi-step process, involving the
proliferation of human brain microvascular endothelial cells
(HBMECs) which differentiate into tubular micro-vessels.
Several reports have demonstrated the promotion of angiogene-
sis in specific brain regions after ischemic injury. Furthermore,
there is a correlation between angiogenesis and improved neu-
rological functioning after IS [60]. Even though the role of
lncRNAs in angiogenesis after I/R injury remains unclear, there
are few studies emphasizing the importance of MALAT1 and
SNHG12 in the process of angiogenesis in IS.

LncRNA MALAT1

It was previously found that MALAT1 is upregulated in both
in vitro and animal models as well as in patients with IS.
MALAT1 downregulation was related to reduced EC prolif-
eration, cell migration, and reduced CD31 expression (an
angiogenesis-associated marker) leading to reduced angiogen-
esis capacity in vitro. Furthermore, MALAT1 knockdown re-
duced the levels of 15-LOX1, VEGF, the phosphorylation of
STAT3 (important angiogenesis regulating factors) indicating
that MALAT1may not only control angiogenesis by ischemic
stimuli but also via 15-LOX1/STAT3 signaling pathway [61].
Moreover, MALAT1 overexpression can indirectly increase
the expression of VEGFA in an OGD/R model of HBMEC.

Similarly, the overexpression of MALAT1 was associated
with increased angiogenesis and cell proliferation.
Furthermore, it was also shown that MALAT1 acted as a
ceRNA of miR-205-5p, which is able to upregulate VEGFA
[62]. Consequently, these studies have confirmed that
lncRNAMALAT1 is able to protect the angiogenesis function
in ischemic conditions via the regulation of different miRNAs,
which are henceforth able to upregulate pro-angiogenic fac-
tors (Fig. 4d).

LncRNA SNHG12

The role of lncRNA SNHG12 in angiogenesis after IS was
determined. SNHG12 was upregulated in vitro and its over-
expression was associated with increased angiogenesis and
cell migration. Moreover, SNHG12 acted as a ceRNA of
miR-150 and thus interfered with its target interactions.
Downregulation of SNHG12 was able to enhance the tube
formation (hallmark of neovascularization degree) and indi-
rectly upregulated the level of VEGF, which was identified as
a target gene of miR-150 [25]. Similarly, He et al. reported
that the overexpression of miR-150 was associated with a
decreased vascular density in the infarcted area, decreased
tube formation, BMECs migration, and VEGF expression in
in vivo analysis, confirming the previous results [23]. Thus,
lncRNA SNHG12 also seems to have therapeutic potential in
IS by regulating angiogenesis. As the number of studies are
limited, further analyses are needed to confirm the therapeutic
potential of MALAT1 and SNHG12 in IS (Fig. 4e).

Excessive Oxidative Stress

Reperfusion injury is also largely attributed to the excessive
production of reactive oxygen species (ROS) in ischemic tis-
sue [63]. Many studies underline the association of excessive
oxidative stress and lncRNAs in I/R injury. Sirtuins, which
can be regulated by lncRNAs, were shown to alleviate I/R
injury by protecting against cellular stress. SIRT1 in particular
demonstrated beneficial effects against oxidative stress by ac-
tivating FOXO1, PGC1α, and HIF2α and by inhibiting the
NF-κB transcription factor [64], which makes sirtuins impor-
tant contributors against I/R injury.

LncRNA SNHG12

The effect of lncRNA SNHG12 on I/R injury and its associ-
ation with sirtuins were studied in an in vitro model. Initially,
upregulated SNHG12 expression was shown in primary neu-
ronal cells and Neuro2a (N2a) cells after OGD/R. Knockdown
of SNHG12 caused inhibition of cell proliferation and in-
creased cell apoptosis. Importantly, SNHG12 downregulated
miR-199a, which inhibits cell proliferation and induces cell
apoptosis; thus, SNHG12 overexpression can contribute to the
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I/R injury reduction. Overexpression of miR-199a or knock-
down of SNHG12 inhibited the expression of SIRT1, suggest-
ing that SNHG12 upregulates SIRT1 by downregulation of
miR-199a. Hence, miR-199 might be used as a biomarker to
monitor the therapeutic response to SNHG12. SNHG12 can
be an important regulatory factor of oxidative stress by upreg-
ulating SIRT1 through activation of the AMPK pathway and
inhibiting miR-199a in neuronal cells with I/R injury [65]
(Fig. 4e). On the other hand, previous clinical study showed
that miR-199 was upregulated in patients with heart failure
[66]. Thus, well-designed clinical studies are needed in order
to confirm the impact of SNHG12/miR-199 sponging in
ischemia.

LncRNA H19

Another study determined the protective effect of metformin
in mouse brains after MCAO, as the treatment improved neu-
robehavioral function and decreased infarct volume.
Metformin decreased oxidative stress both in the in vitro and
in vivo analysis. Importantly, metformin inhibited lncRNA
H19 expression and increased the expression of miR-148a-
3p. Rock2 was determined as a target gene of miR-148a-3p,
and upregulation of miR-148a-3p decreased Rock2 expres-
sion. Therefore, the neuroprotective effect of metformin
against oxidative stress injury was observed through the
lncRNA H19/miR-148a-3p/Rock2 axis [67].

Collectively, the studies showed that lncRNAs are poten-
tially able to mediate oxidative stress injury in IS, especially
via protein regulation such as sirtuins. Thus, lncRNA
SNHG12 and H19 can contribute to reduced neurological im-
pairment (Fig. 4b).

Potentially Modifiable Factors Contributing
to Recovery Following IS

The human brain possesses the capacity of self-repair after
injury. Neurogenesis is a process based on the formation of
neuronal cells from neural stem cells and is present in specific
brain regions. Various factors such as those belonging to neu-
rotrophic factors may enhance the process. One of the
neurotrophins, brain-derived neurotrophic factor (BDNF),
has a well-documented ability to promote neuroplasticity
and was previously described to facilitate post-stroke rehabil-
itation and recovery [27, 68–74]. Recent studies indicate that
IS leads to prolonged production of new striatal neurons [75].
Another factor affecting recovery after IS, post-ischemic neu-
roinflammation, can be influenced by modifying various pro-
inflammatory factors [76]. Thus, neurological recovery can be
suppor ted by modif ica t ion of neurogenes is and
neuroinflammatory processes.

Neuronal Plasticity and Neuronal Repair Mechanisms

LncRNA RMST

LncRNA RMST modulates neurogenesis by the regulation of
neural cell fate decisions and neuronal differentiation. RMST
co-regulates transcription factor SOX2 and is essential for the
connection of SOX2 with its neurogenic target genes [77].
LncRNA RMST expression was found to be significantly
increased in both in vitro and I/R animal models, as well with
patients after IS. In vitro, RMST silencing caused decreased
neuronal apoptosis and a partial reversibility of the OGD/R
injury on the cell viability. In an animal model, RMST silenc-
ing caused a reduced infarction size and improved neurolog-
ical function test results. Moreover, reduction of brain
microgliosis and astrocytosis markers in the hippocampal re-
gion was also observed [78]. The influence of lncRNARMST
on astrocytosis andmicrogliosis processes is unclear. Previous
studies reported that astrocytosis and microgliosis play key
roles in neurological recovery, including scar formation and
release of molecules promoting neuronal plasticity [79].
Nevertheless, in the acute phase of IS, astrocytosis and
microgliosis have neuroprotective effects, while during the
chronic phase, astrocytes may have both harmful and protec-
tive effects [80].

LncRNA MEG3

Besides, lncRNA MEG3 plays an important role in nerve
growth and neurological deficit after I/R injury. MEG3 was
investigated on an animal model. In order to identify
neurogenesis conditions, nerve growth factor (NGF) levels
were determined, including BDNF, NGF, and basic fibroblast
growth factor (bFGF). MEG3 overexpression was clinically
observed as increased neurological impairment, larger infarct
area, increased water content, increased blood-brain barrier
permeability, neuronal apoptosis, and necrosis as well as up-
regulation of Wnt/B-catenin proteins, whereas MEG3 inhibi-
tor administration resulted in opposite effects. Importantly, the
treatment with MEG3 inhibitors resulted in increased BDNF,
NGF, and bFGF levels. It is well known that BDNF, NGF,
and bFGF are involved in neuronal repair processes, including
axonal growth and proliferation of neuron progenitors [27, 28,
34, 68–70, 73, 74, 81]. Thus, the results indicate that blocking
of lncRNA MEG3 expression may stimulate nerve growth
and neurogenesis by increasing NGFs and may decrease neu-
rological impairment through the Wnt signaling pathway [2].

Overall, in order to identify the effective therapeutic ap-
proach, more attention should be paid to neurogenesis follow-
ing IS as well as neuroprotection and reduction of post-
ischemic neuronal inflammation. LncRNAs, which are able
to influence the abovementioned processes, seem to be prom-
ising therapeutic approaches in IS (Table 1).
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Post-Ischemic Neuronal Inflammation

LncRNA MEG3

Inflammasomes are large complexes, formed in response to in-
flammatory stimuli, which contain various molecules such as
caspases and are able to promote maturation of pro-
inflammatory cytokines, i.e., interleukin-1β (IL-1β) and
interleukin-18 (IL-18) [82]. Apart from pro-inflammatory cyto-
kines, studies showed that AIM2 inflammasomes play an im-
portant role in ischemic brain injury. The activation of AIM2
inflammasomes can potentially induce pyroptosis and inflam-
mation in surrounding cells, increasing the injury area [24].Due
to these presumptions, lncRNAMEG3-mediated modulation of
AIM2 inflammasome was investigated in IS. Firstly, it was de-
termined that MEG3 acted as a sponge for miR-485 to suppress
its expression. Moreover, MEG3 and AIM2 expressions were
upregulated, whereas miR-485 was downregulated both in
in vivo and in vitro analysis. Knockdown of MEG3 reduced
the pyroptosis and inflammation by the upregulation of miR-
485 and the downregulation of the AIM2 inflammasome signal-
ing, whereas miR-485 inhibitor reversed the effect [26].
Similarly, Yan et al. also observed that the inhibition of
MEG3 improved neurological functioning by targeting miR-
21/PDCD4 axis [33] (Fig. 3h).

A handful of neuronal inflammasomes are broadly reported
in literature as potential therapeutic approaches in IS [83, 84];
however, little is known about their association with
lncRNAs. The AIM2 inflammasome regulated by lncRNA
MEG3 is able to mediate neuronal pyroptosis, which is an
inflammatory programmed cell death and is associated with
membrane pore formation, cell lysis, and release of cell con-
tent. Overall, this suggests that lncRNA can potentially regu-
late inflammasome-mediated neuroinflammation in IS.

LncRNA MALAT1

The effects of lncRNA MALAT1 were also studied in post-
ischemic inflammation. Silencing of MALAT1 caused a sig-
nificant increase in cerebral vascular endothelial cell death and
increased CASP3 activity in vitro. Similarly, silencing of
MALAT1 was associated with larger infarct volumes and
more serious neurological deficits in response to ischemic
injury in vivo. Moreover, silencing of MALAT1 drastically
increased mRNA levels of pro-apoptotic factor Bim (a mem-
ber of the Bcl-2 family) and induced pro-inflammatory cyto-
kines, such as E-selectin, monocyte chemoattractant protein
(MCP-1), and interleukin-6 (IL-6) after cerebral ischemia.
Additionally, it was shown that MALAT1 is a direct target
for both Bim and E-selectin. Ultimately, the study recognized
novel functions of MALAT1, the regulation of apoptotic, and
inflammatory responses in mouse cerebral endothelium after
in vitro and in vivo cerebral ischemic insults [85] (Fig. 4f).

LncRNA SNHG12

SNHG12 is also involved in regulation of neuroinflammation.
SNHG12 was found upregulated in the in vitro model of IS.
Silencing of SNHG12 increased neuronal apoptosis via en-
hanced expression of pro-apoptotic Bcl-2 family members.
Moreover, silencing of SNHG12 also resulted in increased
levels of pro-inflammatory cytokines such as IL-6 or E-
selectin. Thus, SNHG12 shows anti-apoptotic and anti-
inflammatory roles in ischemic conditions. Finally, the study
reported that knockdown of SNHG12 is associated with a
lower ratio of pAkt/Akt proteins, suggesting that Akt signal-
ing pathway is involved in neuronal cell survival as activation
of this axis reduces the survival [86]. The study shows that
lncRNA SNHG12 is a promising candidate for stroke treat-
ment in the future; however, further in vivo and human studies
are needed.

LncRNA TUG1

Microglia play an important role in neuroinflammation.
LncRNA TUG1 was upregulated in microglial cells and acted
as a sponge for miR-145a-5p, negatively regulating its expres-
sion. Silencing TUG1 modified the phenotype of microglia
(M1-like toM2-like) and reduced pro-inflammatory cytokines
which promoted production of anti-inflammatory cytokines,
thus increasing cell survival. Additionally, the OGD/R-
induced activation of the NF-κB pathway was halted by the
knockout of TUG1. A competitive interaction between TUG1
and miR-145a-5p was implied and it was shown that the miR-
145a-5p inhibition abrogated the NF-κB inactivating effect of
TUG1 knockout. Thus, the NF-κB cascade is involved in
TUG1/mir-145a-5p-mediated inflammatory response.
Hence, it is assumed that TUG1 can synchronize microglia
and assembly of inflammatory cytokines shortly following
OGD insult [87]. LncRNA TUG1 regulates microglia that
are present in brain lesions. Essentially, microglia have two
phenotypes, M1 which is pro-inflammatory and M2, which
produces anti-inflammatory particles. TUG1 silencing pro-
motes the differentiation to the M2 phenotype. It was shown
that the M2 state is able to promote neuronal repair and regen-
eration via phagocytosis of harmful substances and debris in
the injured area [88] (Fig. 3i).

Collectively, these studies show promising approaches for
future IS treatment by targeting neuroinflammation.
LncRNAs are able to decrease post-ischemic inflammation
through targeting inflammasome formation and microglia
phenotype change, important processes contributing to neural
inflammation after IS [89]. Thus, all of the mentioned
lncRNAs seem to be promising therapeutic approaches in IS
and are therefore worthy of further clinical research (Fig. 5)
(Table 1).
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Future Perspectives of lncRNAs in IS
Treatment

Nowadays, available treatment methods of IS are limited and
associated with possible detrimental effects such as reperfusion
brain injury, and thus identification of new therapeutic ap-
proaches is urgent. Since lncRNAs are unquestionably abun-
dant in the central nervous system and are involved in cerebral
pathophysiological processes, understanding their molecular
background and link with IS is essential. Numerous lncRNAs
are also associated with specific neuroanatomical regions, sug-
gesting their potentially specific functional role in the nervous
system [90]. Moreover, loss and gain of function studies
showed that lncRNAs may contribute to secondary damage
after brain injury [91]. The abovementioned studies show that
regulation of lncRNAs may exert pro-angiogenic,
neuroregenerative, anti-apoptotic, and anti-inflammatory ef-
fects in injured brain tissue. Importantly, recent data demon-
strates that treatment which targets non-coding RNAs or uses
their molecules might be an effective approach in IS [92]. A
number of studies report that miRNAs-inhibitors/mimics ame-
liorate IS brain injury and improve recovery and prognosis.
Nevertheless, similar data about lncRNAs is limited. Current
knowledge about lnRNA’s influence on IS is still not sufficient
to support their use as therapeutic approaches. There is a lack of
human studies and clinical trials involving lncRNAs in IS treat-
ment. Therefore, more studies are necessary to clarify their role
in this specific context as current studies showed that lncRNAs
are promising approaches for ischemia.

Advantages and Limitations of Using lncRNAs as
Therapeutics in IS

One of the main advantages offered by using lncRNAs in IS
treatment is their possibility to interact with miRNAs and
coordinate their functions. One of the most unique regulatory
roles is that lncRNAs are able to act as sponges for miRNAs.
Therefore lncRNAs function as competing genes for miRNAs
and inhibit/stimulate the modulatory role of miRNAs as
targeted mRNAs. Moreover, as lncRNAs can regulate
miRNA expression levels, it gives possible opportunities to
use miRNAs as soluble biomarkers of therapeutic response to
specific lncRNAs. Additionally, lncRNA may exert a more
powerful effect on specific biological processes compared to
miRNA. Some of the examples of structural and functional
regulatory mechanisms of lncRNAs include regulation of
mRNAs stability for protein synthesis, chromatin remodeling,
cell cycle control, splicing regulation, targeting specific DNA
sequences, as well as earlier mentioned miRNA regulation
[93–95]. A number of studies confirm that the gene expression
and regulation by lncRNAs are far more complex and exten-
sive than that of miRNAs [96, 97]. Moreover, there is an
increasing number of publications and novel searching

methods allowing for further lncRNA investigation as well
as lncRNA-miRNA interactions, including in silico prediction
by using bioinformatic analysis [94, 95]. Besides, lncRNAs
expression is highly specific for tissue, disease, and develop-
mental stages [7], suggesting that therapeutic interference
targeting lncRNAs might be more applicable than miRNAs
targeting which are rarely specific for a single tissue [98]. On
the other hand, the use of lncRNAs in clinical practice faces
many limitations: (i) lack of human studies; (ii) all of those
lncRNAs discussed in this review need further confirmation;
(iii) individual molecules examined in patients with IS such as
MALAT1 and Rian are not specific only to IS entity; (iv)
although similar expression of single lncRNAs in ischemia
has been confirmed independently by many researchers, de-
scribing and validation of promising therapeutics signature
patterns in IS remain challenging (Fig. 5). Therefore, much
work is still needed in this field. Nevertheless, the potential
clinical impact is worth the investment.

Conclusions

LncRNAs are promising targets in IS treatment, especially in
the modification of reperfusion injury, which can exacerbate
deficits caused by the initial ischemia [99]. Although the un-
derlying mechanism of I/R injury is not fully understood, pre-
vious studies emphasized the pivotal role of mitochondrial dys-
function, excessive calcium accumulation, and glutamate
excitotoxicity in neuronal apoptosis. In our review, we demon-
strated that lncRNAs are able to indirectly regulate serine/
threonine kinases (CaMKII, DAPK1) involved in the
abovementioned neuronal cell injury pathomechanism. Thus,
lncRNAs seem to have therapeutic potential on a cellular level.
As it was shown, lncRNAs are also part of neuronal signaling
pathways (lncRNA-miRNA-mRNA) responsible for apoptosis
and IS severity. Additionally, lncRNAs are able to regulate
RNA transcripts by acting as ceRNAs of miRNAs. In many
studies this crosstalk could be a potential explanation of how
lncRNAs control I/R injury. Moreover, in several studies, the
expression rate of lncRNAs fluctuated in a specific manner and
correlated with neurological deficit. This may indicate that fast
lncRNA intervention may potentially limit the range of injury.
Many studies have validated the crucial impact of lncRNA
modification in autophagy, angiogenesis, and oxidative stress
in IS. We should emphasize the importance of the lncRNAs
MALAT1, H19, and SNHG12 which are involved in those
processes simultaneously, thus potentially demonstrating in-
creased therapeutic effectiveness. Furthermore, in the case of
autophagy in IS, it should be noticed that autophagy has a
positive effect only in the initial phases of ischemia.
However, prolonged autophagy is fatal for brain tissue. Thus,
lncRNAs which are able to target autophagy in IS should be
highly specific for the phase of reperfusion.
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Additionally, the role of lncRNAs in regulating post-
ischemic inflammation should be emphasized, as many of
them are able to reduce the level of pro-inflammatory cyto-
kines. LncRNA MEG3 is able to regulate inflammasomes, a
source of inflammatory molecules that are able to induce
pyroptosis, an alternative neuronal cell death pathway.
Moreover, lncRNA TUG1 is able to change the microglia
phenotype from pro-inflammatory to anti-inflammatory, lead-
ing to enhanced neuronal repair. Last but not least, lncRNAs
are involved in neurogenesis and play an important role in
post-ischemic recovery. Silencing of lncRNA MEG3 in-
creased the levels of BDNF, NGF, and bFGF, all being pivotal
factors in neuronal repair processes, including axonal growth
and proliferation of neuron progenitors.

Collectively, various pathological mechanisms are in-
volved in exacerbating I/R injuries, of which the underlying
processes are still not fully understood. LncRNAs can be clin-
ically useful in IS treatment on multiple stages. In Fig. 5,
miRNAs/lncRNAs, their target genes, and processes that are
involved in pathophysiology of IS were summarized based on
the published data. According to this network, we can con-
clude that lncRNA MALAT1, SNHG12, MEG3, and H19
seem to be the most promising lncRNAs as they can regulate
at least three different processes.
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